• Aucun résultat trouvé

On a Diophantine equation of the second degree By BEr~CT STOLT

N/A
N/A
Protected

Academic year: 2022

Partager "On a Diophantine equation of the second degree By BEr~CT STOLT"

Copied!
10
0
0

Texte intégral

(1)

A R K I V F O R M A T E M A T I K B a n d 3 n r 33

C o m m u n i c a t e d 6 J u n e 1956 b y T. NAGELL a n d OTTO FROST~AN

On a Diophantine equation of the second degree

B y BEr~CT STOLT

§ 1. Introduction

I t is easy to solve the Diophantine equation

A x ~ + B x y + C y ~ + D x + E y + . F = 0

with integral coefficients, in integers x and y when the equation represents an ellipse or a parabola in the (x, y)-plane. I f the equation represents a hyperbola, the problem is m u c h more difficult. F o r solving an equation of this t y p e one m a y use either the t h e o r y of quadratic forms or the t h e o r y of quadratic fields.

T. Nagell has shown ([1]-[5]) how it is possible to determine all the solutions of t h e Diophantine equation

x ~ - D y ~ = ± N , (1)

where D a n d N are integers a n d D is not a perfect square, b y quite elementary meth- ods. The author ([6]-[8]) used these methods to the equation

x 2 - D y 2 = ± 4 N . (2)

Consider the Diophantine equation

A u ~ + B u v + C v 2 = ± N ,

(3)

where A, B, C and N are integers and B ~ - 4A C = D is a positive integer which is n o t a perfect square. I t is obvious t h a t (3) can be t r a n s f o r m e d into (1) b y means of linear transformations with integral coefficients. The p r o b l e m of determining all the solutions of (3) in integers u and v then reduces to the problem of finding all the integral solutions x and y of (1) which satisfy certain linear congruences; see Nagell [4], pp. 214-215. However, in this w a y we get no general view of the solutions of (3), a n d it will be r a t h e r laborious to discuss the different cases which m a y occur.

The purpose of this paper is to show how it is possible to avoid the linear transfor- m a t i o n s and congruences. I n fact, for equation (3), we shall deduce inequalities analogous to those determined b y Nagell for equation (1). We shall use the notions proposed b y Nagell or notions analogous to them.

(2)

B. STOLT, On a Diophantine equation of the second degree

§ 2. The Diophantine equation x 2 - D y ~= 4 Consider the Diophantine equation

x ~ - D y ~ = 4, (4)

where D is a positive integer which is not a perfect square. When x and y are integers satisfying this equation, the number ½(x + y V-D) is said to be an integral solution of this equation. Two solutions ½(x + y VD) and ½(x' + y ' VD) are equal, if x =x" and y = y ' . Among all the integral solutions of the equation there is a solution

½ (z~ + y, VD)

in which x 1 and yl are the least positive integers satisfying the equation. This integral solution is called t h e / u n d a m e n t a l solution.

A well-known result is the following

T~.ORE~. W h e n D is a natural number which is not a per/ect square, the D i o p h a n t i n e equation

x 2 - D y ~ = 4 (4)

has an i n / i n i t y o / i n t e g r a l solutions. 1 / t h e ]undamental solution is denoted by e, every integral solution ½(x + y V D ) m a y be written i n the /orm

½ ( x + y V D ) = + e ~, (k=o, + l , +_2, +3,...).

I f D ~ 5 (mod. 8), there only exist integral solutions with even x and y.

§ 3. The classes of solutions of the Diophantine equation . 4 u 2 + B u y + Cv ~= + N.

