• Aucun résultat trouvé

for reaction–diffusion systems A hybrid stochastic method with adaptive time step control Journal of Computational Physics

N/A
N/A
Protected

Academic year: 2022

Partager "for reaction–diffusion systems A hybrid stochastic method with adaptive time step control Journal of Computational Physics"

Copied!
11
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A hybrid stochastic method with adaptive time step control for reaction–diffusion systems

Wing-Cheong Lo

, Shaokun Mao

DepartmentofMathematics,CityUniversityofHongKong,Kowloon,HongKongSpecialAdministrativeRegion

a rt i c l e i n f o a b s t ra c t

Articlehistory:

Received15August2018

Receivedinrevisedform29November2018 Accepted30November2018

Availableonline12December2018

Keywords:

Reaction–diffusionsystems Stochasticsimulation Hybridmethod Biologicalpatterning

Randomnessoftenplaysanimportantroleinthespatialandtemporaldynamicsofbiolog- icalsystems.General stochasticsimulationmethods mayleadtoexcessivecomputational costforasysteminwhichalargenumber ofmoleculesinvolved.Therefore,multi-scale hybridsimulationmethodsbecomeimportantforstochasticsimulations.Herewebuilda spatiallyhybridmethodwhichcouplestwoapproaches:discretestochasticsimulationand continuousstochasticdifferentialequations.Inourmethod,thelocationsoftheinterfaces betweenthetwo approachesare changingaccording tothe distributionofmoleculesin aone-dimensional domain.To balancethe accuracyand efficiency, thetime stepofthe numericalmethodfor the continuousstochastic differentialequations is adaptedto the dynamicsofthemoleculesneartheadaptiveinterfaces.Thesimulationresultsforalinear systemandtwononlinearbiologicalsystemsindifferentone-dimensionaldomainsdemon- stratetheeffectivenessandadvantageofournewhybridmethodwiththeadaptivetime stepcontrol.

©2018ElsevierInc.Allrightsreserved.

Introduction

Many modelsofbiological patternformationare describedby thereaction anddiffusionprocesses.The stochasticbe- haviors inthe processes often havesubstantial effect when the numbers ofthe molecules involved inthe reactions are relatively small[2,9,24,32]. Themechanismsforachievingrobustbiologicalpatternsagainstthenegativeeffectsofanoisy environmentwerediscussedindepthinsomecurrentstudies[3,20,24].Besidesthenegativeeffects,spatialstochasticper- turbations mightprovide positive effectsforachievinga robust cell polarization [21] and forminga sharper boundaryof geneexpressiondomains[33].Therefore,thedevelopmentofanumericalmethodforstudyingstochasticeffectsinbiological systemsbecomesmuchmoreimportantinourfuturestudy.

Forspatiallyinhomogeneoussystems,thereaction–diffusionstochasticsimulationalgorithm(SSA)isthepopularmethod tosimulatestochasticjumpsandreactionstoobtainthestateofthesystemaftereachoccurrenceofstochasticevents[12].

AlthoughtheSSA isconvenientintermsofitsimplementation,itscomputational costbecomeslarge whenthestochastic eventsinsomeregionsoccursignificantlymorefrequentlythantheeventsinotherregions,asinthecaseofsomeregions whichhaverelativelylargecopynumbersofmolecules.

Forimprovingtheefficiency,severalhybridmethodswereproposedforstimulatingthestochasticdynamicsofspatially inhomogeneous systems[8,10,11,16,23,26–28].Themostusual approachisaspatiallyhybridmethodwhichcombinesthe

*

Correspondingauthorat:DepartmentsofMathematics,CityUniversityofHongKong,HKSAR.

E-mailaddress:wingclo@cityu.edu.hk(W.-C. Lo).

https://doi.org/10.1016/j.jcp.2018.11.042

0021-9991/©2018ElsevierInc.Allrightsreserved.

(2)

SSAandpartialdifferentialequationswhichprovideamean-fieldapproximationforthestochasticbehaviors[13,30].How- ever,arelatively smallstochasticeffectinthehighconcentrationregion mayresultinrelativelylarge perturbationinthe lowconcentrationregionbecauseofthediffusionprocessinspace.Sosomecurrentstudiesmovedtheirfocustodeveloping afullstochastichybridmethod[28].Thecontinuousapproachusingstochasticpartialdifferentialequationscanbeapplied toapproximatethestochasticsystematarelativelyhighconcentrationandprovidesanadditionalabilitytoincorporatethe stochasticityintheentirespatialdomain.Nevertheless,thecouplingofthediscreteandcontinuousapproachesandtheset- tingofthetimestepusedinthecontinuousapproachcanbeimprovedtobeadaptivetodifferentsystemsformaintaining highaccuracyandefficiency.Here,wewillfocusonthesetwoissuestodevelopamethodwhichiseasilyimplementedand adaptivetothesettingsofdifferentone-dimensionalreaction–diffusionsystems.

