• Aucun résultat trouvé

Measurement of underwater blast waves on Daniel Johnson Dam

N/A
N/A
Protected

Academic year: 2021

Partager "Measurement of underwater blast waves on Daniel Johnson Dam"

Copied!
33
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Internal Report (National Research Council of Canada. Division of Building

Research); no. DBR-IR-472, 1982-04-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=e6dd2fe5-aa14-415b-b5e2-b31339b88f8a https://publications-cnrc.canada.ca/fra/voir/objet/?id=e6dd2fe5-aa14-415b-b5e2-b31339b88f8a

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/40001938

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Measurement of underwater blast waves on Daniel Johnson Dam

Rainer, J. H.

(2)

NATIONAL RESEARCH COUNCIL OF CANADA

DIVISION OF BUILDING RESEARCH

DBR INTERNAL REPORT NO.

472

Measurement of Underwater Blast Waves

on Daniel Johnson

Dam

by

J.

H. Rainer

A N A L Y Z E D

Chockadby:

A.C.C.Warnock

~ p p m d b y :

L.W.Gold

Das:

April 1982

h J W d fa:

~ ~ d r o - ~ u g b e c

(3)

WEASlIRRMENl'

OF UNDERWATER

BLAST

WAVES

ON

DANIEL

JOHNSON

Dm

by J.H. R a i n e r

I. INTRODUCTION

The measurements d e s c r i b e d h e r e i n were performed i n November 1981 a s p a r t of a n i n v e s t i g a t i o n of t h e e f f e c t s o f f u t u r e b l a s t i n g work on t h e Daniel Johnson Dam on t h e Manicouagan R i v e r , Quebec i n c o n n e c t i o n w i t h t h e A d d i t i o n a l Power p r o j e c t ( " P u i s s a n c e a d d i t i o n n e l l e " ) a t Manicouagan 5. ( F i g u r e 1 shows a view of t h e dam.)

The work d e s c r i b e d was planned i n c o n s u l t a t i o n w i t h s t a f f of Hydro-Qu6bec and w i t h t h e Board of C o n s u l t a n t s f o r t h e A d d i t i o n a l Power p r o j e c t . The measurements were c a r r i e d o u t w i t h t h e a c t i v e

p a r t i c i p a t i o n of members of t h e s t a f f ?f Hydro-Qu6bec under t h e d i r e c t i o n of D r . P a u l LeComte, Chef d l E t u d e , MBcanique d e s Roches, GBologie & G6o technique.

The purposes of t h e tests were:

1 ) t o measure t h e b l a s t waves a r r i v i n g a t t h e dam from e x p l o s i o n s o u r c e s i n t h e v i c i n i t y of f u t u r e rock b l a s t s i n o r n e a r t h e r e s e r v o i r ; 2) t o i n v e s t i g a t e t h e shadowing e f f e c t a t t h e dam f o r b l a s t s o r i g i n a t i n g a t v a r i o u s l o c a t i o n s n e a r t h e f u t u r e w a t e r i n t a k e channel ; 3) t o d e t e r m i n e t h e s u i t a b i l i t y of measurement i n s t r u m e n t a t i o n f o r f u t u r e w a t e r and rock t e s t b l a s t s and t h e f i n a l e x c a v a t i o n b l a s t ;

4) t o measure t h e response of t h e dam t o v a r i o u s w a t e r b l a s t s and ground t r a n s m i t t e d b l a s t waves.

This r e p o r t i s concerned mainly w i t h t h e f i r s t t h r e e i t e m s ; a s p e c t s of t h e r e s p o n s e of t h e dam w i l l be d e a l t w i t h i n a n o t h e r , l a t e r , r e p o r t .

