• Aucun résultat trouvé

Experimental inert gas generator

N/A
N/A
Protected

Academic year: 2021

Partager "Experimental inert gas generator"

Copied!
21
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Internal Report (National Research Council of Canada. Division of Building

Research), 1964-05-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=ab9fa5ef-7a71-4cb6-bbe5-c8d04770ba93 https://publications-cnrc.canada.ca/fra/voir/objet/?id=ab9fa5ef-7a71-4cb6-bbe5-c8d04770ba93

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20338009

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Experimental inert gas generator

(2)

NATIONAL RESEARCH COUNCIL

CANADA

DIVISION O F BUILDING RESEARCH

AN E X P E R I M E N T A L INERT GAS GENERATOR

b y

J.

H. McGuire

I n t e r n a l R e p o r t NO.

294

of

t h e

Division

of

Building R e s e a r c h

OTTAWA

May

1 9 6 4

(3)

PREFACE

T h e many difficulties a s s o c i a t e d with the fighting of deep- s e a t e d building f i r e s by conventional methods h a s led t o a consideration of p o s s i b l e a l t e r n a t i v e a p p r o a c h e s . One of t h e s e , the u s e of i n e r t g a s on a m a s s i v e s c a l e h a s r e c e i v e d attention a t the B r i t i s h Joint F i r e R e s e a r c h Organization i n the U. K . , and i s of much i n t e r e s t a l s o t o the F i r e Section of the Division. Some d i s c u s s i o n of the p o s s i b i l i t i e s and r e q u i r e m e n t s a r e now p r e s e n t e d , together with a r e v i e w of t h e w o r k that h a s been c a r r i e d out t o c o n v e r t a c o m m e r c i a l l y available g a s b u r n e r into a s m a l l - s c a l e a p p a r a t u s suitable for f u r t h e r exploration of t h e method.

The a u t h o r , a p h y s i c i s t , is a r e s e a r c h officer with t h e F i r e Section concerned with the physical c h a r a c t e r i s t i c s of f i r e s in buildings.

Ottawa May

1 9 6 4

N. B. Hutcheon A s s i s t a n t D i r e c t o r

(4)

AN EXPERIMENTAL INERT GAS GENERATOR

J. H.

McGuire

Building f i r e s can b e r e a d i l y extinguished by conventional techniques, but only when i t i s possible t o b r i n g h o s e j e t s o r fog

nozzles t o b e a r on a substantial proportion of t h e heated solid s u r f a c e s giving r i s e t o the volatiles actually involved in t h e combustion p r o c e s s . Unfortunately, t h i s l a t t e r condition can not always b e m e t and on t h e s e occasions t h e best that f i r e f i g h t e r s can do i s t o confine t h e f i r e t o one building o r compartment and t o e n s u r e that it does not s p r e a d to

adjacent property.

In G r e a t B r i t a i n and North A m e r i c a i n p a r t i c u l a r , two alternative fire-fighting techniques a r e being considered and each shows s o m e p r o m i s e for c e r t a i n c l a s s e s of fire-fighting p r o b l e m s . One approach, which will not be c o n s i d e r e d in any detail h e r e , i s the u s e of high expansion foam which was originally developed i n G r e a t B r i t a i n t o combat f i r e s in mine roadways. M a s s i v e s c a l e high e x - pansion foam g e n e r a t o r s a r e now being m a r k e t e d in t h e U. S. A. and i t i s hoped that the flow p r o p e r t i e s of the foam will allow t h e extinguish- ment of f i r e s in r e l a t i v e l y i n a c c e s s i b l e p a r t s of a building,

The approach t h a t i s the main concern of t h i s r e p o r t i s t h e m a s s i v e u s e of i n e r t gas which was f i r s t conceived in a p r a c t i c a l

manner by the B r i t i s h Joint F i r e R e s e a r c h Organization within t h e l a s t decade. In o r d e r t o a s s e s s t h e application of t h i s technique a number of f a c t o r s r e q u i r e consideration and t h e s e will .now be d i s c u s s e d individually.

P e r m i s s i b l e Oxveen Content of Inert Gas

When the oxygen concentration i n an a t m o s p h e r e i s p r o - gr e s sively reduced, t h e upper and lower flammability l i m i t s of combustible g a s e s and vapours c o m e c l o s e r together and finally

m e e t (1, 2). In m o s t c a s e s t h i s meeting point i s a t an oxygen concen- t r a t i o n (of the a t m o s p h e r e p r i o r t o t h e addition of the flammable g a s ) of m o r e than 12 p e r cent. T h e r e a r e s t a r t l i n g exceptions, however, such a s hydrogen and c a r b o n monoxide, f o r which the values a r e approximately 5 and 7 p e r cent r e s p e c t i v e l y , but it i s not likely that t h e s e g a s e s will b e g r e a t l y involved i n building f i r e s . The n a t u r e of t h e other g a s e s constituting the a t m o s p h e r e can a l s o modify t h e flammability l i m i t s , but a s t h e effect will a l m o s t invariably favour the u s e of i n e r t g a s a s an extinguishing agent it i s justifiable t o ignore it. In g e n e r a l , t h e r e f o r e , if t h e oxygen concentration of t h e a t m o s p h e r e in a burning building i s reduced below about 12 p e r cent,

(5)

A f i r e fighter might a s k that an i n e r t gas should not m e r e l y s u p p r e s s flaming combustion but should a l s o s u p p r e s s smouldering so that t h e r e i s no likelihood of the f i r e rekindling when the oxygen con- tent of the a t m o s p h e r e r e t u r n s to i t s n o r m a l level. Work r e p o r t e d by the B r i t i s h Joint F i r e R e s e a r c h Organization (3) indicates that

smouldering of c o r k dust and mixed hardwood sawdust will not continue in a t m o s p h e r e s with oxygen concentrations of about

9

and 1 2 1 p e r cent respectively at ambient t e m p e r a t u r e . At higher a t m o s p h e r i c t e m p e r - a t u r e s smouldering o r s o m e other exothermic p r o c e s s can take place a t lower oxygen concentrations. With a l l the techniques to be discussed i n t h i s r e p o r t , however, the atmospheric t e m p e r a t u r e in a building will be reduced t o below 3 0 0 ° F a f t e r injection h a s been continued for some t i m e . J . R . J u t r a s (4) finds that at a t e m p e r a t u r e of 450'F smouldering i s not readily sustained in wood sawdust at oxygen concentrations of l e s s than

9.