Inthispaper,webuildanadaptivespatiallyhybridmethodcouplingcontinuousstochasticdifferentialequationsandthe SSA. In ourhybrid method,the locationsofthe interfacesbetweenthe two numericalmethods are adapted to thecopy numbers ofmolecules in each compartment. Tobalance the accuracy andthe efficiency,the time step of the numerical methodforthecontinuousstochasticdifferentialequationsischangingaccordingtothedynamicsofthemoleculesnearthe adaptiveinterfaces.Then we applyour methodtoa linearsystemandtwononlinear biologicalsystemsin differentone- dimensionaldomainstoverifytheeffectivenessofournewapproach.Thesimulationresultsdemonstratethat,comparing withtheSSA,ourhybridmethodhasasignificantimprovementinefficiencyandtheadaptivetimestepcontrolprovidesa betterbalancebetweentheaccuracyandefficiencythanusingfixedtimestep.

Methods

Spatiallyinhomogeneousreaction–diffusionsystem

Consider a system with N molecular species {S1,S2,· · ·,SN} which are involved in the following M reactions {R1,R2,· · ·,RM}:

Rj

:

srj1S1

+ · · · +

srjNSN γj

−→

spj1S1

+ · · · +

spjNSN

.

Here, srji andspji are thestoichiometric coefficients ofthereactant andproductspecies, respectively, and

γ

j is thecorre- spondingmacroscopicrateconstant.

When we are interested in the spatial distribution ofthe molecules on a one-dimensional domain, the domain with lengthLcanbepartitionedinto K compartmentswithuniformlengthh,whereh=L/K.

Assumption1.Thediffusionprocessisfastenoughtoassumethatthesubsystemineachcompartmentisspatiallyhomoge- neous.Inotherwords,thesizeofeachcompartmentmustbesufficientlysmallthatdiffusivejumpsoccurmorerapidlythan reactionsandtheinhomogeneityinsideeachcompartmentcanbeignored[14,15,17].Moleculesindifferentcompartments aretreatedasdifferentspecies,denotedby

{

S11

,

S12

,· · · ,

Ski

,· · · ,

SK N

},

where Ski representstheithspeciesinthekthcompartment.The systemstate attimet isdenotedby K×N-component vector

X

(

t

) = (

X11

(

t

),

X12

(

t

), · · · ,

Xki

(

t

), · · · ,

XK N

(

t

)),

where Xki isthenumberofmoleculesofSki.

Assumption2.Weassumethat onlymoleculesinthesamecompartment canreactwitheachother.The M reactionscan beconsideredasK×Mreactionsinthespatialsystemanddenotedby Rkj,the jthreactioninthekthcompartment:

Rkj

:

srj1Sk1

+ · · · +

srjNSkN γkj

−−→

spj1Sk1

+ · · · +

spjNSkN

,

where

γ

kj is the reaction rateconstant of the reaction Rkj.The state of the systemtransfers fromone state to another throughreactionfiring.ThenetchangeofthestateofthesystemcausedbyoneoccurrenceofRkj isdenotedas

ν

kj:

ν

kj

= (

0

, · · · ,

0

,

spj1

srj1

, · · · ,

spjN

srjN

from ((k1)N+1)th tokNth

,

0

, · · · ,

0

).

Assumption3. Diffusion process is treated as a reaction in which a molecule in one compartment jumps to one of its neighboringcompartments.AssumethatspeciesSi diffuseswithadiffusioncoefficient Di andtheboundaryconditionsof theone-dimensionaldomainareconsidered asreflectiveboundaryconditionsatbothends.Therefore,thediffusive jumps obeythefollowingchainreactions:

(3)

JikL

:

S1i Di/h2

←−−−

Di/h2

S2i Di/h

←−−−

2 Di/h2

S3i

· · · ←−−−

Di/h2

Di/h2

SK i

,

JikR

:

S1i

Di/h2

−−−→

Di/h2 S2i Di/h2

−−−→

Di/h2 S3i

· · · −−−→

Di/h2

Di/h2 SK i

.

We denotetheleft jumpofSi fromthekthcompartmentby JikL andtherightjumpof Si fromthekthcompartmentby JikR.