The fundamental solutions of the classes

L e t A and Z r be positive integers and B and C be rational integers such t h a t B z - 4 A C = D is a positive integer which is not a perfect square. Consider the Diophantine equation

A u2 + B u v + C v 2 = + 2 5 . (3)

I t is suitable to define a solution of (3) in the following way. If u = t / A is a fractional n u m b e r and v is an integer which satisfy (3), the n u m b e r

( 2 A u + B y ) + v V-D

(5)

is called a solution of (3). If (x + y~/D}/2) is an integral solution of the Diophantine equation

x 2 - D y 2 ='4, (4)

t h e number

( 2 A u + B v ) + v V D x + y ~ - D ( 2 A u x + B v x + D v y ) + ( 2 A u y + B v y + v x ) V - D

2 2 4

(3)

ARKIV FSR MATEMATIK. B d 3 n r 33 is a l s o a s o l u t i o n of (3). This s o l u t i o n is s a i d t o be associated w i t h t h e s o l u t i o n [ ( 2 A u + By) + ~ / D ] / 2 . T h e s e t of all s o l u t i o n s a s s o c i a t e d w i t h e a c h o t h e r f o r m s a class o/

solutions o f (3).

I f u a n d v a r e t w o i n t e g e r s s a t i s f y i n g (3), t h e n u m b e r [ ( 2 A u + B y ) + v~-D]]2 is c a l l e d a n integral solution of (3).

I t is p o s s i b l e t o d e c i d e w h e t h e r t h e t w o g i v e n s o l u t i o n s [ ( 2 A u + By) + vg-D]/2 a n d [ ( 2 A u ' + By') + v'V-D]/2 b e l o n g t o t h e s a m e class o r n o t . I n f a c t , i t is e a s i l y s e e n t h a t t h e n e c e s s a r y a n d s u f f i c i e n t c o n d i t i o n for t h e s e t w o s o l u t i o n s t o b e asso- c i a t e d w i t h e a c h o t h e r is t h a t t h e t w o n u m b e r s [ 2 A u u ' + B ( u v ' + u'v) + 2 C v v ' ] / N a n d (vu" -- uv') / N be i n t e g e r s .

I f u = t / A is a f r a c t i o n a l n u m b e r a n d v is a n i n t e g e r w h i c h s a t i s f y (3), - u a n d - v also s a t i s f y (3). I t is a p p a r e n t t h a t t h e t w o s o l u t i o n s _ [ ( 2 A u + B y ) + v | / D ] / 2 b e l o n g t o t h e s a m e class.

L e t u a n d v be t w o i n t e g e r s s a t i s f y i n g (3). T h e n t h e r e e x i s t s a f r a c t i o n a l n u m b e r u' = - ( A u + B v ) / A s u c h t h a t t h e n u m b e r s u ' a n d v s a t i s f y (3). So d o t h e n u m b e r s

- u' = ( A u ÷ B v ) / A a n d - v. I t is e a s i l y seen t h a t t h e s o l u t i o n s _~ ( 2 A u ' + By) + v ~ D ( 2 A u + B y ) - v V-D

- 2 = ~ 2

b e l o n g t o t h e s a m e class.

S u p p o s e t h a t K is t h e class c o n s i s t i n g of t h e s o l u t i o n s [(2 A u i + By,) + v~ V D ] / 2 , i = 1 , 2 , 3 , . . . . T h e n i t is e v i d e n t t h a t t h e s o l u t i o n s [ ( 2 A u , + Bvt) - v ~ ~ / D ] / 2 , i = 1, 2,3 . . . . , a l s o c o n s t i t u t e a class, w h i c h m a y b e d e n o t e d b y K'. T h e classes K a n d K ' a r e s a i d t o b e conjugates of e a c h o t h e r . C o n j u g a t e classes a r e i n g e n e r a l d i s t i n c t b u t m a y s o m e t i m e s c o i n c i d e .

A m o n g all t h e s o l u t i o n s [ ( 2 A u + By) + v ~ / D ] 2 i n a g i v e n class K w e n o w choose a s o l u t i o n [ ( 2 A u 1 ÷ By1) + v l V D ] / 2 i n t h e following w a y : L e t v 1 b e t h e l e a s t n o n - n e g a t i v e v a l u e of v w h i c h o c c u r s in K. I f K a n d K' d o n o t coincide, t h e n t h e n u m b e r u 1 is also u n i q u e l y d e t e r m i n e d ; for t h e s o l u t i o n

( 2 A u ~ ÷ B V l ) ÷ V l ~ / D - - ( 2 A u ~ ÷ B v , ) ÷ v l V - L )

2 2

b e l o n g s t o t h e c o n j u g a t e class K ' . I f K a n d K ' coincide, we g e t a u n i q u e l y d e t e r m i n e d u 1 b y p r e s c r i b i n g u 1 ~_u'l. T h e s o l u t i o n [ ( 2 A u 1 ÷ B V l ) ÷ v I ~ / D ] / 2 d e f i n e d i n t h i s w a y is s a i d t o b e t h e / u n d a m e n t a l solution o/the class.