5 p e r cent.

The above considerations f o r m the b a s i s for the i n e r t gas approach t o the extinguishment of building f i r e s , t o be discussed in this report.

Required R a t e of Generation

The r a t e of generation of the gas m u s t be sufficient t o m e e t two r e q u i r e m e n t s . F i r s t l y , the equilibrium conditions that will be

established m u s t be satisfactory, and secondly the t i m e taken t o attain equilibrium conditions m u s t be reasonably low since it will correspond, approximately, t o the t i m e a t which a f i r e m a n would d e s c r i b e the f i r e a s "under control.

The existence of the fir s t requirement allows simplification of the calculation of the t i m e to attain equilibrium which will r e s u l t f r o m one of two mechanisms. The injection p r o c e s s might c o r r e s p o n d to the filling of a bucket with water (or p r e c i s e l y the i n v e r s e ) in which c a s e equilibrium will be established when one volume of the g a s i s injected into the enclosure. At the other e x t r e m e , if p e r f e c t mixing o c c u r r e d , the behaviour would be a s shown in Table I which h a s been derived f r o m Equation 3 of Appendix A. In t h i s c a s e equilibrium can be considered to be virtually established when t h r e e volumes of gas have been injected. F o r the purpose of this r e p o r t an estimation of this t i m e t o a g r e a t e r a c c u r a c y i s not called for.

In general, f a i l u r e t o establish s a t i s f a c t o r y equilibrium conditions, in the f i r e compartment will r e s u l t f r o m density differences between the g a s e s within the building and the a i r outside. T o derive the most stringent injection r e q u i r e m e n t s it i s w i s e t o consider the phenomenon t o be exactly analogous t o the filling of a leaky bucket with water (or ~ r e c i s e l y the i n v e r s e i f the density of the injected g a s e s i s

(6)

lower t h a n t h a t of a i r ) . T h e r e l e v a n t v a r i a b l e s a r e r e l a t e d by Equation 5 (Appendix B ) and a s t h e d e n s i t y of t h e i n j e c t e d g a s i s involved t h e e x p r e s s i o n m u s t b e e v a l u a t e d s e p a r a t e l y for e a c h g a s c o n s i d e r e d .

R e q u i r e d D e l i v e r y P r e s s u r e

As a m a t t e r of convenience g a s e s a r e often s t o r e d a t high p r e s s u r e a n d t h i s f a c t , t o g e t h e r with t h e development i n G r e a t B r i t a i n of a m a s s i v e i n e r t g a s g e n e r a t o r b a s e d on a n a i r c r a f t g a s t u r b i n e engine, h a s l e d s o m e l a y c i r c l e s t o a s s u m e t h a t a p p r e c i a b l e p r e s s u r e s a r e r e q u i r e d f o r r a p i d d e l i v e r y . T h i s a s s u m p t i o n i s f a r f r o m the t r u t h a n d i n fact p r e v a i l i n g p r e s s u r e s w i l l u s u a l l y b e of t h e o r d e r of i n c h e s of w a t e r . T h e l a r g e s t i n e r t g a s g e n e r a t o r i n e x i s t e n c e ( t h e B r i t i s h "jet e n g i n e t t g e n e r a t o r ) h a s a n output of about 40, 000 c f m and s u c h a n output could b e conveniently conducted t h r o u g h a 3 -ft d i a m e t e r duct a t a v e l o c i t y of 90 f t / s e c (60 mph). T h e v e l o c i t y h e a d under t h e s e conditions, depending on t h e n a t u r e a n d t e m p e r a t u r e of t h e g a s e s , would c o r r e s p o n d t o between 1 and 2 i n , of w a t e r and t h e p r e s s u r e d r o p o v e r a 100 -ft length of duct would be l e s s than 10 in. of w a t e r .

S o u r c e s of I n e r t G a s

T h e i d e a l c h o i c e of i n e r t g a s would b e one t h a t , a t t h e a p p r o p r i a t e t e m p e r a t u r e , had t h e s a m e d e n s i t y a s a i r a t a m b i e n t t e m p e r a t u r e . In t h i s c a s e t h e r e would be n o g a s e o u s l o s s e s of t h e t y p e d i s c u s s e d i n a p r e v i o u s p a r a g r a p h b y analogy with t h e filling of

a l e a k y bucket. C a r b o n dioxide a p p e a r s t o b e a v e r y s u i t a b l e c h o i c e f r o m t h i s point of view for i t s m o l e c u l a r weight i s 44 c o m p a r e d t o a value of 29 which i s a p p r o x i m a t e l y t h e m e a n m o l e c u l a r weight of a i r . At a t e m p e r a t u r e of 1 4 0 ° C GO2 w i l l t h u s h a v e t h e s a m e d e n s i t y a s a i r a t 0 ° C .