The probabilitythatthereaction Rkj willhappeninthenext timeinterval[t,t+dt)is

α

kj(X(t))dt,where

α

kj iscalled thepropensityfunctionofRkj andisdefinedas

α

kj

(

X

(

t

)) = γ

kjXs

r j1 k1Xs

r j2 k2

· · ·

Xs

r jN kN

;

theprobabilitiesforthejump JikL and JikRare

α

ikL(X(t))dtand

α

ikR(X(t))dt,respectively,where

α

ikL

(

X

(

t

)) =

Di

h2Xki

,

for 1

<

k

K

, α

ikR

(

X

(

t

)) =

Di

h2Xki

,

for 1

k

<

K

.

This system can be simulatedthrough the stochastic simulation algorithm (SSA) [12]. At time t, X(t) is given. We first generatetwoindependentrandomnumbersr1 andr2,whichareuniformlydistributedin[0,1]andthencalculatethenext reactionorjumptime

τ

bythefollowingformula

τ = −

1

α

0

ln

(

r1

),

where

α

0 isthesumofallpropensityfunctionsofthejumps J andthereactions R.At timet+

τ

,areaction Rqmoccurs whenthesmallestqandmexistforaninequality

q1

k=1

M j=1

α

kj

+

m

j=1

α

qj

r2

α

0

;

(1)

ifq andmdonotexist,aleftjump Jw1q1L mayoccurwhenthesmallestq1andw1 existforaninequality

K k=1

M j=1

α

kj

+

q

11 k=1

N i=1

α

ikL

+

w1

i=1

α

iq1L

r2

α

0

;

(2)

ifq,m,q1 andw1 donotexist,arightjump Jw2q2R mayoccurwhenthesmallestq2 andw2existforaninequality

K k=1

M j=1

α

kj

+

K k=1

N i=1

α

ikL

+

q

21 k=1

N i=1

α

ikR

+

w2

i=1

α

iq2R

r2

α

0

.

(3)

Thenthestate X(t+

τ

)isupdatedaccordingtothecorrespondingstatechange.Thisprocessisrepeateduntilitreachesthe stopcriterion.

Approximationbystochasticdifferentialequations

Letube X/hwhichrepresentsthedistributionsofthemolecularconcentrations,whereuki=Xki/hineachcomponent.

Assumethatthenumbersofthemoleculesineachcompartmentarelarge,wecanapproximatethestochasticsystembya systemofstochasticdifferentialequations(SDE)foru[18,22]:

duki

=

Di h2

u(k1)i

2uki

+

u(k+1)i

dt

+

M

j=1 rki j

(

u

)

dt

+

n(k1)i

(

u

)

dW(k1)J R

+

n(k+1)i

(

u

)

dW(k+1)J L

nki

(

u

)

dWk J R

nki

(

u

)

dWk J L

+

M

j=1

nki j

(

u

)

dWkj

,

for 2

k

K

1

,

(4)

(4)

whererki j(u)isthe[(k1)N+i]thcomponentof

ν

kj

α

kj(uh)/h;nki j(u)isthe[(k1)N+i]thcomponentof

ν

kj

α

kj(uh)/h;

nki(u) equals to Di

h2uki/h; the variables W’s are the Wiener processes which are independent to each other. For the reflectiveboundaryconditions,whenk=1,thefirsttermoftherighthandsideinEq. (4) isreplacedby Dh2i(−u1i+u2i)dt andthetwotermsn(k1)i(u)dW(k1)J R andnki(u)dWk J L areremoved;whenk=K,thefirsttermoftherighthandsidein Eq. (4) isreplacedby hD2i

u(K1)iuK i

dtandthetwotermsn(k+1)i(u)dW(k+1)J Landnki(u)dWk J R areremoved.

Fornumericalsimulation,we simplyusethe Euler–Maruyamamethodtocalculatethe solutionforthesystemofSDE [18]:

uki

(

t

+

t

)

uki

(

t

)

Di h2

u(k1)i

(

t

)

2uki

(

t

) +

u(k+1)i

(

t

)

t

+

M j=1

rki j

(

u

(

t

))

t

+

n(k1)i

(

u

(

t

))

t

ζ

(k1)J R

+

n(k+1)i

(

u

(

t

))

t

ζ

(k+1)J L

nki

(

u

(

t

))

t

ζ

k J R

nki

(

u

(

t

))

t

ζ

k J L

+

M

j=1

nki j

(

u

(

t

))

t

ζ

kj

,

for 2

k

K

1

,

(5)

whereζ’sareindependentstandardnormalrandomvariables.Whenk=1,thefirsttermoftherighthandsideinEq. (5) is replacedby Dh2i(u1i+u2i) t,andn(k1)i(u(t))

(k1)J R andnki(u(t))

k J Lareremoved;whenk=K,thefirstterm oftherighthandsideinEq. (5) isreplacedby Dh2i

u(K1)iuK i

t,andn(k+1)i(u(t))

(k+1)J Landnki(u(t))

k J Rare removed.

