• Aucun résultat trouvé

TD d’analyse 4 : topologie

N/A
N/A
Protected

Academic year: 2022

Partager "TD d’analyse 4 : topologie"

Copied!
3
0
0

Texte intégral

(1)

Sorbonne Universit´e Pr´epa agreg 2020-2021

TD d’analyse 4 : topologie

Exercice 1. Soit (X, d) un espace m´etrique. Soit A une partie non vide de X.

Pour tout x∈X, on pose

dA(x) = inf{d(a, x)/a∈A}.

(a) Soitn∈N. Prouver queAn={x∈X/dA(x)<1/n} est un ouvert deX.

(b) Qu’est-ce que \

n∈N

An?

Exercice 2. (Topologie et matrices)

(a) Montrer queF ={A∈Mn(C)/A2= 0}est un ferm´e deMn(C).

(b) Montrer queGLn(C) est un ouvert dense de Mn(C).

(c) Montrer queD ={A∈Mn(C)/Aest diagonalisable} est dense dansMn(C).

Est-ce un ouvert, un ferm´e deMn(C) ?

Exercice 3. (Connexit´e dansRn,n≥2)

(a) Soit B une boule ferm´ee de l’espace euclidien Rn. Montrer que Rn\B est connexe.

(b) Soit A une partie d´enombrable de Rn. Montrer que Rn\A est connexe par arcs.

Exercice 4. On s’int´eresse au sous-ensemble G={(x,sin(1/x))/x >0}du plan euclidien R2.

(a) D´eterminer l’int´erieur et l’adh´erence de G.

(b) Montrer queG est connexe.

(c) Montrer queG n’est pas connexe par arcs.

Exercice 5. SoitXun espace m´etrique compact. On se donne une suite de ferm´es non vides Fn⊂X,n∈N. On suppose qu’elle est d´ecroissante : pour tout n∈N, Fn+1 est inclus dansFn.

(a) Montrer queF =\

n

Fnest un compact non vide.

(b) Soit W un ouvert contenant F. Montrer qu’il existe N ∈ N tel que, pour n≥N,Fn est inclus dans W.

(c) SoientA etB deux compacts disjoints deX. Montrer qu’il existe des ouverts disjoints A0 etB0 deX tels que Aest inclus dansA0 etB est inclus dansB0. (d) Montrer que si les Fn sont connexes, alors F est connexe.

1

(2)

2

Exercice 6. Soit ` le R-espace vectoriel des suites born´ees muni de la norme uniforme, d´efinie de la fa¸con suivante : pourx= (x(k))k∈N, on pose

kxk= sup

k≥0

|x(k)|.

(a) Pour tout entier n ≥ 0, on d´efinit xn ∈ ` par xn(k) = 1

k si 1 ≤ k ≤ n et xn(k) = 0 sinon. Montrer que la suite (xn)n≥0 est convergente et donner sa limite.

(b) Montrer que` est complet.

(c) Soitc0 le sous-espace de ` form´e des suites qui convergent vers 0. Montrer que c0 est ferm´e dans`, puis quec0 est complet.

(d) Soit c00 le sous-espace de` form´e des suites qui n’ont qu’un nombre fini de termes non nuls. Est-il complet ?

Exercice 7. SoientX un espace m´etrique complet etf:X→X une application telle que l’une des compos´eesfksoit contractante (k∈N). Montrer quef admet un unique point fixe.

Exercice 8. (Th´eor`eme de Volterra) Soit K : [0,1]×[0,1] → R une fonction continue telle que K(s, t) = 0 si 0 ≤ t < s ≤ 1. Etant donn´e un ´el´ement g de l’espace X = C0([0,1],R), on consid`ere l’application T : X → X d´efinie par T f =g−

Z 1 0

K(s, .)f(s)ds.

(a) D´emontrer l’in´egalit´e

|(Tkf1)(x)−(Tkf2)(x)| ≤ Mk

k! xkkf1−f2k, o`u k∈N,x∈[0,1], f1, f2 ∈X etM = sup|K|.

(b) En d´eduire que l’´equation int´egrale deVolterra

∀t∈[0,1], f(t) + Z 1

0

K(s, t)f(s)ds=g(t), admet une unique solutionf ∈X.

Exercice 9.

(a) V´erifier que l’on d´efinit une norme sur l’espace vectoriel R[X] en posant

∀P ∈R[X], kPk = sup

[0,1]

|P|.

(b) Pour quels r´eelsala forme lin´eaireδa:P 7→P(a) est-elle continue pour cette norme ?

(c) Et si on remplace R[X] parRd[X] pour un certain d∈N?

(3)

3

Exercice 10.

(a) Soient X un espace vectoriel norm´e de dimension finie,A un ferm´e non vide de X et x∈X. Prouver qu’il existe a∈A tel quedA(x) =d(x, a).

(b) On munit l’espaceX =C0([0,1],R) de la norme d´efinie par

∀f ∈X, kfk=kfk+ Z 1

0

|f|.

CalculerdF(1), la distance entre le ferm´eF ={f ∈X/f(0) = 0}et la fonction constante `a 1. Est-elle atteinte ?

Exercice 11. On munitX=C0([0,1],R) de la norme uniforme et on pose, pour f ∈X : L(f) =

Z 1

0

f et ∀n∈N, Ln(f) = 1 n

n

X

k=1

f k

n

.

(a) Montrer queL et lesLn sont des formes lin´eaires continues surX et calculer leurs normes.

(b) Montrer que, pour toutf ∈X,Ln(f) tend vers L(f), alors quekLn−Lk= 2 pour toutn∈N.

Exercice 12. Soit une fonction continuef : [0,1]→Rtelle que, pour toutn∈N, Z 1

0

xnf(x)dx= 0. Montrer quef est nulle.

Exercice 13. SoitX l’espace de BanachC0([0,1],R), muni de la norme du sup.

Soit K une application continue de [0,1]2 dansR. (a) V´erifier que la formule

∀f ∈X, ∀x∈[0,1], uK(f)(x) = Z 1

0

K(x, y)f(y)dy d´efinit une application lin´eaire continueuK deX dansX.

(b) NotonsB la boule unit´e ferm´ee deX. Prouver queuK(B) est un compact de X.

Références

Documents relatifs

Or comme P est de degré p, s’il a au moins p facteurs irréductibles, ils doivent être de degré 1, et donc P devrait avoir

Théorème de Rice : X est l’ensemble des fonctions récursives dont le domaine de définition contient un multiple de 3 ; la fonction nulle part définie n’est pas dans X , mais

Montrer que la propriété pour une fonction récursive (partielle) d’être de domaine fini n’est pas décidable.. Pour la question précédente, l’ensemble des indices

1- Ecrire une Procédure DecToBin qui permet de convertir un entier positif en une chaine de caractères binaire (‘0’ ou ‘1’) représentant son code Binaire. 2-

Une psudo solution est un antécédent de la projection orthogonale du second membre sur l'image de l'application.. L'équation admet donc toujours

La présentation, la lisibilité et la qualité de la rédaction entreront pour une part importante dans l’appréciation des copies.. Une feuille de notes manuscrites est le seul

On revient à la définition du nombre dérivée (à droite, à gauche si besoin est) d’une fonction en distinguant plusieurs

Dans un premier temps, nous allons établir que si f admet un point fixe, il