If C 0 2 w e r e t o b e u s e d on a building of d i m e n s i o n s 50 b y 100 b y 40 ft high, t h e quantity r e q u i r e d , in t h e f i r s t i n s t a n c e , would b e s o m e t h i n g of t h e o r d e r of t h e v o l u m e of t h e building, 200, 000 c u ft. I t s weight would be about 10 t o n s and, if t r a n s p o r t e d i n t h e 4 ft by

9

in. d i a m e t e r s i z e of c y l i n d e r , t h e c y l i n d e r s would account f o r a n o t h e r 10 t o n s o r s o . T h e c o s t of t h e GO2 would p r o b a b l y b e of t h e o r d e r of $2,000 s o t h a t t h e d e m e r i t s of t h e t e c h n i q u e a r e p r o b a b l y m a i n l y a s s o c i a t e d with c o s t and d e l i v e r y . N i t r o g e n is a n o t h e r g a s t h a t i s w o r t h c o n s i d e r i n g f o r f i r e - fighting a p p l i c a t i o n s . In t h i s c a s e t h e m o l e c u l a r weight a p p r o x i m a t e s t o t h e m e a n m o l e c u l a r weight of a i r and h e n c e n i t r o g e n could b e m o r e r e a d i l y r e t a i n e d in a building t h a n could CO a s the building cooled

(7)

down. A s cooling might involve s o m e s u b s t a n t i a l p e r i o d of t i m e t h e composite u s e of C 0 2 and nitrogen would b e t h e o r e t i c a l l y d e s i r a b l e . In the f i r s t i n s t a n c e C 0 2 would b e i n j e c t e d and a s t h e building cooled down n i t r o g e n would be used. T h e p r i n c i p a l d e m e r i t of n i t r o g e n would be that i t s cost i s m a n y t i m e s g r e a t e r than t h a t of GO2.

Without going into f u r t h e r d e t a i l on t h e application of

s t o r e d c o m m e r c i a l g a s e s it will be a p p r e c i a t e d that c o s t i s an i m p o r t a n t factor and a l t e r n a t i v e g e n e r a t i n g techniques a r e worth investigating with a view t o producing an a p p r o p r i a t e gas at a lower c o s t .

Generation of I n e r t G a s by Combustion

F o r m a n y y e a r s equipment h a s e x i s t e d in which the oxygen content of the output h a s been s u b s t a n t i a l l y r e d u c e d by burning any convenient fuel and i t h a s p r o v e n v e r y effective in combatting f i r e s in s h i p s ' holds

( 6 ) .

The output f r o m t h e combustion c h a m b e r of s u c h a g e n e r a t o r i s , of c o u r s e , not i m m e d i a t e l y suitable for u s e b e c a u s e of i t s high

t e m p e r a t u r e and i t i s c u s t o m a r y t o cool i t with w a t e r . T h i s can be achieved e i t h e r by a h e a t e x c h a n g e r , allowing the w a t e r ( o r s t e a m ) t o r u n t o w a s t e or a l t e r n a t i v e l y by vapourizing w a t e r in the output. The l a t t e r technique h a s the advantage t h a t i t i n i t i a l l y a u g m e n t s the g a s

supply, but i t a l s o h a s the disadvantage that t h e m e a n density of t h e out- put will be r e d u c e d thus giving r i s e t o g r e a t e r l o s s e s f r o m high l e v e l openings a s d i s c u s s e d e a r l i e r .

The output of the combustion c h a m b e r will be l a r g e l y nitrogen which h a s a m o l e c u l a r weight of 28, a p p r o x i m a t i n g c l o s e l y t o the m e a n m o l e c u l a r weight of a i r , about 29. Water vapour on t h e other hand h a s a m o l e c u l a r weight of 18. T h e volume of water vapour

g e n e r a t e d in lowering t h e t e m p e r a t u r e t o about 1 0 0 ° C will in g e n e r a l be of t h e s a m e o r d e r a s the output s o t h a t t h e m e a n m o l e c u l a r weight will drop t o about 23. T h e f a i l u r e t o r e d u c e t h e t e m p e r a t u r e t o n e a r ambient will a l s o influence d e n s i t y t o an even g r e a t e r extent.

F o r t h e s e and other r e a s o n s i t h a s been c u s t o m a r y t o cool the combustion c h a m b e r exhaust g a s e s with h e a t exchanges and t o p r e s e n t an output which c o n s i s t s m a i n l y of n i t r o g e n together with s o m e m i s c e l l a n e o u s p r o d u c t s of combustion s u c h a s C 0 2 and w a t e r .

Until r e c e n t l y t h e g r e a t e s t output f r o m a g e n e r a t o r of t h i s type h a s been of t h e o r d e r of 600 c u f t p e r m i n and by both t h e c r i t e r i a

d i s c u s s e d in t h e s e c t i o n "Required R a t e of Generation" t h i s i s quite low. T h u s i f a c o m p a r t m e n t in which a f i r e i s o c c u r r i n g h a s a volume

(8)

of 1 0 0 , 0 0 0 cu f t , o v e r 3 h o u r s w i l l e l a p s e b e f o r e one volume of g a s h a s b e e n injected. If t h e height of t h e c o m p a r t m e n t i s 20 ft and t h e m e a n g a s t e m p e r a t u r e is 100" C , t h e m a x i m u m p e r m i s s i b l e high l e v e l opening ( f r o m E q u a t i o n 5, Appendix B ) w i l l b e l e s s t h a n 1 s q ft.

W h e r e t h e c o m p a r t m e n t c o n c e r n e d i s t h e hold of a s h i p , battening down c a n m e e t t h e second r e q u i r e m e n t and t h e l o n g - t i m e

s c a l e i s t o l e r a b l e on t h e g r o u n d s t h a t no o t h e r f i r e - f i g h t i n g t e c h n i q u e i s l i k e l y t o b e s u c c e s s f u l .