Herewe applytheEuler–Maruyamamethodasitiseasy tobenumericallyimplemented.Actually,wecanapply other higherorder numericalmethods to improvethe accuracy [4,18,31]. Although thenumerical SDEapproach isan efficient methodtoapproximatethe stochasticprocesseswithhighmolecularconcentrations,theaccuracymaynot behighwhen thenumberofmoleculesbecomeslow.Inthelatersections,wewilldevelopthehybridmethodwhichcouplestheSSAand numericalSDEtobalancetheaccuracyandefficiencyinthesimulation.

AdaptiveinterfacesbetweenSSAandnumericalSDE

Todecidea methodto capturetheadvantages oftheSSA andnumericalSDE,we firstconsider awayto separatethe domain intotwo regions that satisfies:1) the methodis efficientinthe region withlarge numbersofmolecules; 2) the methodisaccurateintheregionwithsmallnumbersofmolecules.WeconsidertoapplythenumericalSDEtoapproximate thedynamicsinthekthcompartmentif

1i≤minN;1jM

⎧ ⎨

Xki

spji

srji

⎫ ⎬

>

Nint

;

(6) inothercompartments,wewillapplytheSSAforthesimulations.

IfNintislarge,theconditioncanreducetheprobabilitythattheapproximationprovidesanegativenumberofmolecules inthekthcompartment aftereachiteration.Aset IC isdefinedasasetofall theindexesk satisfyingtheinequality(6);

aset ID isdefinedas{1,2,...,K}\ID; IB R andIB L arethesetsoftheleftboundarypointsandtherightboundarypoints, respectively,inallintervalsinIC.AsampleofthesefoursetsisillustratedinFig.1.Herewesimulatethefluxbetweenthe tworegionsbytheSSA.Therefore,thefiringtimeofthejumpbetweenIC andID arestochastic.

IntheIC region,weusethenumericalSDEtoapproximatethestochasticdynamics.Ifeachintervalin IC islargerthan onecompartment,weusetheEuler–Maruyamamethod,like(5),tobuildthefollowingiterationforkIC:

uki

(

t

+

t

)

uki

(

t

)

Di h2

u(k1)i

(

t

)

2uki

(

t

) +

u(k+1)i

(

t

)

t

+

M j=1

rki j

(

u

(

t

))

t

+

n(k1)i

(

u

(

t

))

t

ζ

(k1)J R

+

n(k+1)i

(

u

(

t

))

t

ζ

(k+1)J L

nki

(

u

(

t

))

t

ζ

k J R

(5)

Fig. 1.IllustrationofthedomaindecompositionbetweentheSSAandthestochasticdifferentialequations.ID(yellow)representstheregionfortheSSA;

IC(blue,pink,green)representstheregionfortheSDE;IB R(green)andIB L(blue)aretheleftboundarypointsandtherightboundarypoints,respectively, inallintervalsinIC.(Forinterpretationofthecolorsinthefigures,thereaderisreferredtothewebversionofthisarticle.)

nki

(

u

(

t

))

t

ζ

k J L

+

M

j=1

nki j

(

u

(

t

))

t

ζ

kj

,

fork

IC

\ (

IB R

IB L

);

(7)

forkIB L,thefirsttermoftherighthandsideinEq. (7) isreplacedby Dh2i

uki+u(k+1)i

t,andn(k1)i(u(t))

tζ(k1)J R and nki(u(t))

k J L are removed; for kIB R, the first term of the right hand side in Eq. (7) is replaced by Di

h2

u(k1)iuki

t, and n(k+1)i(u(t))

tζ(k+1)J L and nki(u(t))

k J R are removed. If an interval in IC has only one compartment,weapplyEq. (7) withoutthediffusionterm.