11. EXPERIMENTAL

Procedure

1. Hydrophones: Four hydrophones manufactured by K i s t l e r I n s t r u m e n t C o r p o r a t i o n of Amherst, N.Y., model #202A5/623M123, w i t h a maximum range of 400 p s i (2756 kPa), were employed. C a l i b r a t i o n c o n s t a n t s f o r each i n s t r u m e n t were s u p p l i e d by t h e m a n u f a c t u r e r , a s shown i n Table 1 (A and B). These were checked i n t h e l a b o r a t o r y by

(4)

s u b j e c t i n g t h e t r a n s d u c e r s t o a known a c o u s t i c a l n o i s e s o u r c e i n a n a n e c h o i c chamber. Values s o o b t a i n e d were w i t h i n 10% of t h e

m a n u f a c t u r e r ' s v a l u e s . A s t h i s r e p r e s e n t e d a p p r o x i m a t e l y t h e p r e c i s i o n of t h e a c o u s t i c a l measurements, t h e c a l i b r a t i o n c o n s t a n t s from t h e m a n u f a c t u r e r were t a k e n t o be c o r r e c t .

A t t h e dam s i t e , e a c h hydrophone was mounted on a s t e e l H-

s e c t i o n a s shown i n F i g . 2. The s e n s i t i v e e l e m e n t was 7.6 c m (3.0 i n . ) from t h e f a c e of t h e dam. The H-section was lowered i n t o t h e w a t e r by means of two r o p e s f o r m i n g a "V" and g u i d e d a l o n g t h e s l o p i n g f a c e of t h e a r c h t o t h e a p p r o p r i a t e w a t e r d e p t h . The s i g n a l c a b l e from e a c h hydrophone was b r o u g h t t o a m o b i l e l a b o r a t o r y parked a t t h e t o p of t h e dam and passed t h r o u g h t h e power s u p p l y t o a seven-channel "Racal" FM

t a p e r e c o r d e r . I n a d d i t i o n t o t h e f o u r hydrophones, t h e 50 Hz low-pass f i l t e r e d a c c e l e r a t i o n s i g n a l from s t a t i o n C7, e l e v a t i o n 1168 f t ( s e e F i g . 3 ) , and a 100 m s t i m i n g p u l s e t r i g g e r e d manually a t t h e end of t h e b l a s t count-down were r e c o r d e d ; one c h a n n e l was l e f t empty f o r n o i s e r e d u c t i o n on p l a y b a c k . Recording s p e e d of 15 i n . / s p r o v i d e d a f r e q u e n c y c u t - o f f of 5000 Hz. A l l r e c o r d e r g a i n s f o r t h e w a t e r b l a s t s were set a t 1 , w i t h t h e e x c e p t i o n of Event 4 d u r i n g which t h e y were a t 0.5 f o r t h e f o u r hydrophones. These c o n s t a n t s e t t i n g s w e r e a d o p t e d i n o r d e r t o minimize t h e p o s s i b i l i t y of o v e r l o a d i n g t h e r a n g e of t h e t a p e r e c o r d e r , even though t h i s meant a p o t e n t i a l l o s s of d e f i n i t i o n of some very low s i g n a l s

.

Two l a y o u t s of hydrophones were used a s i s shown i n Fig. 3. C o n f i g u r a t i o n A c o n s i s t s of hydrophones A1

,

A2, A3 and A4, c o r r e s p o n d i n g t o l o c a t i o n s V4-5, V6-7, V7-8 and V9-10, r e s p e c t i v e l y , a t 15.2 m (50 f t ) w a t e r depth. C o n f i g u r a t i o n B i s d e s i g n a t e d by B1, B2, B3 and B4 on a r c h V7-8. B1 a t 61 m (20 f t ) d e p t h and B3 (same as A3) a t 15.2 m (50 f t ) w a t e r d e p t h a t t h e c e n t e r of t h e a r c h , whereas B2 i s n e a r C7 and B4 i s n e a r C8, a l s o a t 15.2 m (50 f t ) d e p t h .

2. E x p l o s i v e Charges: The p o s i t i o n s of t h e c h a r g e s a r e shown i n F i g . 3 and a r e d e s i g n a t e d by L o c a t i o n s 1 t o 7 around t h e f u t u r e w a t e r i n t a k e c h a n n e l . L o c a t i o n s 1 t o 5 a r e a t 15.2 m (50 f t ) w a t e r d e p t h and

rest a g a i n s t t h e r o c k . L o c a t i o n - 6 i s a l s o a g a i n s t t h e r o c k a t 31.5 m (115 f t ) d e p t h i n l i n e w i t h t h e a x i s of t h e f u t u r e i n t a k e c h a n n e l . L o c a t i o n 7 r e p r e s e n t s t h e suspended c h a r g e d e t o n a t e d a t 15.2

m

(50 f t ) w a t e r d e p t h , l o c a t e d a few hundred metres from t h e o t h e r b l a s t

l o c a t i o n s , a p p r o x i m a t e l y p a r a l l e l t o t h e l o n g a ' x i s of t h e dam.