T h e c a s e v 1 = 0 c a n o n l y o c c u r w h e n t h e classes coincide.

W e p r o v e

THEOREM 1. Suppose that [ ( 2 A u + B y ) + v V-D]I2 is the/undamental solution o/

the class K o/ the Diophantine equation

A u 2 ÷ B u y + Cv 2 = N , (7)

where A and N are positive integers and B and C rational integers, and further D = B ~ -

(4)

B. sTOLT, On a Diophantine equation of the second degree

4 A C is a positive integer which is not a per/ect square. I] (xx + Y l ~/D)/2 i s t h e / u n d a - mental solution o/equation (4), we have the inequality

0_<-v-_< ( x l - 2 ) .

(8)

Proo]. If equality (8) is true for a class K, it is also true for the conjugate class K'.

Thus we can suppose t h a t (2A u + By) is positive.

We easily get

Consider the solution

( 2 A u + B y ) + v V-D x l - y , V D

2 2

( 2 A u + B v ) x 1 - D v y 1 + (vx 1 - ( 2 A u + B v ) y l ) V D 4

which belongs to the same class as [(2Au + By) + v V~)]/2. Since [ ( 2 A u + By) + v ~/D]/2 is the fundamental solution, and since b y (9) [(2Au + B v ) x 1 - D V y l ] / 4 is positive, we must have

( 2 A u + B v ) x 1 - Dry1 >= 2 A u + B v

4 2

(10)

F r o m this inequality it follows t h a t

( 2 A u + By) 2 (x 1 - 2) 2 => Dv2y~

and finally

D v 2 A N >= x 1 _ 2 - This proves inequality (8).

THEOREM 2. Suppose that [(2Au + B y ) + v l / D ] / 2 is the lundamental solution o/

the class K o/the Diophantine equation

A u ~ + B u y + Cv z = - N , (11)

where A and N are positive integers and B and C rational integers, and/urther D = B ~ - 4 A C is a positive integer which is not a per/ect square. I f (x 1 + Yl ~/D)/2 is the/unda- mental solution o/equation (4), we have the inequality

O< v~_ ~ (x~ + 2). (12)

(5)

AIIKIY FOR MATEMATIK. Bd 3 nr 33 Proo[. I f equality (12) is true for a class K, it is also true for the conjugate class K ' . Thus we can suppose (2A u + By) >= O.

We clearly have

x~v~ Y~ ~-I[(2Au+Bv)2+4AN]>D Y ~ ( 2 A u + B v ) ~

4 4 4

Thus

Consider the solution

xlv - y l ( 2 A u + By)

> 0 . ( 1 3 )

( 2 A u + B v ) + v V - D x l - y ~ ( 2 A u + B v ) x ~ - D v y x + ( v x ~ - ( 2 A u + B v ) y ~ )

2 2 4

which belongs to the same class as [ ( 2 A u + B v ) + v ~/D]/2. Since [ ( 2 A u + B y ) + v I / D ] / 2 is the fundamental solution of the class, and since, b y (13), [xlv - Yl ( 2 A u -4- By)]]4 is positive, we must have

xlv - Y l ( 2 A u + Bv) > v .

4 = 2 ( 1 4 )

F r o m this inequality it follows t h a t

( z l - 2 ) 2 v 2 > = yl (2A 2 u + Bv) 2 = y~ (Dv 2 - 4 A N)

o r v 2 < - ~ (x I + 2 ) .

This proves inequality (12).

As only integral solutions are of interest, we prove

TrIEOR~M 3. I / o n e o/the solutions o/ the class K is an integral solution, every solU- tion of K is integral.