Timestepselectionfornumericaldifferentialequations

The selectionofthetime stept=tC forthenumericalSDE(7) wasnotdiscussedinthepreviousstudiesofhybrid methods. Based on thestudyforthe efficient

τ

-selection forthe

τ

-Leapingmethod [5], we considerthat the meanand varianceoftherelativechangeofthemolecularpopulationsineachiterationisboundedbycertainthreshold :

| <

tCXki

> | ≤

max

{

Xki

,

1

} ,

var

{

tCXki

} ≤

max

{

Xki

,

1

} ,

(8) forallkIC.Tosatisfythepreviousconditionsandtheconditionforthestabilityofcentraldifferencescheme[18]

tC

t0

=

min

1iN

h2 2Di

,

weobtainthefollowingsettingfortC selection:

tC

=

min

1iN,kIC

max

{

huki

,

1

}

μ

ki

(

u

) , (

max

{

huki

,

1

} )

2

σ

ki

(

u

) ,

t0

(9)

where

μ

ki

(

u

) =

Di h2

u(k1)i

(

t

)

2uki

(

t

) +

u(k+1)i

(

t

)

h

+

M j=1

rki j

(

u

(

t

))

h

,

and

σ

ki

(

u

) =

Di h2

u(k1)i

(

t

) +

2uki

(

t

) +

u(k+1)i

(

t

)

h

+

M j=1

nki j

(

u

(

t

))

h

2

,

forkIC\(IB RIB L).ForkIB L,thefirsttermsoftherighthandsidesof

μ

ki(u)and

σ

ki(u)arereplacedby Di

h2

uki

+

u(k+1)i

hand Di h2

uki

+

u(k+1)i

h

,

respectively

;

forkIB R,thefirsttermsoftherighthandsidesof

μ

ki(u)and

σ

ki(u)arereplacedby Di

h2

u(k1)i

uki

hand Di h2

u(k1)i

+

uki

h

,

respectively

.

(6)

If ismuchlessthan1,ourtimestepsettingcanguaranteethattherelativechangesofthenumbersofthemoleculesare smallenoughtoensurethenumericalstabilityfortheapproximation.Inthenumericaltests,wewilltake =0.1 whichis smallenoughtoensurethenumericalstabilityoftheEuler–Maruyamamethod.

ItisworthtoremarkthatalthoughthetimestepsizetC iscontrolledtoreducetherelativeerror,anegativevaluemay still appearintheiteration(7) withsmallprobability.Whenanegative value appears,thetime steptC canbe reduced throughdividingbytwo;ifthenegativevaluestillexistsaftertC decreases,theprocesscanberepeateduntilthenegative valuedoesnotexistintheiteration(7).

Whenajumpofamolecule(theprocessismodeledbytheSSA)happensacrossaninterface,themolecularpopulation willchangeinthe IC region.Tomaintaintheaccuracyoftheapproximation,weconsiderthatifajumpacrossaninterface happens,wewillresetthevalueoftC tolettheiterationrunsimultaneouslywiththejump.Thedetailswillbeexplained inthealgorithmoverview.

Algorithmoverview

Forasysteminaone-dimensionaldomainwithlengthL,givenaninitialtimet=t0,aninitialcondition X(t0)=X0 and afinaltimeT,weperformthefollowingsteps:

1. Setavalue hforthespatialsizeofeach compartmentsuchthat thenumberofcompartmentsisan integer K=L/h.

Assignanindexfrom{1,2,...,K}foreachcompartment.Setanerrorparameter andaninterfacethresholdNintwhich willbeusedinEqs. (6) and(9),respectively.

2. ByEq. (6) withNint,divides{1,2,...,K}intofoursetsofindexes ID,IC,IB LandIB R.

3. If IC isnotempty,useEq. (9) tocalculatetC andsetTC=t+tC;otherwise,settC=TC= ∞andruntheSSAfor theentirespatialdomainuntilIC isnotempty.

4. If ID is not empty, generate two independent random numbers r1 andr2 whichare uniformly distributed in[0,1]. Calculate the next reaction time tD= −α10ln(r1) forthe SSA, where

α

0 isthe sum ofthe propensity functions of the right jumps JikR (for kIDIB R), the left jumps JikL (for kIDIB L) and the reactions Rki (for kID) for i∈ {1,2,...,M}.SetTD=t+tD.UsetheSSAmethodwiththesecond randomnumberr2 tofindthecorresponding reactionorjump.IfID isempty,settD=TD= ∞.

5. (a) Case1:IfTC<TD,runtheiteration(7) witht=tC forallthecompartmentsin IC.Sett=TC.

(b) Case2:IfTC=TD,runtheiteration(7) witht=tC forallthecompartmentsinIC.Sett=TC.RuntheSSAfor updating X inaccordancewiththereactionorjumpfoundinStep 4.