A l l b l a s t s c o n s i s t e d of a 2 kg (4.4 l b ) s t i c k of dynamite; t h e count-down of t h e b l a s t e r was t r a n s m i t t e d by p o r t a b l e r a d i o t o t h e b l a s t c o o r d i n a t o r n e a r t h e mobile l a b o r a t o r y . From t h e r e , t h e count- down was p a s s e d t o t h e o t h e r r e c o r d i n g s t a t i o n s t h r o u g h o u t t h e dam by e x i s t i n g t e l e p h o n e network. The s e q u e n c e of e v e n t s and t h e i r

c h a r a c t e r i s t i c s a r e summarized i n T a b l e 2.

111. ANALYSIS

The r e c o r d e r s i g n a l s were played back a t a speed r e d u c t i o n of 1 6 t i m e s and d i s p l a y e d o n a g a l v a n o m e t e r r e c o r d e r . Records of some

(5)

e v e n t s showing t h e f o u r hydrophones and t h e a c c e l e r o m e t e r a t C7, 1168 f t a r e shown i n F i g s . 4 t o 9. I n o r d e r t o d e f i n e t h e i n i t i a l p u l s e b e t t e r , m a g n i f i e d p l o t s were produced w i t h t h e a i d of t h e d i g i t a l d i s p l a y of a F a s t F o u r i e r Transform (FFT) a n a l y z e r . With a t a p e speed-up of f o u r

t i m e s and a n a n a l y z e r f r e q u e n c y r a n g e of 1600 Hz, t h i s r e s u l t e d i n a n e f f e c t i v e low-pass f i l t e r of 6400 Hz. The r e s u l t i n g t i m e h i s t o r i e s f o r s e l e c t e d e v e n t s a r e shown i n F i g s . 10 t o 14. Peak p o s i t i v e and n e g a t i v e a m p l i t u d e s were d e t e r m i n e d from t h e c u r s o r of t h e FFT a n a l y z e r d i s p l a y a n d a r e t a b u l a t e d i n T a b l e s 1 (A and B ) . The f o r m e r p r e s e n t s t h e r e s u l t s i n ST. u n i t s , t h e l a t t e r i n i m p e r i a l u n i t s .

I V . RESULTS

1. P o s i t i v e and N e g a t i v e Wave F r o n t : The t i m e v a r i a t i o n s of t h e b l a s t s i g n a l s a t t h e dam ( F i g s . 4 t o 14) show a n i n i t i a l p o s i t i v e p u l s e f o l l o w e d v e r y s h o r t l y t h e r e a f t e r by a n e g a t i v e p u l s e u s u a l l y of s i m i l a r s h a p e and magnitude. T h i s n e g a t i v e p u l s e r e s u l t s from a

r e f l e c t i o n of t h e o r i g i n a l p u l s e o f f t h e f r e e w a t e r s u r f a c e a s d e p i c t e d i n F i g . 15. The c o n s t r u c t i o n of t h i s r e f l e c t i o n i s a i d e d by t h e

d e f i n i t i o n of a v i r t u a l image of t h e s o u r c e p o i n t a s shown i n F i g . 15; a s t r a i g h t l i n e between t h e image p o i n t and t h e p o i n t of r e c e p t i o n d e f i n e s

t h e p o i n t of r e f l e c t i o n . The d i f f e r e n c e i n t r a v e l t i m e between t h e d i r e c t and r e f l e c t e d p a t h a c c o u n t s f o r t h e time d e l a y between t h e p o s i t i v e and n e g a t i v e p u l s e .