F o r w i d e r a p p l i c a t i o n m u c h g r e a t e r outputs a r e d e s i r a b l e , but t h i s h a s been difficult t o a c h i e v e owing t o a l a c k of r e a d i l y t r a n s - p o r t a b l e high output c o m b u s t i o n d e v i c e s . If, a s in a p r e v i o u s e x a m p l e , we c o n s i d e r a building 50 by 100 b y 40 f t high, t h e d i s c u s s i o n given e a r l i e r in t h i s r e p o r t w i l l give t h e conclusion t h a t t h e i n j e c t i o n r a t e should b e of t h e o r d e r of 40, 000 c u ft /min. D e l i v e r y will t h u s b e a t t h e r a t e of 1 volume e v e r y 5 m i n and, n e g l e c t i n g l o s s e s , t h e oxygen c o n c e n t r a t i o n g e n e r a l l y should b e w e l l down Within 1 5 m i n which would a p p e a r t o b e a n a p p r o p r i a t e o r d e r of t i m e . Subject t o s o m e v a r i a t i o n , depending on t h e t e m p e r a t u r e and t h e n a t u r e of t h e output g a s , E q u a t i o n 5 (Appendix B ) i n d i c a t e s that t h e m a x i m u m p e r m i s s i b l e high l e v e l

opening in a 40 -ft high building w i l l b e of t h e o r d e r of 25 s q ft. It would p r o b a b l y b e unwise t o design a m a c h i n e intended f o r wide application which r e q u i r e d high l e v e l openings i n buildings t o b e s u b s t a n t i a l l y l o w e r than t h i s value.

T h e o r d e r of h e a t g e n e r a t i o n of a m a c h i n e with a n output of 40, 000 cu ft/min i s 60 m i l l i o n ~ t u / h r and u n t i l v e r y r e c e n t l y i t had

been a s s u m e d t h a t a s i m p l e c o m b u s t i o n d e v i c e b u r n i n g a t t h i s r a t e would h a v e s u b s t a n t i a l p h y s i c a l d i m e n s i o n s . F o r e x a m p l e , m a n y e n g i n e e r s adopt t h e r o u g h r u l e t h a t t h e output f r o m a c o m b u s t i o n c h a m b e r w i l l not u s u a l l y e x c e e d 50, 000 ~ t u / h r / c u ft. On t h i s b a s i s a n a p p r o p r i a t e

c o m b u s t i o n c h a m b e r , t o give a n output of 60 m i l l i o n ~ t u / h r , would h a v e a volume of 1000 cu f t , o r , s a y , i t would b e 10 ft3 neglecting w a l l t h i c k - n e s s . It i s with t h i s b a c k g r o u n d of i n f o r m a t i o n t h a t i t i s a p p r o p r i a t e t o c o n s i d e r t h e development i n G r e a t B r i t a i n of a n i n e r t g a s g e n e r a t o r b a s e d on an a i r c r a f t g a s t u r b i n e engine. B r i t i s h " J e t Engine" I n e r t G a s G e n e r a t o r Within t h e l a s t d e c a d e D. J. R a s b a s h , of t h e J o i n t F i r e R e s e a r c h O r g a n i z a t i o n in G r e a t B r i t a i n , h a s r e c o g n i z e d t h e p o t e n t i - a l i t i e s of a m a s s i v e i n e r t g a s g e n e r a t o r in f i g h t i n g f i r e s i n c e r t a i n c l a s s e s of buildings. F a c e d with t h e p r o b l e m of achieving combustion a t a high r a t e p e r unit volume h e t u r n e d t o t h e only d e v i c e t h e n e x i s t i n g

(9)

which c a m e n e a r t o m e e t i n g h i s r e q u i r e m e n t s , viz. t h e a i r c r a f t g a s t u r b i n e .

T h e output of a g a s t u r b i n e i s not i m m e d i a t e l y s u i t a b l e f o r u s e a s an extinguishing agent, m a i n l y b e c a u s e i t s t e m p e r a t u r e i s e x c e s s i v e and t o a l e s s e r extent b e c a u s e i t h a s a s u b s t a n t i a l oxygen content. T h e National Gas T u r b i n e E s t a b l i s h m e n t looked into t h e s e p r o b l e m s . Oxygen content w a s r e d u c e d by t h e u s e of an a f t e r - b u r n e r and cooling was achieved by d i r e c t injection and vapourization of w a t e r . In t h e prototype m o d e l de1ivere.d t o t h e F i r e R e s e a r c h Station t h e

composition of t h e output g a s ( b y v o l u m e ) , a t a d e l i v e r y r a t e of

45, 000 c f m , w a s oxygen 7 p e r c e n t , n i t r o g e n 46 p e r c e n t , C 0 2 3 p e r cent and w a t e r vapour 4 4 p e r cent.

Extinguishment t e s t s with t h e a p p a r a t u s h a v e p r o v e n quite s u c c e s s f u l ( 7 , 8 ,

9 )

and a p p e a r t o c o n f i r m t h e concepts given e a r l i e r in t h i s r e p o r t under t h e headings I 1 P e r m i s s i b l e Oxygen Content of I n e r t Gas" and "Required R a t e of Generation.

In g e n e r a l t h e equipment will not s u p p r e s s s m o u l d e r i n g and it i s intended t h a t f i r e m e n should p e r f o r m t h i s function s o m e t i m e

subsequent t o t h e elimination of flaming combustion. T h e g e n e r a t o r i s quite v e r s a t i l e and t h e composition of t h e g a s can be a d j u s t e d t o m a k e it t r a n s l u c e n t , a n e c e s s a r y r e q u i r e m e n t i f f i r e m e n a r e t o o p e r a t e in the a t m o s p h e r e .