(c) Case3:IfTC>TD andajumpacrossthe interfacesisselectedforthefiringreactionintheSSAmethod,runthe iteration (7) with t=tC(TCTD) forall ith compartment, where iIC. Runthe SSA forupdating X in accordancewiththereactionorjumpfoundinStep 4.Sett=TD.

(d) Case4:Cases1–3arenotsatisfied,update X inaccordancewiththereactionorjumpfoundinStep 4.Sett=TD. 6. For Cases 1, 2 and3,reset the foursets IB L, IB R, ID and IC according toEq. (6). If IC is not empty, useEq. (9) to

calculatenewtC andsetTC=t+tC;otherwise,settC=TC= ∞.ForCase4,ifIC isempty,thesimilarupdateof thesetsisneeded;ifIC isnotempty,theupdateofthesetsisnotneeded.

7. GobacktoStep 4 untiltT. Numericalresults

Linearsystem

Hereweapplyasimplelinearsystemtocomparetheperformanceofthehybridmethodwithdifferenttimestepsettings.

Inthelinearsystem,thereisonlyonetypeofmolecules, S1,inaone-dimensionaldomainoflengthL=50.Wedividethe domaininto100compartmentswithuniformsizeh=50/100=0.5.Therearetwotypesofreactionslistedas

Rk1

:

S1 γ1

−→ φ

fork

∈ {

1

,

2

, ...,

100

}

andRg2

: φ −→

γ2 S1forg

∈ {

1

,

2

, ...,

20

} .

Themolecule S1 diffuseswithacoefficientD withreflectiveboundaryconditions.Weset

γ

1=1,

γ

2=500 andthediffusion coefficient D=10.Theinitialconditionfor Xk1 whichrepresentsthenumberofS1inthekthcompartmentis:

Xk1

(

0

) =

55

0

.

5k

,

fork

=

1

, ...

100

.

Forthislinearsystem, wecanexplicitlyobtaintheexactsolutionsofthemeanandthestandard deviation,whichwillbe usedtocalculatetheerrortoverifytheaccuracy.Also,thistype ofsimplemodelwasoftenappliedtostudythestochastic effectinbiologicalpatterning[20,24].

Ifwe usetheSSAtosimulatethesystemfromt=0 tot=6,theaveragecomputationalcostpersimulationisover60 secondsamong5,000 simulations.Whenweapply ourhybridmethodwith =0.1 andNint=10,thecomputationalcost isreducedto8secondwhichis13% ofthecostoftheSSA.

(7)

Fig. 2.Thesimulationresultsatt=6 forthelinearsystembythehybridmethodwithdifferenttC settings:fixedtC=0.1h2/D,0.01h2/Dandan adaptivetC definedin(9).A)Themeanvaluesofthegradients.B)Thestandarddeviationsofthegradients.Foreachcase,5,000simulationsarecollected toobtainthestatisticalresults.Thedashedlinesrepresenttheexactsolutionsofthemeanandthestandarddeviation.

Fig. 3.TheaccuracyandtheefficiencyofthehybridmethodwithdifferenttCsettings.A)Thesumsoftheerrorofthemean.B)Thesumsoftherelative errorofthemean.C)Thesumsoftheerrorofthestandarddeviation.D)Thesumsoftherelativeerrorofthestandarddeviation.E)Thecomputational costsatdifferenttimet.

To show the advantage ofthe adaptive tC, we compare the performance ofthe hybrid method with differenttC settings.Fig.2showsthatthemeanvaluesandthestandarddeviationsofthecaseswithafixedtC=0.1h2/D,0.01h2/D andanadaptivetC definedin(9).Foreachcase,5,000simulationsarecollectedtoobtainthestatisticalresults.

Fig.2Ashowsthatallthreecaseshaveasimilaraccuracywhenthesolutionsarecomparedwiththeexactmeansolution;

thestandarddeviationsshowninFig.2BdemonstratethatthecasewithafixedtC=0.1h2/D doesnotperformasgood as theother two cases.Toquantify the results,we measure the sumofthe error (the absolutedifferencesbetween the approximationandtheexactsolutionineachcompartment)inallcompartmentsandtheresultsareshowninFig.3.