T a b l e 3 shows a comparison between t h e measured and c a l c u l a t e d d e l a y s f o r t h e two p u l s e s . The c a l c u l a t i o n employed d i s t a n c e s measured from s i t e p l a n s and a r e t h e r e f o r e somewhat a p p r o x i m a t e . E l e m e n t a r y geometry was used t o d e t e r m i n e t r a v e l p a t h d i f f e r e n c e s . A c o u s t i c wave v e l o c i t y i n w a t e r was t a k e n t o be 1435 m / s (4708 f t / s ) a t 9°C. The measured t i m e d i f f e r e n c e s a r e t h e times between t h e p o s i t i v e and t h e n e g a t i v e peaks a s i n d i c a t e d i n F i g s . 10 t o 14. For Event 12, t h e suspended c h a r g e , t h e t h e o r e t i c a l time d i f f e r e n c e i s n o t c a l c u l a t e d s i n c e t h e l o c a t i o n of t h e d e t o n a t i o n i s n o t a c c u r a t e l y known. T a b l e 3

shows t h a t t h e c a l c u l a t e d and measured d i f f e r e n c e s i n t r a v e l t i m e s a g r e e r e a s o n a b l y w e l l f o r E v e n t s 4 t o 8 , conf i r m i n g t h e r e f l e c t i o n model

d e s c r i b e d above. The agreement i s somewhat l e s s s a t i s f a c t o r y f o r E v e n t s 11 and 15.

2. Amplitudes of P o s i t i v e and N e g a t i v e Peaks: T a b l e 1 shows t h a t f o r E v e n t s 4 t o 7 ( L o c a t i o n s 1 and 2) r e a s o n a b l y c l o s e agreement e x i s t s i n a m p l i t u d e s of p o s i t i v e and n e g a t i v e p e a k s f o r a l l f o u r hydrophone l o c a t i o n s . A s n o s u b s t a n t i a l d i f f e r e n c e s a r e e v i d e n t among t h e s e f o u r e v e n t s , t h e i r peak p r e s s u r e v a l u e s have b e e n a v e r a g e d , d e s i g n a t e d a s "Average of 4 , 5 , 6 , 7" i n T a b l e 1. T h e s e r e s u l t s show t h a t t h e n e g a t i v e peaks a r e of s i m i l a r a m p l i t u d e t o t h e p o s i t i v e o n e s ; t h i s would b e e x p e c t e d from t h e r e f l e c t i o n model d e s c r i b e d above.

3. Comparison Between Charges A g a i n s t Rock and Suspended Charge: For p u l s e s h a p e s i n F i g s . 10 and 13 and a m p l i t u d e s of p o s i t i v e and n e g a t i v e p u l s e i n T a b l e 1, a c l o s e c o r r e s p o n d e n c e i s s e e n between c h a r g e s a g a i n s t t h e r o c k , E v e n t s 4 t o 7 , and t h e suspended one,

(6)

d i f f e r e n t d i s t a n c e s a r e i n v o l v e d , b u t i n e s s e n c e t h e y a r e comparable i n c h a r a c t e r .

For c h a r g e s d e t o n a t e d a g a i n s t t h e s h o r e , t h e p r e s s u r e s emanating from t h e c h a r g e a r e i n c r e a s e d d u e t o r e f l e c t i o n s from t h e rock. For a p e r f e c t r e f l e c t o r , d o u b l i n g of t h e p r e s s u r e would o c c u r a s compared t o a f r e e l y suspended charge. However, changes i n impedance from w a t e r w i t h rock change t h i s somewhat. For a n o r m 1 a n g l e of

i n c i d e n c e , t h e r a t i o of r e f l e c t e d t o t h e i n c i d e n t a m p l i t u d e s , &/A1 i s g i v e n by Kolsky (1963) : where: p = d e n s i t y ; c = bulk v e l o c i t y ; w = s u b s c r i p t f o r w a t e r ; r = s u b s c r i p t f o r rock.

