• Aucun résultat trouvé

Notes on Laminates Optimization

N/A
N/A
Protected

Academic year: 2021

Partager "Notes on Laminates Optimization"

Copied!
46
0
0

Texte intégral

(1)

Notes on Laminates Optimization

Joseph Morlier / Dimitri Bettebghor

January 2010

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 1 / 46

(2)

Summary

1 Overview of Composites

2 Ply mechanics

3 Classical Laminates Theory

4 Laminates optimization: laminated Parameters

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 2 / 46

(3)

Definition

Composite materials (Latin: componere) ”‘A macroscopic combination of two or more distinct materials into one with the intent of surpressing undesirable properties of the constituent materials in favour of desirable properties”’

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 3 / 46

(4)

At Macro Level

Isotropic

”‘The same properties in all directions”’ (Metals, plastics, concrete, etc) Anisotropic

”‘Different properties in different directions”’ (Wood, reinforced concrete, fibre composites, bone, and almost all natural building materials)

An example would be the dependence of Young’s modulus on the direction of load

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 4 / 46

(5)

Laminates composites

Combination of two or more constituent materials on a macroscopic examination to produce a new material with enhanced properties: Fibers (carbon, glass, Kevlar) and matrix (Epoxy resin)

Strength and stiffness are proportional to the amount of fibers in the matrix (Fiber volume fraction)

The reinforcing fibers provide the useful engineering properties e.g., strength and stiffness); whereas the matrix serves to protect and stabilize the fibers while transferring loads among the fibers predominantly through shear.

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 5 / 46

(6)

Stacking Sequence

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 6 / 46

(7)

Mirror symetry?

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 7 / 46

(8)

Coupling terms

When the local coordinate changes : some terms of Compliance matrix are different of Zero (Distortion of right angle)

For anistropic material, Stress-Strain Equations depend on Coordinate.

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 8 / 46

(9)

Stress and Strain in a laminate

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 9 / 46

(10)

Equivalent material

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 10 / 46

(11)

Simple rules: Mixture Law

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 11 / 46

(12)

Elasticity Review: stress tensor

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 12 / 46

(13)

stress tensor: Matrix notation

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 13 / 46

(14)

Plane stress assumption

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 14 / 46

(15)

strain tensor: Matrix notation

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 15 / 46

(16)

Stress-Strain Equations in Material Coordinate

In material coordinate, we can calculate: any load cases (in plane) is a combination of these 3 cases

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 16 / 46

(17)

Normal strain in coupon along O1 (Material Coordinate

When loading is normal to face 1 (normal stressσ1) , the structure elongates along O1 (1) and shortens along O2 (2).

Loading is in the axis of orthotropy (axis of symetry of materials), so right angle keeps beeing right: 12is null.

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 17 / 46

(18)

Shear Loading

Under pure shearing forceτ12,no1and2appears.

G12(shear modulus) is defined by : τ12= 2G1212

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 18 / 46

(19)

Stiffness Equations in Material Coordinate

any load cases (in plane) creatingσ1,σ2,τ12is a combination of these elementary cases:

0

@ 1

2

212

1 A=

0

@

1/E1 νE21

2 0

νE12

1 1/E2 0

0 0 1/G12

1 A

0

@ σ1

σ2

τ12

1 A

equivalent to (Hooke’s Law): []=[S][σ], where [S] is the Compliance Matrix (9 terms) Multiplying byS−1, : [σ]=[Q”][]

we can obtain: [Q00] Reduced Stiffness Matrix in the orthotropic coordinate:

[Q00] = 0

@

βE1 βν12E2 0 βν12E2 βE2 0

0 0 G12

1 A

avecβ=1−ν1

12ν21

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 19 / 46

(20)

Hooke’s Law for a 2D Angle Lamina

From local to global coordinate ?

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 20 / 46

(21)

Coordinate Transformations

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 21 / 46

(22)

Coordinate Transformations

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 22 / 46

(23)

Stress Transformation

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 23 / 46

(24)

Strain Transformation

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 24 / 46

(25)

Stress-Strain relationship in Global Coordinate

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 25 / 46

(26)

Stress-Strain relationship in Global Coordinate

Multiplying by [T]−1

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 26 / 46

(27)

Stiffness and Compliance Matrix in Global Coordinate

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 27 / 46

(28)

Exemple 1

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 28 / 46

(29)

Macromechanics

Nx = normal force resultant in the x direction (per unit length) Nxy = shear force resultant (per unit length) Mx = bending moment resultant in the yz plane (per unit length) Mxy = twisting moment resultant (per unit length)

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 29 / 46

(30)

Displacement field

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 30 / 46

(31)

Strain in the laminate

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 31 / 46

(32)

Strain in the laminate for each layer

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 32 / 46

(33)

Plate resultant forces

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 33 / 46

(34)

Constitutive equation for laminated plate

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 34 / 46

(35)

Laminate stiffness matrix

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 35 / 46

(36)

ABD?

18 terms are governing:

A = [in-plane stiffness matrix]

D = [bending stiffness matrix]

B = [bending-extension coupling matrix]

B=0 if symetrical vs middle plan

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 36 / 46

(37)

Aij, Bij, Dij Coefficients

Aij, Bij, Dij depends on thickness, orientation, stacking and materials properties of each ply.

where zk are ply coordinate (sup and inf) (i,j=1,2,6)

IS THERE ANY COMPACT FORM OF THIS COMPLEX PROBLEM EXISTING ???????