Proo[. Let K be a class and [ ( 2 A u + By) + v V-D]]2 be an integral solution of it.

If there existed a solution [(2A u~ + Bye) + v~ ~/D]/2 belonging to K, where u 1 = t / A were no integer, we would have an integral solution (x + y ~/D) / 2 of (4) such t h a t

( 2 A u + B v ) + v V D x + y l / D ( 2 A u l + B V l ) + V 1 V D

2 2 2

would hold.

Hence u(x - B y ) Cry, v 1 v (x + B y ) + A u y .

Ul-- 2 2

B o t h u 1 and v 1 are integers, for if B is even, D is divisible b y 4 and x is divisible b y 2.

I f B is odd, D is odd. I n t h a t case both x and y are either even or odd. This proves the theorem.

(6)

n. STOLT, On a Diophantine equation of the second degree

I f t h e solutions of a class K are integral, K is called a class o/integral solutions. I f the classes K a n d K ' are conjugates of each other, it m a y h a p p e n t h a t K b u t n o t K ' is a class of integral solutions.

F r o m the preceding theorems we deduce a t once

TH~ORV.M 4. 1/ A and N are positive integers and B and C rational integers, and /urther D = B z - 4 A C is a positive integer which is not a per/ect square, the Diophantine equations (7) and (11) have a ]inite number o/classes o/integral solutions. The ]unda.

mental solutions o / a l l the classes can be ]ound after a / i n i t e number o/trials by means o/the inequalities in Theorems 1 and 2.

[(2Au 1 -4- By1) .÷ v 1 I / D ] / 2 is the/undamental solution o / t h e class K, we obtain all the solutions [(2Au ÷ B y ) ÷ v ~/D]/2 by the /ormula

(2Au+ B v ) + v V D (2Aul + Bvl)+v~VL) x + y V D

2 2 2

where (x + y V-D) [2 runs through all the solutions o/(4), including +_ 1. The Diophantine equations (7) a n d (11) have no integral solutions at all when they have no integral solu- tions satis/ying inequality (8), or (12) respectively.

We n e x t p r o v e

THEOREM 5. The necessary and su[/icient condition [or the solutions (2A u -4- B y )

+ v

(-D ( 2 A u 1 + By1) "4"v I/ D

2 2

o/the Diophantine equation

A u ~ + B u v + C v ~ = + N to belong to the same class is that

U V l - - U l v

N be an integer.

Proo]. We a l r e a d y know t h a t a necessary and sufficient condition is t h a t 2 A u u 1 + B (uv 1 + UlV ) -4- 2 C v v 1 u v 1 - UlV

N N

(3)

be integers. T h u s it is sufficient to show t h a t

2 A u u l + B ( u v l + u l v ) + 2 C v v I N

is an integer w h e n (uv 1 - UxV ) / N is an integer.

Multiplying the equations

(7)

AI{KIV FOR M/LTEMATIK, Bd 3 nr 33 A u 2 + B u y + Cv 2 = +_ N , A u ~ + B u l v 1 + Cv~ = +_ N (14) we get ( 2 A u u 1 + B ( u v l + UlV ) + 2 C v v l ) ~ - D ( u v 1 - u l v ) 2 = 4 N 2. (15) I t is a p p a r e n t from (15) t h a t 2 A u u 1 + B ( u v l + u l v ) + 2 C v v I is divisible b y N when u v 1 - UlV is divisible b y N.

§ 4. Quasi-ambiguous classes

L e t K be a class of solutions of the Diophantine equation

A u ~ + B u y + C v ~= ± N .

(3)

F u r t h e r let [ ( 2 A u + B y ) + v V-D]/2 be a solution of K. If the number ( 2 A u + B v ) v

N (16)

is an integer, K is called a quasi-ambiguous class. If u and v are integers, K is a quasi- ambiguous class of integral solutions.

W e prove

T ~ o ~ . ~ 6. 17/the conjugate classes K and K ' o / ( 3 ) coincide, the resulting class is quasi-ambiguous.