The t r a n s m i t t e d wave r a t i o A ~ / A I i s g i v e n by:

3 3

For p r a 3000 kg/m

,

c r = 4000 m / s , pw = 1000 kg/m

,

= 1435 m / s , t h e

r e f l e c t e d wave r a t i o A2/A1= 0.80. I t i s p o s s i b l e t h a t n o n l i n e a r b e h a v i o u r of t h e rock immediately a d j a c e n t t o t h e d e t o n a t i o n would r e s u l t i n a f u r t h e r r e d u c t i o n of t h i s r e f l e c t i o n c o e f f i c i e n t . A d d i t i o n a l r e f l e c t i o n s from more d i s t a n t c o n t o u r f e a t u r e s of t h e r e s e r v o i r and i t s s h o r e l i n e c a n a l s o b e e x p e c t e d , b u t t h e s e w i l l n o t a f f e c t t h e wave f r o n t s i n c e t h e t r a v e l t i m e t o t h e dam i s l o n g e r . Some i d e n t i f i a b l e a r r i v a l s of r e f l e c t e d p u l s e s h a v i n g a c o n s t a n t t i m e d e l a y a t e a c h of t h e f o u r hydrophone s t a t i o n s f o r E v e n t s 4 , 12 and 1 5 a r e shown i n F i g s . 4 , 8 and 9 , r e s p e c t i v e l y , where some a r e i n d i c a t e d by arrows b e s i d e t h e t r a c e s . The peak a m p l i t u d e s of t h e s e p u l s e s is from 0.5 t o 0.2 t i m e s t h e i n i t i a l peak p r e s s u r e s ; u n f o r t u n a t e l y , i t was n o t p o s s i b l e t o t r a c e t h e t r a v e l p a t h s of t h e s e s e c o n d a r y p u l s e s . An e x a m i n a t i o n of t h e t i m e h i s t o r y of p r e s s u r e s , F i g s . 4 t o 9 , shows t h a t t h e i n i t i a l p o s i t i v e and n e g a t i v e i m p u l s e i s f o l l o w e d by a lower l e v e l d i s t u r b a n c e of random c h a r a c t e r , n o t u n l i k e t h a t of a n e a r t h q u a k e , l a s t i n g from 100 t o 150 m s . F o r t h e p a r t i a l l y s h i e l d e d c h a r g e s , E v e n t s 8 and 11, low f r e q u e n c y components of 20 Hz and l e s s can be d i s c e r n e d i n F i g s .

6

and 7 e s p e c i a l l y f o r Hydrophone A l . These low f r e q u e n c y components a r e , however, of small magnitude, l e s s t h a n 7 kPa ( 1 p s i ) peak t o peak. 4. S h i e l d i n g E f f e c t of T e r r a i n : S h i e l d i n g r e f e r s t o a r e d u c t i o n of p r e s s u r e s when a n o b s t r u c t i o n i s n e a r t o o r d i r e c t l y i n t e r s e c t s t h e s t r a i g h t l i n e j o i n i n g t h e s o u r c e and p o i n t o f o b s e r v a t i o n . Because t h e p r e c i s e d e t a i l s of t h e r o c k c o n t o u r s n e x t t o t h e b l a s t l o c a t i o n a r e not known, a q u a n t i t a t i v e p r e d i c t i o n of t h e

(7)

s h i e l d i n g e f f e c t i s n o t f e a s i b l e . However, q u a l i t a t i v e l y , t h e

phenomenon i s w e l l i l l u s t r a t e d by t h e r e s u l t s o b t a i n e d . A s e x p e c t e d , t h e peak p r e s s u r e s i n T a b l e 1 f o r E v e n t s 4 t o 7 a t L o c a t i o n s 1 and 2 ( s e e F i g . 3) show no e f f e c t of s h i e l d i n g . Event 8 a t L o c a t i o n 3 r e p r e s e n t s a p p r o x i m a t e l y a t a n g e n t i a l l i n e of s i g h t from t h e r o c k t o p o r t i o n s of t h e dam and c l e a r l y d i s p l a y s a d e c r e a s e i n peak p r e s s u r e of t h e c l o s e s t hydrophone, A l , from a b o u t 15 p s i ( 1 0 3 kPa) t o 1.8 p s i (12 k P a ) , and a lesser d e c r e a s e f o r t h e r e m a i n i n g t h r e e hydrophones. T h i s i s i l l u s t r a t e d by t h e f i g u r e s i n T a b l e 1 and t h e p l o t i n Fig. 16. The n a t u r e of t h e p r e s s u r e wave a l s o changes. The i n i t i a l peak p o s i t i v e and n e g a t i v e p r e s s u r e s a r e n o t t h e l a r g e s t anymore, b u t s u b s e q u e n t

p u l s e s exceed t h e f i r s t o n e s . T h i s i s a l s o t h e c a s e i n Event 11

a l t h o u g h , b e c a u s e of c h a n g i n g l o c a t i o n s , o t h e r v a r i a b l e s a r e i n t r o d u c e d which may a f f e c t t h e time h i s t o r y of t h e p r e s s u r e s . F i n a l l y , f o r

