• Aucun résultat trouvé

C. Falentin-Daudré. University of Sorbonne Paris North CSPBAT - UMR CNRS 7244 LBPS Team.

N/A
N/A
Protected

Academic year: 2022

Partager "C. Falentin-Daudré. University of Sorbonne Paris North CSPBAT - UMR CNRS 7244 LBPS Team."

Copied!
22
0
0

Texte intégral

(1)

University of Sorbonne Paris North CSPBAT - UMR CNRS 7244

LBPS Team

C. Falentin-Daudré

01/07/2021 1

https://cspbat.univ-paris13.fr/equipes/lbps.html

(2)

2

CSPBAT

CSPBAT - UMR CNRS 7244

Chimie, Structure, Propriètés de Biomatériaux et d’Agents Thérapeutiques

LBPS Biomatériaux Pour la Santé NBD

Nano médecine Biocapteurs

Détection

CBS Chimie Bioorganique

et Synthèse

(3)

Direction de l’équipe LBPS:

Dr C. Falentin-Daudré

Enseignants-chercheurs:

Pr S. Ramtani

Dr C. Falentin-Daudré (MCF-HDR) Dr A. Rangel (ATER)

BIATS:

Dr JS Baumann (IE) M. Lam (AI-doctorante)

Dr M. Abdallah (IR) E. Di Dio Busa (TC/BIATS)

Doctorants : M. Lam (3

ème

année) V. Moris (3

ème

année) C. Pereira (2

ème

année) K. Benabdderrahmane (1

ère

année)

A. Douhou (1

ère

année) F. Mouillard (1/2) (1

ère

année)

3

LBPS TEAM

(4)

--> Functionnalization of biomaterials surfaces to improve the biological response

NaSS

VBP ADopa

HEMA

MMA

MA154

AA

LBPS TEAM

Team expertise : Elaboration of antibacterial and biocompatible surfaces

Surfaces : Polymers (PET, PCL, silicone), metals (Ti, alloys), ceramics (alumina, aragonite)

Monomers synthesis Grafting

Anchor fixation

SEM-EDS AFM FTIR-ATR UV spectroscopy Contact angle measurement

Colorimetry RMN

SEC

DSC

(5)

--> Functionnalization of biomaterials surfaces to improve the biological response

NaSS

VBP ADopa

HEMA

MMA

MA154

AA

LBPS TEAM

Team expertise : Elaboration of antibacterial and biocompatible surfaces

Surfaces : Polymers (PET, PCL, silicone), metals (Ti, alloys), ceramics (alumina, aragonite)

Monomers synthesis Grafting

Anchor fixation

5

Biological response

(6)

LBPS TEAM

Elaboration d’une prothèse ligamentaire

bioactive et biodégradable

Projet LIGA2BIO

--> Différents projets :

Projet Acollen

Elaboration d’une colle biocompatible pour les

tissus biologiques

K. Benabdderrahmane M. Lam

Dr A. Rangel

(7)

Implant en alumine poreuse => sternum

LBPS TEAM

Membrane électrofilée en PCL

Dr JS Baumann 7

Thèse : A. Douhou Pr Ramtani

Sandwich Ti/PMMA/Ti => cranioplastie

Thèse : C. Pereira

Projet BIOSMS

Pr A. Carrado Pr H. Palkowski

Thèse: K. Benabdderrahmane

Implant mammaire

en silicone

Projet BIOACSIL

Thèse : M. Lam et Dr V. Moris

(8)

Université Sorbonne Paris Nord

Equipe « Laboratoire de Biomatériaux Pour la Santé (LBPS) » CSPBAT - UMR CNRS 7244

C. Falentin-Daudré

Collaborations :

Dr R. Vayron (LAMIH, Valenciennes)

Thèse : M. Lam et Dr V. Moris

Dr C. Gomes (SEBBIN)

Dr N. Kerfant/ Dr M. Theron/Dr K. Pichavant (ORPHY, Brest) Dr. V. Humblot

(9)

1

st

breast augmentation - silicone implants (USA - T. Cronin & F.

Gerow)

1

st

case of large cell

anaplasic lymphoma 2 major scandals

Cash Investigation

« implants files »

1962 1970 1997 2011 2018

Peri-prosthetic capsules

9

Introduction: Breast implants context

(10)

o Fibrosis

o Baker scale (stages I-IV)

• Hardness

• Pain

• Skin deformation

o 953 cases worldwide (21/07/2020) o Long term apparition

o Hardening, pain, skin deformation

+ Severe inflammation, fluids accumulation

② Anaplasic Large Cell Lymphoma (BIA-ALCL)

⟹ Removal and replacement (2 nd surgery)

Capsular contracture

Explanted breast implants

Introduction: Breast Implants Associated (BIA) issues

(11)

Marra, A.; Viale, G.; Pileri, S.; Pravettoni, G.; Viale, G.; De Lorenzi, F.; Nolè, F.; Veronesi, P.; Curigliano, G. Breast Implant-Associated Anaplastic Large Cell Lymphoma: A Comprehensive Review. Cancer Treatment Reviews 2020, 84, 101963.

11

Introduction: Rising concerns about ALCL

(12)

Origins/causes

Immune system

Genetic predisposition

Bacterial infection

• Explanted implants  High loads of S. epidermidis, P. aeruginosa, R. pickettii

⟹ BIOFILM

Materials Today: Proceedings. 18 (2019) 4847–4853. / Bristish Journal of Surgury. 100 (2013) 768–774. /Aesth. Plast. Surg. 16 (1992) 173–179.