Proof. L e t K and K ' be a pair of conjugate classes of (3), and let [(2Au ÷ B y ) ÷

~/-D]/2 and [ ( 2 A u ' + B y ) ÷ v l / D ] / 2 be one solution of e v e r y class. As the classes coincide, according to Theorem 5 the number (u - u ' ) v / N is an integer.

As ( 2 A u + B y ) = - ( 2 A u ' + B y ) , we get B y = - A ( u - u ' ) . Hence we get

( 2 A U + B v ) v

-(2Au'+Bv)v=A(u'u')v

N N N

Clearly this n u m b e r is an integer. This proves the theorem.

I t is apparent from Example 4 t h a t two conjugate classes K and K ' m a y be quas i- ambiguous without coinciding.

THEOREM 7. Let K and K ' be two conjugate classes of integral solutions. I / their ]undamental solutions are [ ( 2 A u + B v ) ÷ v ~/D]/2 and [ ( 2 A u ' + B v ) ÷ v ] / D ] / 2 , respectively, and if we have v = O, the classes K and K ' coincide.

Let K be a class o/ integral solutions, i / i t has a solnt!on [ ( 2 A u + B y ) + v ~D]2, where u = 0, and if C divides B , the class is quasi-ambiguous.

Proof. L e t K and K ' be two conjugate classes of integral solutions, and let [(2A U + B y ) + v V D ] / 2 and [(2Au' + B y ) + v ~/D]/2 be their f u n d a m e n t a l solutions. The necessary and sufficient condition for the two classes to coincide it t h a t the n u m b e r

(8)

B , STOLT, On a Diophantine equation o f the second degree (U - - ?~') V

N

be an integer. H we have v = O, the condition is clearly fulfilled.

L e t K be a class of integral solutions, and let [(2A u + B v ) + v VD] ]2 be a solution of it, where u = 0. If we p u t the values 0 and v into the Diophantine equation

A u ~ + B u y + C v ~ = +_N, (3)

we get ± N = C v ~.

The condition for the class K to be quasi-ambiguous is t h a t the number ( 2 A u + B v ) v

2v (16)

be an integer.

Putting u = 0 and _+ N = Cv 2 into (16) we get ( 2 A u + B v ) v B

N Icl

This proves the theorem.

TtIEOREM 8. A necessary c o n d i t i o n / o r the Diophantine equation

A u ~ + B u y + C v 2 = +_ N (3)

to have quasi-ambiguous classes is N = s t ~, where s is a square-/ree integer that divides d A D .

Proo/. L e t

A u ~ + B u y = C v ~ = _+N (3)

be a Diophantine equation, and suppose t h a t u = w / A is a fractional number and v an integer which satisfy (3). Then the Diophantine equation

( 2 A u + B y ) 2 - D v ~ = + _ 4 A N (18)

is solvable in integers ( 2 A u + B y ) and v.

Suppose t h a t we have N = s t 2, where s is square-free. F u r t h e r suppose t h a t (3) has a quasi-ambiguous class, and let the number [ ( 2 A u + B v ) + v V-D]/2 be a solu- tion of it. Then the number

(2A u + B v ) v (19)

s t 2 is an integer.

Let P be a prime t h a t divides t. If p divides v, it follows from (18) t h a t it also divides ( 2 A u + B y ) . If p and v are coprime, p~ divides ( 2 A u + B v ) as is easily seen from (19). B u t then it follows from (18) t h a t p~ divides D.

Now let p be a prime t h a t divides s. If p divides v, it also divides ( 2 A u + B v ) . B u t then p2 divides 4 A N and thus p divides 4A. If p and v are coprime, p divides ( 2 A u + B y ) and thus p divides D. This proves the theorem.

(9)

ARKIV FOR MATEMATIK. Bd 3 nr 33

§ 5. Numerical examples

F i n a l l y , we g i v e s o m e e x a m p l e s w h i c h i l l u s t r a t e t h e p r e c e d i n g t h e o r e m s . E x a m p l e 1. 209 u s + 2 9 u v + v z = 31, D = 5.