Fig.3AshowsthatthesumsoftheerrordonothaveahugechangewithdifferenttC settings.Thisresultisconsistent whenweconsiderthesumsoftherelativeerror(theabsolutedifferencesbetweentheapproximationandtheexactsolution dividedbytheexactsolutionineachcompartment)showninFig.3B.Whenwemeasuretheerrorinthestandarddeviation (Figs.3C,D),thecasewithafixedtC =0.1h2/D hasalarger error,alsoarelativeerror,thantheother twocaseswhich havesimilarperformance inapproximatingthestandarddeviation. However,theefficiencyofthecasewithafixedtC = 0.1h2/D is the best among all three cases (Fig. 3E). The average computational cost for this case is around 6 seconds.

Betweentheothertwocases,theadaptivetime stepsettinghaslesscomputationalcostthanthecasewithafixedtC = 0.01h2/D (the former is 7 secondsper simulation andthe latteris over 8 seconds per simulation) although they have similar performance in the accuracy. Compared withthe SSA (60 seconds per simulation), the hybrid method with the

(8)

Fig. 4.Thesimulationresultsforthesystemofmorphogen-mediatedpatterningbytheSSAandthehybridmethodwith=0.1 andNint=5.Foreach case,1,000simulationsarecollectedtoobtainthestatisticalresults.

adaptive time step setting saves over 80% of computational cost and provides an advantage on balancing between the accuracyandefficiency(Figs.3C–E).

Systemofmorphogen-mediatedpatterning

In[19], thesystemofmorphogen-mediated patterninginvolvesthree typesofmolecules, L, E and W,whichare free ligand,receptorandligand-receptorcomplex,respectively.Wedividethedomainoflength100 μm into100compartments withsizeh=1 μm andacompartmentrepresentsasinglecell.Freemorphogensareproducedinalocalregion[0,10]and diffuseinthedomainwitha diffusioncoefficient D1=10 μm2s1;receptors andligand-receptorcomplexesare fixedon thecellmembrane.Ineachcompartment,thereactionsarelistedas

Rg1

: φ −→

γ1 L

,

forg

∈ {

1

, ...,

10

},

Rk2

:

L

+

E

−→

γ2 W

,

Rk3

:

W

−→

γ3 L

+

E

,

Rk3

:

W

−→

γ4

φ,

fork

∈ {

1

, ...,

100

} .

Assumethat thenumberoftotalreceptorsislarge enough,thenthefrustrationof E+W isrelatively small.We simplify the system by assuming R+W is a constant number ET =500 ineach compartment. The parameter values are listed asfollows:

γ

1=10 s1,

γ

2=104s1,

γ

3=

γ

4=102s1.The initial conditionsfor Xk1 and Xk2, whichrepresentthe numbersofLandW inthekthcompartment,respectively,are:

Xk1

(

0

) =

Xk2

(

0

) =

100

k

,

fork

=

1

, ...

100

.

Fig.4showstheresultsofthemeansandthestandarddeviationsofthesolutionsatt=10 s,whichareobtainedfrom the SSA and thehybrid method with

=0.1 and Nint=5.For each case, 1,000 simulations are collected to obtain the statisticalresults.Fromthesimulationresults,wefindthatthehybridmethodhasagoodperformanceastheSSA.Onthe other hand,theaveragecomputational costofthe hybridmethodpersimulation is3.42 s butthe averagecomputational costoftheSSAis15.49 swhichis4timeslongerthanthatofthehybridmethod.Wealsoapplythehybridmethodwith twolargerthresholdvaluesNint=10 andNint=20 andfindthattheaccuracydoesnothaveanysignificantchangebutthe computationalcostincreasesfrom3.42 sto8.74 swhen Nint increasesfrom5to20.Moreover,whenthesmaller Nint=2 isconsidered,thecomputationalcostincreasesfrom3.42 sto5.29 sasasmallertimesteptC isrequiredformaintaining theaccuracy oftheapproximation when Nint decreases.ComparedwiththeSSA, thehybrid methodwithasuitable Nint cansaveover75%ofcomputationalcostforthissimulation.

Systemofyeastpolarity

In [1], thestochastic model ofcell polarization showedthat a positive feedbackalone is sufficientto account forthe spontaneousestablishmentofasingle siteofpolarity.Weapply themodelin[1] to verifytheaccuracyofourmethod.In

(9)

Fig. 5. TheaccuracyandtheefficiencyofthehybridmethodwithdifferentnumbersofsignalingmoleculesNs.A)Asamplesimulationatt=20 min throughthehybridmethodwithNs=4000.B)Asamplesimulationatt=20 min throughtheSSAmethodwithNs=4000.C)Thepercentageofpolarized caseswithin1,000independentsimulationsfordifferentNsvalues.D)Theaveragecomputationalcostwithin1,000independentsimulationsfordifferent Nsvalues.