Canadian Conditions

A l t e r n a t i v e s t o conventional f i r e -fighting techniques a r e a s n e c e s s a r y in Canada a s in m o s t other p a r t s of t h e w o r l d , but i t is not a u t o m a t i c that t h e B r i t i s h g a s t u r b i n e i n e r t g a s . g e n e r a t o r would p r o v e a s valuable a tool in C a n a d a a s it i s l i k e l y t o do in t h e U. K. So f a r a s t h e U. K. i s concerned i t i s not c o n s i d e r e d e s s e n t i a l t h a t t h e "jet engine1' g e n e r a t o r should s u p p r e s s s m o u l d e r i n g a s i t is thought t h a t t h i s

a c t i v i t y c a n be left t o f i r e m e n a t a l a t e r s t a g e of t h e p r o c e e d i n g s . With Canadian c o n s t r u c t i o n s , however, one of the m o s t i m p o r t a n t f e a t u r e s of f i r e fighting i s the s u p p r e s s i o n of f i r e in t h e concealed s p a c e s which a r e t o be found i n a l m o s t a l l buildings, whether old o r new. While t h i s f e a t u r e m a k e s t h e m a s s i v e u s e of i n e r t g a s even m o r e d e s i r a b l e t h a n i n t h e U. K. it a l s o s u g g e s t s that the oxygen content of t h e gas should be sufficiently low a s t o be c a p a b l e of s u p p r e s s i n g smouldering. T h e oxygen content in t h e output of t h e B r i t i s h device, which can be r e d u c e d t o 7 p e r cent a f t e r t h e injection of w a t e r and

12 p e r cent b e f o r e , would s e e m t o be b o r d e r l i n e and lower v a l u e s a r e d e s i r a b l e .

(10)

Achieving a high r a t e of combustion in a s m a l l volume i s now considered (1 1) to be l a r g e l y a physical r a t h e r than a chemical problem and conventional combustion c h a m b e r s a r e generally f a r l a r g e r than the limit set by physical considerations. O r d e r s of

magnitude a r e involved and it should not be n e c e s s a r y t o r e s o r t to gas turbines to achieve, in a conveniently sized chamber, combustion a t the r a t e s discussed e a r l i e r in this r e p o r t . In fact it should be possible to design a combustion chamber. operating a t substantially atmospheric p r e s s u r e having an output comparable to that of an a i r c r a f t gas turbine and a volume of a s i m i l a r o r d e r .

At about the time that the National R e s e a r c h Council was considering this problem, it came to light that such a combustion chamber, was, in fact, being developed by a U . S . company (Black, Sivalls and Bryson of Oklahoma City),. and

a

complete a s s e m b l y . w a s purchased. At the t i m e , development of a v e r y high output model had not been completed and the model purchased had an output of

6.

5

million ~ t u / h r . If a machine with an output of 40, 000 cfm of inert gas i s a r b i t r a r i l y described a s " a full-scale i n e r t gas g e n e r a t o r , 'I a generator based on a

6. 5

million ~ t u / h r would constitute a one-tenth s c a l e machine.

This choice of s c a l e h a s proven to be v e r y appropriate for two r e a s o n s . F i r s t l y the device was sufficiently s m a l l t o facilitAte experimental development of the water injection techniques. Secondly this scale of i n e r t gas generator needs to be developed in i t s own right, for application in the fighting of f i r e s in the holds of ships and in

inaccessible attic s p a c e s in s m a l l buildings. T h e burner fuel i s gaseous propane supplied a t a p r e s s u r e of about

, 9

p s i and a t a r a t e

corresponding t o a little l e s s than 1 gal/min in liquid phase. Combustion a i r i s supplied a t a r a t e of approximately 1000 cfm, a t a p r e s s u r e not exceeding 20 in. of w a t e r , by a 550 volt, 3 phase, 10 hp motor. The output t e m p e r a t u r e i s said to be in the region of 3000°F.

T o c r e a t e a chamber into which water could be injected, stainless s t e e l cylinders of various diameters w e r e attached t o the

9

-in. diameter burner outlet. Unstable combustion resulted although con- ditions improved a s the diameter of the chamber was i n c r e a s e d . It was thought undesirable, from considerations of s i z e , to u s e a diameter l a r g e r than 2 ft and with t h i s diameter of cylinder, other approaches t o the problem were investigated. A twofold solution was a r r i v e d at. In the burner p r o p e r , a flame stabilizer baffle was installed in the region where the fuel and the combustion a i r f i r s t begin t o mix, and in the water injection chamber a horizontal vane was installed a s i l l u s t r a t e d i n F i g u r e 1 to cut down the component of rotational velocity in the gas flows in that region.

(11)

Water injection w a s f i r s t a t t e m p t e d a x i a l l y , with h y d r a u l i c atomizing n o z z l e s , but p r o v e d u n s u c c e s s f u l . Heat t r a n s f e r t o t h e n o z z l e s w a s t o o g r e a t and s t e a m i n s t e a d of w a t e r i s s u e d f r o m the

n o z z l e s . C i r c u m f e r e n t i a l injection, h o w e v e r , a s i l l u s t r a t e d in F i g u r e 1 gave r i s e t o no p r o b l e m s .

A decision a s t o the d i a m e t e r of t h e f i n a l outlet duct w a s then r e q u i r e d and 1 2 in. w a s c o n s i d e r e d a p p r o p r i a t e . A velocity of about 90 f t / s e c could t h e n b e expected giving a velocity head of about 1 in. of w a t e r . It would c e r t a i n l y not be f e a s i b l e t o a t t e m p t d e l i v e r y through a duct of l e s s than half t h i s d i a m e t e r f o r t h i s would give m o r e than four t i m e s t h e velocity and hence a velocity h e a d of s o m e 16 in. of w a t e r . T h e r a t e d d e l i v e r y p r e s s u r e of t h e combustion blower is only 20 in. of w a t e r and only a p o r t i o n of t h i s i s available t o o v e r c o m e back p r e s s u r e due t o flow r e s t r i c t i o n s .