Seroma

12

Introduction: Ethiology

(13)

• Elasticity

• Transparency

• Low cost

• Ease to manufacture

• Biocompatible

• Hydrophobic

• Inert

• Also known as Poly(dimethylsiloxane) – PDMS

• Various physicochemical properties:

Breast implant

⟹ Prone to biofilm formation

13

Introduction: Physicochemical properties of silicone

(14)

① non specific adsorption of proteins

Silicone surface (i) Reversible

attachment

② Biofilm formation

(ii) Irreversible attachment

(iii) Maturation

& growth

(iv) biofilm

Fibronecti n

Vitronectin Albumi

n

Living bacteria with adhesin receptors exopolysaccharidic matrix (slime)

Lam, M.; Migonney, V.; Falentin-Daudre, C.

Review Of Silicone Surface Modification Techniques And Coatings For Antibacterial/Antimicrobial Applications To Improve Breast Implant Surfaces.

Introduction: biofilm formation

(15)

o Preventing biofilm formation o Repelling bacteria

o Killing bacteria

How to avoid/limit bacterial issues on silicone surfaces ?

15

Introduction: solutions

Lam, M.; Migonney, V.; Falentin-Daudre, C.

Review Of Silicone Surface Modification Techniques And Coatings For Antibacterial/Antimicrobial Applications To Improve Breast Implant Surfaces.

Acta Biomaterialia 2021, 121, 68-88.

polymers, enzymes, peptides, biomolecules

 Grafting "to"

 Grafting "from"

 Nanoparticles

 Roughness

 Antibiotics/a ntiseptics

silicone

(16)

Grafting of polyNaSS

on titanium (+ alloys) surfaces

(1-3)

on polymers (PCL

(4)

,PET)

(5)

 Hydrophilic

 Anti-bacterial surface

 Improved cell response

 Improved mineralization

(1) Acta Biomaterialia 2009, 5, 124.

(2) RSC Advances 2016, 6, 13766.

(3) ACS Applied Materials & Interfaces, 2018, 10 (2), 1480.

(4) ACS Omega, 2019, 4 (17), 17194.

Grafting « from » using polyNaSS :

Polystyrene sodium sulfonate (polyNaSS)

16

Research context

LBPS team: Using of bioactive polymers bearing carboxylate, sulfonate and phosphonate

 Acts on both problems : Cellular response / Bacterial response

(17)

In vitro

(5)

: Adherence inhibition of S.Aureus & MRSA 88244

 80%

In vivo: decreasing adherence

 1.5 to 2 log unit

(1)Biomacromolecules, 2002, 3(1), 63-80.

(2)Biomaterials, 2006, 27(21), 3912-19.

(3)Journal of applied biomaterials & biomechanics, 2003, 1(3):178-85 (4)Biomacromecules, 2005, 6, 2630.

(5)Biomacromolecules, 2002, 3(1), 51-56.

• Silicone-based materials

1 - UV mediated cross-linking 2- Bacterial adhesion tests

Pr. V. Migonney Pr. A-C. Crémieux

 Synthesis of a silicone quater-polymer + bioactives groups (-COOH, -SO3

-

)

(1-4)

17

Research context : Silicone surfaces

(18)

Na +

Polystyrene sodium sulfonate (polyNaSS)

Silicone breast implant Direct grafting

GOALS

Improvement of the biological response

Avoid/limit bacterial infections and biofilm formations

Research context : direct grafting on breast silicone shell

(19)

UV

NaSS monomer

220 mW/cm

2

– 1h

① ACTIVATION ② SURFACE POLYMERIZATION

 Reactive groups formation  Grafting « from » strategy

Lam, M.; Moris, V.; Humblot, V.; Migonney, V.; Falentin-Daudre, C.

A Simple Way To Graft A Bioactive Polymer – Polystyrene Sodium Sulfonate On Silicone Surfaces.

European Polymer Journal 2020, 128, 109608.

2-step UV-grafting mechanism

19

Functionnalization of a bioactive polymer on silicone surface

UV

160 mW/cm

2

– 1h

OH

OH OH OH O

.

O

.

O

.

O

.

(20)

Bacterial assay (In vitro, in vivo)

Process scale-up

Protein interactions

assays

Surface roughness

Effective and easy grafting process

Conservation of mechanical properties

Promising cell response = biocompatibility

Conclusion

(21)

21

Aknowledgment

Dr V. Moris

Dr C. Gomes Dr N. Kerfant/ Dr M. Theron/ Dr K. Pichavant

Dr. V. Humblot

M. Lam Dr R. Vayron Dr R. Delille

(22)

Resp. de l’équipe : Céline Falentin-Daudré

Site web équipe : https://cspbat.univ-paris13.fr/equipes/lbps.html

Correspondant GDR : Céline Falentin-Daudré, falentin-daudre@univ-paris13.fr

Mots-clés

Biomatériaux, polymérisation, greffage, bioactif, antibactérien, biocompatible

Thank you for your attention

Références

Documents relatifs

In the last decade, numerous studies reported the ability of titanium surface modifications and coatings to minimize bacterial adhesion, inhibit biofilm formation and

Consequently, the concentration of solute at the droplets surface increases, what may lead to precipitation in this region (because the concentration of solute

Le locuteur natif est un élément important dans le processus grammatical : les phrases générées par la grammaire doivent être considérées comme « accep- tables » (ici au sens de

The resulting datasets are used as a complement to space borne satellite imagery, providing higher spatial resolution with respect to the FORMOSAT dataset we obtained between 2006

Since the temperature is one of the key parameters that can allow to control the particle growth, the particles shape and size distribution during the synthesis, the

Genetic programming methodology ..... Genetic programming

In this context, chitosan immobilization on a titanium surface using TESPSA process was performed to obtain antibacterial activity of the implant tested.. The developed

Then, the composite samples made of Ag-functionalized AZO coatings (Ag(RFS)/AZO and Ag(SCBD)/AZO) follow the same trend of the single Ag coatings (the survival rate curves of the