the model,thereis onlyone type ofsignalingmolecules, S1,andthecomputational domainrepresents thecrosssection ofcellmembranewhichisconsideredasaone-dimensionaldomainwithlength10

π

μm (theradiusofcellis5 μm).The domain is partitionedinto 50 identical compartmentswithuniform length 0.2

π

μm. Signalingmoleculesmove between cytoplasmic states and membrane-bound states. In each compartment, there are three types of reactions: spontaneous membraneassociation(fromcytoplasmicstate tomembrane-boundstate),positive-feedbackassociation (fromcytoplasmic state tomembrane-bound state) andspontaneous membranedisassociation (from membrane-boundstate tocytoplasmic state).LetXk1bethenumberofS1inthekthcompartment.Ineachcompartment,wehave

Spontaneous membrane associationRk1

k1(Ns

kXk1)

−−−−−−−−−→

S1

,

Positive-feedback associationRk2

k2(Xk1/h)(Ns

kXk1)

−−−−−−−−−−−−−−→

S1

,

Spontaneous membrane disassociationRk3

:

S1

k3

−→ φ,

withthepropensityfunctions

α

k1

=

k1

(

Ns

k

Xk1

),

α

k2

=

k2

(

Xk1

/

h

)(

Ns

k

Xk1

)

and

α

k3

=

k3Xk1

,

whereNsisthetotalnumberofsignalingmolecules.TheinitialconditionisXk1=10 forallk.Forourhybridmethod,weset

=0.1 and Nint=5;forthebiologicalparameters,weset D=1.2 μm2/min,k1/k2=104,k3=9/min andk2/k3=0.9Ns [1].TheinitialconditionforS1is

Xk1

(

0

) =

10

δ

k

,

fork

=

1

, ...

100

,

where δk’sare independentrandomnumbersgeneratedfromthe uniformdistributionon[0,1].Figs.5AandBshowtwo samplesimulationsatt=20 min,obtainedbythehybridmethodandtheSSA,respectively.

In[1],thestochasticmodelofcellpolarizationdemonstratedthatthefrequencyofpolarizationinverselydependsonthe numberofsignalingmoleculesNs.Figs.5CandDshowthatthehybridmethodandtheSSAcancapturethisfeatureofthe system.Weassumethatpolarizationinsimulationsatt=20 min isdeterminedbywhetheranintervalof10%ofthewhole domaincontainsmorethan50%ofthetotalnumberofsignalingmolecules(asthesamplesinFigs.5AandB).Fig.5Cshows thepercentageofpolarizedcaseswithin1,000independentsimulationsfordifferentNsvalues(redlinerepresentsthehy- bridmethod;thebluelinerepresentstheSSA).Thefrequencyofpolarizationisdecreasingfrom0.65to0whenthenumber

Références

Documents relatifs

Quant au troisième, il analyse la politique agricole vivrière de la Seconde Guerre mondiale à l’accession de la Côte d’Ivoire à l’indépendance en 1960.. La

Figure 8: Wall-clock computational time spent to perform simulations with the purely compressible approach (dashed line) and the hybrid method (symbols), and for different maximum

A hybrid spectral method was proposed for analysis of stochastic SISO linear dead-time systems with both stochastic parameter uncertainties and additive input for the first

A hybrid spectral method was proposed to analyze DO systems in a stochastic setting with arbitrary random forcing and parametric uncertainties. To analyze the system with

Hybrid modeling; Particle Size Distribution; Population Balance Equation, Probability Density Function, Monte Carlo solution.. ∗

les plus grands changements en matière d’indices morphologiques des nageurs de notre échantillon et qui coïncide avec l’âge de (14-16 ans). LES

( ﻋ ﻒﺸﻜﻟا ﺘﻌ و ﻩﺬ ،ﺮﺧآ ﻌﻤﺑ وأ ،ﻩﺮﺻﺎﻨﻋو مﺎﻈﻨﻟا اﺬ ﺔﻌﻴﺒﻃ ﻦ ﺔﻴﺼﻨﻟا تﺎﻴﻧﺎﺴﻠﻟﺎﺑ فﺮﻌُ ﺢﺒﺻأ ﺎﳌ لو فﺪ ﻟا ،ﺔﻴﺼﻨﻟا ةءﺎﻔﻜﻟا « 19 ... يرﻮﺤﻣ رود تﺎﻇﻮﻔﻠﻤﻠﻟو

Hybrid model and proposed control law In this section we design an hybrid dynamical system, following the paradigm given in [13], wherein continuous- time behavior encompasses