E v e n t s 9 and 10, which a r e l o c a t e d away from t h e d i r e c t l i n e of s i g h t of t h e hydrophones, t h e s h i e l d i n g i s a l m o s t t o t a l and less t h a n 1% of t h e p r e v i o u s d i r e c t p r e s s u r e s i s r e c o r d e d .

The s h i e l d i n g e f f e c t is i l l u s t r a t e d i n F i g . 16 which shows peak p r e s s u r e s a t t h e f o u r hydrophone l o c a t i o n s f o r t h e v a r i o u s e v e n t s . For Event 8 t h e l a r g e s t d e c r e a s e i n p r e s s u r e a s compared w i t h t h e a v e r a g e of E v e n t s 4 t o 7 i s s e e n t o o c c u r a t Hydrophone A1 n e a r e s t t h e b l a s t . The d e c r e a s e s become p r o g r e s s i v e l y l e s s f o r t h e o t h e r hydrophones i n t h e e a s t e r l y d i r e c t i o n of t h e dam. T h i s d e m o n s t r a t e s t h a t a t t h e l o c a t i o n s t e s t e d , s h i e l d i n g d o e s n o t produce a s h a r p d e m a r c a t i o n between d i r e c t b l a s t e f f e c t s and t h e s h i e l d e d r e g i o n s , b u t r e s u l t s i n a g r a d u a l r e d u c t i o n i n p r e s s u r e o v e r a wide t a r g e t a r e a . The peak p r e s s u r e s f o r Event 11 a t L o c a t i o n 6 a r e s e e n t o b e e v e n lower t h a n t h o s e coming from t h e s h a l l o w e r L o c a t i o n 3 , most p r o b a b l y b e c a u s e of g r e a t e r t o p o g r a p h i c a l s h i e l d i n g r a t h e r t h a n a s a d i r e c t r e s u l t of t h e d e e p e r w a t e r d e p t h . T h e o r e t i c a l p r e d i c t i o n of t h e e f f e c t of s h i e l d i n g f o r p r e s s u r e wave p r o p a g a t i o n i n w a t e r f o l l o w s t h e same p r i n c i p l e s a s t h o s e u s e d i n p r o p a g a t i o n of sound i n a i r . The q u a n t i t a t i v e e s t i m a t i o n of s h i e l d i n g d u e t o a b a r r i e r c a n be a c h i e v e d by means of t h e d i a g r a m i n Fig. 17 ( t a k e n from Delany, 1972). I t s h o u l d be n o t e d t h a t t h e h i g h e r f r e q u e n c y components a r e s u b j e c t t o g r e a t e r d i f f r a c t i o n l o s s e s a s governed by t h e p a r a m e t e r 2d/X, and t h a t f o r a g r a z i n g b a r r i e r a n g l e , i.e., 2d/X = 0 , t h e s i g n a l r e d u c t i o n amounts t o 5 dB, o r 0.56 t i m e s what t h e p r e s s u r e would have been w i t h o u t t h e b a r r i e r .

5. T h e o r e t i c a l C a l c u l a t i o n s of B l a s t P r e s s u r e : F o l l o w i n g t h e e m p i r i c a l r e l a t i o n s h i p p r e s e n t e d by Henrych (1979) and n e g l e c t i n g h i g h e r o r d e r t e r m s , t h e peak o v e r p r e s s u r e Ap of a suspended c h a r g e is:

where: R = R / w ' / ~ ( ~ n - k ~ l / ~ ) ; R = r a d i a l d i s t a n c e (m);

w

= t r i n i t r o t o l u e n e (TNT) e q u i v a l e n t c h a r g e mass ( k g ) ; kp = k i l o g r a m f o r c e .