T h e f u n d a m e n t a l s o l u t i o n of t h e e q u a t i o n x 2 - 5 y ~ = 4 is (3 + V 5 - ) / 2 . F o r t h e f u n d a m e n t a l solutions, a c c o r d i n g t o i n e q u a l i t y (8), w e g e t 0 -< v _< 35.

W e f i n d t h e f u n d a m e n t a l s o l u t i o n s [ ( 2 A u ~ + B v ~ ) + v i l / D ] / 2 , i = 1 , 2 . . . . ,8, w h e r e vl. 2 = 1 , u 1 = 6 / 1 9 , u ~ = - 5 / l l ; V z . ~ = 1 4 , u s = - l l / 1 9 , u4 = - 1 5 / 1 1 ; vs. 6 = 23, u~ = - 2 4 9 / 2 0 9 , u6 = - 2; v7.8 = 35, u7 = - 2, us = - 5 9 7 / 2 0 9 . T h u s t h e e q u a t i o n h a s o n l y t w o classes of i n t e g r a l solutions.

E x a m p l e 2. u ~ + 3 u v + v ~ = - 5 , D = 5 .

F o r t h e f u n d a m e n t a l solutions, a c c o r d i n g t o i n e q u a l i t y (12), we g e t 0 _< v ~ 1.

W e f i n d t h e f u n d a m e n t a l s o l u t i o n [ ( 2 A u + B y ) + v ~/-D]/2, w h e r e v = 1, u = 1.

T h e e q u a t i o n is also s a t i s f i e d b y t h e n u m b e r s v = 1, u = - 4 . H o w e v e r , a c c o r d i n g t o T h e o r e m 5 t h e r e is o n l y one class, a n d t h i s class is q u a s i - a m b i g u o u s , a c c o r d i n g t o T h e o r e m 6.

' E x a m p l e 3. 3 u 2 + 7 u v + 3 v 2= - 1 3 , D = 1 3 .

T h e f u n d a m e n t a l s o l u t i o n of t h e e q u a t i o n x ~ - 1 3 y 2 = 4 is (11 + 3 V]-3)/2. F o r t h e f u n d a m e n t a l solutions, a c c o r d i n g t o i n e q u a l i t y (12), we g e t 0 _< v _< 6.

W e f i n d t h e f u n d a m e n t a l s o l u t i o n s [(2A u~ + B vi) + v, I/-D] ] 2, i = 1,2, w h e r e vL~

= 5 , u 1 = 1 1 / 3 , u s = - 8 . T h u s t h e e q u a t i o n h a s o n l y one class of i n t e g r a l solu- t i o n s , a n d t h i s class is q u a s i - a m b i g u o u s .

E x a m p l e 4. 2 u 2 + 5 u v + v ~ = 1 6 = 2 4 , D = 1 7 .

T h e f u n d a m e n t a l s o l u t i o n of t h e e q u a t i o n x 2 - 17y ~ = 4 is (66 + 16 ~Zl-7)/2.

F o r t h e f u n d a m e n t a l solutions, a c c o r d i n g t o i n e q u a l i t y (8), w e g e t 0 -< v _< 10.

W e f i n d t h e f u n d a m e n t a l s o l u t i o n s [(2Au~ + 33v,) + v~ l / D ] / 2 , i = 1 , 2 , . . . , 6 , w h e r e Vl. 2 = 2 , Ul = 2 , u2 = - 6 ; v3.4 = 4 , u3 = 0 , u4 = - 10; v5.6 = 7 , u~ = - 1, u6 = - 3 3 / 2 . A c c o r d i n g t o T h e o r e m 7 t h e s o l u t i o n s [ ( 2 A u i + B v j ) + vj I / D ] / 2 , w h e r e ~ = 3 o r 4, b e l o n g t o q u a z i - a m b i g u o u s classes.

E x a m p l e 5. u s + 5 u v + 2 v 2 = 32 = 25, D = 1 7 .

F o r t h e f u n d a m e n t a l s o l u t i o n s , a c c o r d i n g t o i n e q u a l i t y (8), we g e t 0 _< v _ 10.