T r a n s i t i o n and outlet p i e c e s w e r e i n s t a l l e d a s i l l u s t r a t e d i n F i g u r e 1 and once again unstable combustion o c c u r r e d . It w a s thought that t h i s r e s u l t e d f r o m a r e s o n a n c e m e c h a n i s m in which the plug of g a s e s in t h e outlet constituted t h e o s c i l l a t i n g m a s s and the g a s e s i n t h e m a i n c h a m b e r gave r i s e t o t h e f o r c e s . A s i m p l e c a l c u l a t i o n gave t h e r e s o n a n t f r e q u e n c y a s about 50 c / s and while t h i s s e e m e d higher than t h e f r e q u e n c i e s t h a t w e r e a p p a r e n t t h e r e w a s s o m e a g r e e m e n t as t o o r d e r

.

Acoustic damping w a s i n t r o d u c e d i n t h e f o r m of two s t a i n l e s s s t e e l wool baffles located as i l l u s t r a t e d i n F i g u r e 1. In o r d e r t o p r e v e n t s e r i o u s damage t o the s t a i n l e s s s t e e l wool o v e r - i n j e c t i o n of w a t e r w a s c a l l e d f o r and w a s achieved by t h e inclusion of t h r e e h o s e s a s i l l u s t r a t e d i n F i g u r e 1. Over -injection h a d t h e additional m e r i t of giving even

s m o o t h e r combustion and t h e n o i s e l e v e l f r o m t h e m a c h i n e w a s r e d u c e d to l i t t l e m o r e than t h e n o i s e f r o m t h e 10 hp c o m b u s t i o n a i r b l o w e r .

With t h e a r r a n g e m e n t a s specified both the oxygen a n d combustion g a s contents of t h e output g a s e s w e r e w e l l under 1 p e r cent. T h e r m o c o u p l e s a t t a c h e d t o the w a l l of t h e outlet p i e c e and p l a c e d i n the ( w e t ) g a s s t r e a m r e g i s t e r e d a t e m p e r a t u r e of 7 5 ° C .

T h e t h e o r e t i c a l compositions of t h e input and output of t h e g e n e r a t o r a r e evaluated i n Appendix C but have not yet been a c c u r a t e l y investigated e x p e r i m e n t a l l y , excepting a s mentioned i n t h e p r e v i o u s p a r a g r a p h . Noting t h e l e v e l s i n t h e p r o p a n e tank, b e f o r e and a f t e r running, s u g g e s t s that t h e s c a l e of input and output i s r a t h e r g r e a t e r than t h a t given in Appendix C . T h e v e r y high w a t e r i n j e c t i o n r e q u i r e - m e n t a l s o s u p p o r t s t h i s view. T h e s p r a y n o z z l e s , supplied a t

a

p r e s s u r e of 1 2 0 p s i , a r e providing 1 2 g a l / m i n and the t h r e e -in. n o z z l e s , a t a p r e s s u r e of 50 p s i , a r e providing

5

gal/min. Water r u n

(12)

off f r o m t h e equipment is 2 gal/min. T h i s c o n s t i t u t e s a t h e r m a l l o s s but i s of no r e a l significance.

F i g u r e 2 i l l u s t r a t e s t h e m a c h i n e in operation.

F u r t h e r Work

At t h e t i m e of writing, an e x p e r i m e n t a l investigation of t h e p e r f o r m a n c e of t h e m a c h i n e in extinguishing f i r e s w a s under way.

It i s l i k e l y that t h e g e n e r a t o r a t i t s p r e s e n t s i z e w i l l con- s t i t u t e a useful tool f o r fighting f i r e s i n s h i p s t h o l d s and in s m a l l i n a c c e s s i b l e a r e a s i n buildings, s u c h a s t h e a t t i c s p a c e . It i s t h e r e - f o r e d e s i r a b l e that a n e a s i l y t r a n s p o r t a b l e m a c h i n e should b e developed f r o m t h e N. R. C. e x p e r i m e n t a l g e n e r a t o r .

F o r wider application a l a r g e r s c a l e of m a c h i n e should b e developed, in the f i r s t i n s t a n c e one with a n output of 40, 000 c f m ,

i. e . c o m p a r a b l e with t h e B r i t i s h g a s t u r b i n e machine. An e v e n

higher output m o d e l i s d e s i r a b l e and s o m e c o n s i d e r a t i o n should b e given t o i t s development.

T h e t r a n s p o r t a t i o n of p r o p a n e involves p r e s s u r e v e s s e l s and the u s e of a liquid fuel s u c h a s k e r o s e n e would b e m o r e convenient. Some thought should b e given t o t h e p o s s i b i l i t y of producing a c o m

-

bustion c h a m b e r of r e a s o n a b l e d i m e n s i o n s which would a c c e p t s u c h a fuel. Doubtless, s u c h a device would b e l a r g e r than one t h a t b u r n s g a s e o u s fuel and t h e question i s

-

how m u c h l a r g e r it would be. It i s conceivable that by t h e u s e of high p r e s s u r e a t o m i z i n g n o z z l e s a

s u b s t a n t i a l i n c r e a s e in s i z e could be avoided.

Acknowledeements

Acknowledgement i s due t o D r .

T.

D. Northwood of t h e Division of Building R e s e a r c h and t o s e v e r a l m e m b e r s of t h e Division of Mechanical E n g i n e e r i n g f o r helpful a d v i c e leading t o t h e solution of t h e combustion p r o b l e m s mentioned in t h e r e p o r t .