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 37 / 46

(38)

Optimal Fibers Orientation

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 38 / 46

(39)

Lamination parameters

Lamination parameters are a compact representation of the stacking sequence. Miki, Tsa¨ı and Pagano carried out this representation of the mechanical behaviour of a laminate by decomposing the

material-dependent part and the stacking-sequence dependent part, ending up with :

5 so-called material invariants orTsa¨ı-Pagano parameters {Ui}i=1...5 that only depend on the material properties (E11,E22,G12and ν12 the longitudinal, transerve and shear moduli and the Poisson’s ratio) 12 so-called lamination parameters ξ{1,2,3,4}A , ξ{1,2,3,4}B , ξ{1,2,3,4}D that only depend on the stacking sequence (fiber orientations and number of plies).

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 39 / 46

(40)

Lamination parameters

The knowledge of both U andξ is enough to derive the constitutive law of the material. More precisely, they allow ud to compute the ABD stiffness tensor where :

A is the in-plane stiffness tensor that describe the tensile compressive behaviour of the material

D is the out-of-plane stiffness tensor that describe the flexural behaviour

B is the coupling stiffness tensor

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 40 / 46

(41)

Lamination parameters

Their definition is :

ξ{1,2,3,4}A = 1 h

Z h/2

−h/2

{cos(2θ(z)),cos(4θ(z)),sin(2θ(z)),sin(4θ(z))}dz (1)

ξ{1,2,3,4}B = 1 h

Z h/2

−h/2

{cos(2θ(z)),cos(4θ(z)),sin(2θ(z)),sin(4θ(z))}zdz

(2)

ξD{1,2,3,4} = 1 h

Z h/2

−h/2

{cos(2θ(z)),cos(4θ(z)),sin(2θ(z)),sin(4θ(z))}z2dz

(3) where h denotes the thickness of the laminate andθ the orientation of fiber at heightz ∈[−h/2,h/2]. It is a general definition ofξ. For laminate composite it turns down to a simple finite sum of Nplies terms

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 41 / 46

(42)

Lamination parameters

Knowing these lamination parameters and the material invariants U. The stiffness tensors can be obtained by

 I11 I22

I12 I66 I16

I26

=

1 ξ1I ξ2I 0 0 1 −ξ1I ξ2I 0 0

0 0 −ξ1I 1 0

0 0 −ξ2I 0 1

0 −ξ3I/2 ξ4I 0 0 0 ξ3I/2 −ξ4I 0 0

 U1

U2

U3 U4

U5

(4)

where I stands forA,B andD.

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 42 / 46

(43)

Lamination parameters based lay-up optimization

The lamination parameters offers another representation of the stacking sequence

They represent the stacking sequence description through 12 variables, no matter how many plies there are.

A lot of work has been done on describing the feasible design space for lamination parameters : Miki, Diaconu, Weaver... and the

boundaries may be described with a closed form expression. Recently Weaver and al. carried out an implicit relationship to describe to feasible space for any set of arbitrary orientations.

They can be used to build up surrogate model.

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 43 / 46

(44)

Lamination parameters

Figure: Exemple of feasible design space into the lamination parameter representation

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 44 / 46

(45)

Lamination parameter based lay-up optimization

This representation has been used with different optimization techniques:

Evolutionnary techniques : Haftka, Leriche, Todoroki...

Gradient based techniques : Herencia, Kere other metaheuristics (SA, AC...) : Todoroki

Nonetheless, once an optimum has been found in the lamination parameters space, we have to find a corresponding stacking sequence This is not trivial and in the litterature, this problem is usually solved with evolutionnary techniques. though some author derived original methods : Todoroki used for instance a brounch-and-bound that is based on the fractal structure of the lamination parameters space.

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 45 / 46

(46)

Others representations

Note that this representation is not the only one to be used for lay-up optimization

We can use directly the reduced stiffness tensors A and D and use continous techniques (gradient descente techniques) (Adams,

Herencia,...). Note that we still have the post-identification problem.

There also exists an equivalent representation used by Vanucci : the polar form

Joseph Morlier / Dimitri Bettebghor () Workshop 2.3 MAAXIMUS January 2010 46 / 46

Références

Documents relatifs

MINIMES : BUCCI Matthéo (VILLERUPT TOUS TEMPS), GASS Madline (VTT FUN CLUB), LAURENT Raphaël (VTT FUN CLUB), MESHAKA Léo (VTT FUN CLUB), MITTERLE Lucien (VTT FUN CLUB), OIJID

2121-22 du code général des collectivités territoriales (CGCT) prévoit la possibilité pour les conseils municipaux de créer en leur sein des commissions municipales

Sélectionne un objet Séquenceur et glisse dans le vide avec deux doigts pour changer la durée de vie des objets

Dans le cas où l'étudiant procéderait à un changement de programme académique, la Moyenne Générale Cumulée d'un Diplôme sera calculée selon la même formule précédente

La déclaration d’un événement significatif dans le domaine de la radioprotection ne dispense pas la personne ou l’organisme qui produit ou utilise des

L'un des plus importants salons nationaux à vocation uni quement radio dans le domaine du radio-amateurisme et de la CB, le Salon Radio d'Eiancourt se tiendra cette année ies 21 et

I1 existe 6galement des figures d'6quilibre, probablement in- stables, oh la masse se subdivise cn plusieurs anneaux concentriques. La figure annulaire d'dquilibre

Sachant que la planète X est située à 4,5 années-lumière de la Terre et qu'une année-lumière est égale à 9,5 × 10 12 km, calculer la vitesse moyenne de ce vaisseau