W e f i n d t h e f u n d a m e n t a l s o l u t i o n s [ ( 2 A u i + B v i ) + v, V-D]/2, i = 1 , 2 , . . . , 6, w h e r e v~.2 = 2 , u l = 2 , u2 = - 12; vz. 4 = 4 , ua = 0 , u4 = - 20; v~.6 = 7 , u5 = - 2, u6 = - 33.

A c c o r d i n g t o T h e o r e m 7 t h e s o l u t i o n [ ( 2 A u 3 + Bva) + v a [ / 3 ] / 2 , w h e r e u a = 0, b e l o n g s to a class w h i c h is n o t q u a s i - a m b i g u o u s .

E x a m p l e 6. 3u ~' + 1 4 u v + 4v 2 = 259 = 7.37, D = 148.

T h e f u n d a m e n t a l s o l u t i o n of t h e e q u a t i o n x 2 - 148y ~ = 4 is (146 + 1 2 ~ / ~ 8 ) [ 2 . F o r t h e f u n d a m e n t a l solutions, a c c o r d i n g t o i n e q u a l i t y (8), w e g e t 0 -< v _< 27.

W e f i n d t h e f u n d a m e n t a l s o l u t i o n s [ ( 2 A u s + B v i ) + v~ I / D ] / 2 , i = 1,2, w h e r e vl. 2 = 4, u I = 3, u S = - 6 5 / 3 . A c c o r d i n g t o T h e o r e m 8 t h e o n l y class of i n t e g r a l s o l u t i o n s is n o t q u a s i - a m b i g u o u s .

(10)

Bo SToLT, O n a D i o p h a n t i n e e q u a t i o n o f the s e c o n d degree

R E F E R E N C E S

1. T. ~A(]ELL, E n element~er metoc[e tl! a b e s t e m m e g i t t e r p u n k t e n e p h en h y p e r b e l . N o r s k M a t e m . T i d s s k r . 26 (1944), 60--65.

2. - - E l e m e n t A r t a l t e o r i . U p p s a l a 1950, 199-206.

3. - - t~oer die I ) a r s t e l l u n g g a n z e r Z a h l e n d u r c h eine indefinite b i n ~ r e q u a d r a t i s c h e FOrm.

A r e h i v d e r M a t h e m a t i k 2 (1950), 161-165.

4. - - I n t r o d u c t i o n t~ N u m b e r T h e o r y . U p p s a l a 1951, 204-210.

5. - - B e m e r k u n g tiber clie d i o p h a n t i s c h e 'Gleichung u s - D v s = C. Archiv d e r M a t h e m a t i k 3 (1952), 8-10.

6. B. STOLT, O n t h e D i o p h a n t i n e e q u a t i o n u s - D v s = __ 4N. A r k i v fSr m a t e m a t i k 2 (1951), 1-23.

7. - - O n t h e D i o p h a n t i n e e q u a t i o n u s - D v s = ~-41V, P a r t I I . A r k i v fSr m a t e m a t i k 2 (1952), 251-268.

8. - - O n t h e D i o p h a n t i n e e q u a t i o n tt 2 - D v ~ = +__ 4_N, P a r t I I I . A r k i v f f r m a t e m a t i k 3 (1954), 117-132.

Tryckt den 18 januari 1957

Uppsala 1957. Almqvist & Wiksells Boktryckeri AB

Références

Documents relatifs

Many different methods have been used to estimate the solution of Hallen’s integral equation such as, finite element methods [4], a general method for solving dual integral equation

differential equation (FDE) to that of the ordinary differential equa- tion (DE ) , propagation in the sense of the following

Finally we describe our approach. In Subsection 4.1, using the comparison of the solutions at u = b, and following ideas in [16,17], we study the behavior of the solutions in

Section 6, which is based on Klein’s book, discusses uniformization by Schwarzian differential equations.. This is gotten around by

Abstract — Colîocation approximations to the solution of Fredholm intégral équation of the second kind are discussed, and a pointwise near-best approximation is dejined by

CASSELS. of

In constructing X one uses the

Ambiguous ideals in real quadratic fields and Diophantine equations Given the square-free integer D &gt; 1, the determination of the ambiguous ideal classes in