R e f e r e n c e s

1. Coward, H. J. and G. W. J o n e s . L i m i t s of F l a m m a b i l i t y of G a s e s and Vapours. U. S . B u r e a u of Mines Bulletin 503, 1952.

2. P e n n e r , S. S. and B. P. Mullins. E x p l o s i o n s , Detonations, F l a m m a b i l i t y and Ignition. 1959, P e r g a m o n P r e s s .

(13)

F i r e R e s e a r c h 1960. Dept. of S c . and Indus. R e s . and F i r e

Offices' C t t e . , HMSO, 1961, p. 9-1 1.

Building R e s e a r c h 1962. National R e s e a r c h Council, Division of Building R e s e a r c h , Oct. 1963, p. 40.

Fluid M e t e r s , T h e i r T h e o r y and Application. 5th Edition, 1959, A. S. M. E .

Rushbr ook, F r a n k . Ship F i r e s . Institution of Fir e E n g i n e e r s Q u a r t e r l y , Vol. XXI, No. 44, Winter 1961, p. 393-412.

Rasbash, D. J. I n e r t G a s G e n e r a t o r for Control of F i r e s in L a r g e Buildings. The E n g i n e e r , Vol. 21 5, No. 5601, 31 May 1963, p. 978-984.

F i r e R e s e a r c h 1960. Dept. of Sc. and Indus. R e s . and F i r e Offices' C t t e . , HMSO, 1961, p . 29-30.

Leete, L. W. J. F i r e Fighting with a n I n e r t G a s G e n e r a t o r . F i r e International NO. 1, J u l y 1963, p. 34-47.

P e r r y , John H. (Ed. ) C h e m i c a l Engineer s t Handbook. McGraw- Hill, 1950, 3 r d E d . , p. 244.

Longwell, John P. and

M.

A. Weiss. High T e m p e r a t u r e Reaction R a t e s i n Hydrocarbon Combustion. Indus. and Eng. Chem.

,

Vol.

(14)

TABLE I

OXYGEN CONCENTRATIONS (PREDICTED)

1 Oxygen Concentration M

=

5% (Gas with 5% 02)

(%I

20 1 0 . 5 7 . 0 5 . 7 5. 3

5

dv

0 1 2 3 4 m M = O (Inert g a s )

(%I

2 0 7 . 4 2. 7 1 . 0 0 . 4 0 L

(15)
(16)
(17)

G A S

( V o l u m e

v

c u . f t

R a t e

I n i i n )

F I G U R E 3

G A S E O U S L O S S E S

DENS I T Y

p'

( I b l c u . f t )

p'

< % P o

f

- - -

A I R

( D e n s i t y , U o I b l c u .

f t )

r

1

h f t .

A R E A

A,(sq. f t )

A I R

( D e n s i t y

po

I b l c u . f t )

(18)

Appendix A

Dilution of A t m o s p h e r i c Oxygen

Suppose a g a s G be i n j e c t e d a t a volume r a t e v i n t o a volume V which o r i g i n a l l y contained a i r .

Suppose f u r t h e r that mixing i s p e r f e c t and t h a t n o a p p r e c i - able p r e s s u r e d i f f e r e n c e s a r e involved.

Let t h e f r a c t i o n a l c o n c e n t r a t i o n of the g a s G a t a n y t i m e t be g ( O C g < 1 ) .

In a t i m e 6t t h e gain of g a s G w i l l be v. 6t.

T h e l o s s of g a s G, by t h e e f f l u x of displaced g a s e s w i l l b e gv. 6t s o that t h e net gain of g a s G will b e ( 1

-

g) v. 6t.

The change i n c o n c e n t r a t i o n 6g of the g a s G will be ( 1

-

g)

v. 6 t / ~ s o t h a t

Integrating t h i s equation and invoking t h e b o u n d a r y c o n - ditions g = 0 a t t = 0 and g + l a t t + w

If t h e g a s G i s taken t o have a n oxygen c o n c e n t r a t i o n m and a i r t o h a v e a n oxygen c o n c e n t r a t i o n of 0. 2 (i. e. 20 p e r c e n t ) , t h e oxygen concentration n of t h e m i x t u r e will b e

If n and m a r e e x p r e s s e d a s p e r c e n t a g e s

M

and N Equation (2) b e c o m e s

T a b l e I r e l a t e s N and v t / ~ f o r v a l u e s of M of z e r o and

(19)

Appendix

B

G a s e o u s L o s s e s

P a r t 1

-

G e n e r a l

Consider a g a s , l e s s d e n s e t h a n a i r , i n j e c t e d a t a r a t e v c u ft/min into a n e n c l o s u r e a t t h e top of which t h e r e i s a n opening of a r e a A2 ( F i g u r e 3). T h e e q u i l i b r i u m condition which will be

e s t a b l i s h e d will be s u c h t h a t t h e p r e s s u r e difference e i t h e r s i d e of t h e outlet gives r i s e t o a flow equal t o t h e inlet flow. A s s u m i n g t h e g a s e s within t h e e n c l o s u r e t o be effectively stagnant and s t r a t i f i e d , and t h e flow coefficient a t t h e outlet t o a p p r o x i m a t e t o 0. 6 ( 5 ) , t h e e x p r e s s i o n governing t h e flow will b e

w h e r e

g i s a c c e l e r a t i o n due t o g r a v i t y and t h e r e m a i n i n g s y m b o l s a r e defined i n F i g u r e 1.

M a s s flow continuity c o n s i d e r a t i o n s give

w h e r e v i s t h e injection r a t e in cu ft/rnin and t h e f a c t o r 60 i s n e c e s s a r y owing t o i n c o n s i s t e n c y of u n i t s . 1 -3 1

+

Hence A

-

3. 47. 10 (v/hz) [ p l / ( p o

-

p

) ]

2 P a r t 2

-

N. R. C. G e n e r a t o r T h e d e n s i t y r a t i o f o r t h e output of t h e NRC e x p e r i m e n t a l g e n e r a t o r i s m o s t e a s i l y evaluated by t a k i n g d e n s i t y a s p r o p o r t i o n a l t o m e a n m o l e c u l a r weight/absolute t e m p e r a t u r e . T h e composition of t h e g a s i s 3 C 0 2

+

2ONk

+

4 8 H 2 0 s o t h a t i t s m e a n m o l e c u l a r weight i s 21. 9. T h e m e a n m o e c u l a r weight of a i r i s about 29. Taking t h e t e m p e r a t u r e of t h e i n j e c t e d g a s a s 1 0 0 ° C and ambient t e m p e r a t u r e a s O°C, t h e d e n s i t y r a t i o i n Equation 5

(20)

Hence -3 1 A2

=

3 . 8 6 . 1 0 v/hz w h e r e the u n i t s of

A

a r e s q ft t h o s e of v a r e cd ft/rnin and t h o s e of h a r e ft.

(21)

Appendix C

Combustion and Vapourization P r o c e s s e s

If a s t o i c h i o m e t r i c m i x t u r e of a i r and propane i s b u r n e d , t h e h e a t output of 1 gm m o l e of p r o p a n e will be 488. 5K c a l (10). T h i s f i g u r e a p p l i e s t o t h e conditions giving g e n e r a t e d w a t e r in t h e vapour p h a s e . If t h e g a s e s a r e a s s u m e d t o b e a t 1 0 0 ° C a f u r t h e r c o r r e c t i o n (approx. 11K c a l ) i s a s s o c i a t e d with t h e heating of t h e i n e r t g a s e s i n t h e combustion a i r .

The h e a t available t o v a p o u r i z e w a t e r w i l l t h e r e f o r e b e 477K ~ a l / ~ m m o l e of propane. If i t is a s s u m e d that t h e h e a t r e q u i r e d t o r a i s e t h e t e m p e r a t u r e of w a t e r f r o m an a r b i t r a r y ambient t e m p e r a t u r e t o 100" C and t o vapourize i t i s 600 ~ a l / ~ m t h e n t h e quantity of w a t e r which could be vapourized i s 477,000/600 =. 795 gm

e

44 gm mole.

T h e e x p r e s s i o n f o r t h e c o m p l e t e combustion and v a p o u r i z a - tion p r o c e s s , a s s u m i n g a i r t o be c o m p o s e d only of 0 and N is t h e r e -

f o r e : 2 2

C H

+

50

+

20N

+

44H 0 (liquid) = 3 C 0

+

4H O(vapour)

+

20N

+

44H O(vapour)

3 8 2 2 2 2 2 2 2

T h u s for e v e r y m o l e c u l e of p r o p a n e which i s b u r n e d t h e out- put w i l l contain 71 m o l e c u l e s .

6

T h e r a t e d h e a t output of t h e b u r n e r a c q u i r e d b y NRC is 6. 5 x 10 ~ t u / h r and adopting t h e higher value of t h e h e a t of combustion of p r o p a n e (21, 646 ~ t u / l b ) (10) the input and output of t h e g e n e r a t o r w i l l be constituted a s follows:

5. 0 lb/min of p r o p a n e ( 0 . 8 6 Imp gal/min)

+

89 l b / m i n of a i r (1085 cu f t / rnin a t O°C)

+

90 lb/min of w a t e r (9 Imp gal/min)

= 15 lb/min of C 0 2 (155 c u f t / m i n a t 75OC)

+

64 lb/min of n i t r o g e n (1040 cu ft/min a t 7 5 ° C )

+

98 lb/min of w a t e r vapour (2600 c u ft/min at 1 0 0 ° C )

= 1195 c u ft/min of " n a t u r a l g a s e s " ( a t 75OC)

+

approx. 2600 cu ft/ m i n of w a t e r vapour

Références

Documents relatifs

This study examines the international climate policy process and overlapping national policy processes in the United States, Japan, and the Netherlands through the lens

Los gestores directos eran en su mayoría actores locales, empresas y la sociedad civil, mientras que los gestores indirectos eran a menudo organizaciones de alcance nacional y

A ce titre et compte tenu de l’importance de l’investissement dans le monde moderne, les pays développés et ceux en voie de développement tendent à promouvoir le volume

We first consider the information gathering problem, and plot peak and average age for all the proposed trajectories of the mobile agent: the Metropolis-Hastings randomized trajectory

These include: better integration among housing market sub-models, such as predictors of residential mobility becoming determinants of choice set formation; explicit modeling of

Dans bien des cas d'après les enquêtés, les produits de terroir se distinguent par leur qualité organoleptique : ainsi le litchi Thieu de Thanh Ha est réputé &#34;plus sucré, et

ficus‐ indica seeds, in this study cakes resulting from the pressing were macerated in ethanol and then a Supercritical Antisolvent Fractionation (SAF) technique was used for

( دﺎﺼﻴ يذﻝا ئرﺎﻘﻝﺎﻓ نّﻜﻤﺘﻴ ﻻ لﺎﺜﻤﻝا لﻴﺒﺴ ﻰﻠﻋ ﺔﺘوﺤﻨﻤﻝا تﺎﻤﻠﻜﻝا ﻩذﻫ ف ﺎّﻤﻤ ،ﺎﻬظﻔﻝ نﻤ ﺎﻫﺎﻨﻌﻤ كاردإ ﻪﻴﻠﻋ رّذﻌﺘﻴ ﻲﻝﺎﺘﻝﺎﺒو ،ﺎﻬﻨﻤ تذﺨُأ ﻲﺘﻝا ﺎﻬﻝوﺼأ ﺔﻓرﻌﻤ نﻤ