(8)

C o l e (1948) p r e s e n t s a s l i g h t l y d i f f e r e n t r e l a t i o n s h i p :

where: W = w e i g h t , l b of TNT; R = d i s t a n c e , f t .

These r e l a t i o n s h i p s f o l l o w c l o s e l y t h e g r a p h s p r e s e n t e d by Langefors and K i h l s t r ' k (1963) which i n t u r n a r e a c o l l e c t i o n of d a t a m o s t l y by

Enhamre (1954). Applying t h e d i s t a n c e s from t h e s o u r c e t o t h e hydrophones g i v e n i n T a b l e 3 , and a c h a r g e mass of 2 kg, t h e peak

p r e s s u r e s a s c a l c u l a t e d by b o t h r e l a t i o n s h i p s a r e t a b u l a t e d i n Table

4.

Note t h a t i n a l l c a s e s t h e l i m i t of

R

<

50 i n Eq. ( 3 ) i s exceeded. No range l i m i t a t i o n s a r e g i v e n w i t h Eq. ( 4 ) . To a c c o u n t f o r t h e r e f l e c t i o n a t t h e dam s u r f a c e , Eqs. ( 1 ) and ( 2 ) can a l s o be u t i l i z e d . Taking f o r c o n c r e t e p, = 2500 kg/m3, and cc = 3000 m / s , t h e r e f l e c t i o n r a t i o of A2/A1 = 0.67 i . e . , 67% of t h e incoming wave i s r e f l e c t e d back, w h i l e

from Eq. ( 2 ) , 1

-

0.67 = 0.33, o r 33% i s t r a n s m i t t e d i n t o t h e c o n c r e t e of t h e dam.

The c a l c u l a t e d and e x p e r i m e n t a l peak p r e s s u r e s i n T a b l e

4

s h o u l d n o t be compared d i r e c t l y , s i n c e t h e former a r e free-f i e l d

p r e s s u r e s ' and need t o be a d j u s t e d f o r r e f l e c t i o n phenomena. T h i s w i l l b e d e a l t w i t h l a t e r .

DISCUSSION

1. P o s i t i v e and N e g a t i v e P u l s e s a t Wave F r o n t : The

r e f l e c t i o n model shown i n Fig. 15 e x p l a i n s t h e p r e s e n c e of t h e n e g a t i v e p u l s e i n t h e wave f r o n t and t h e t i m e d e l a y s measured. It c a n be

e x p e c t e d t h e n t h a t t h e p r e s s u r e f l u c t u a t i o n s behind t h e wave f r o n t a r e t h e r e s u l t of v a r i o u s r e f l e c t i o n s , b o t h from t h e w a t e r s u r f a c e and t h e r e s e r v o i r bottom. I n g e n e r a l t h e n , b o t h a p o s i t i v e and a n e g a t i v e p u l s e of e q u a l magnitude can be e x p e c t e d whenever t h e d i f f e r e n c e i n t r a v e l time between t h e d i r e c t p a t h and t h e s u r f a c e - r e f l e c t e d p a t h i s l o n g e r t h a n t h e p u l s e d u r a t i o n . T h i s r e p r e s e n t s a c o n d i t i o n d i f f e r e n t t o t h a t p r e s e n t e d i n L a n g e f o r s and Kihlstr-&n (1963) which d e s c r i b e s measurements a t c l o s e r a n g e , f o r which c a s e o n l y a p o s i t i v e wave f r o n t i s

o b t a i n e d .

2. E f f e c t of D i s t a n c e of Hydrophone from D a m S u r f a c e : The incoming p r e s s u r e waves a r e r e f l e c t e d a t t h e dam s u r f a c e . I f t h e hydrophone i s mounted a t some d i s t a n c e from t h i s s u r f a c e , a complex i n t e r a c t i o n of incoming and r e f l e c t e d waves w i l l be monitored. S i n c e p r a c t i c a l c o n s i d e r a t i o n s p r e c l u d e l o c a t i n g t h e s e n s i n g element of t h e hydrophone f l u s h w i t h t h e s u r f a c e , t h e p o t e n t i a l e r r o r i n t r o d u c e d by l o c a t i n g t h e hydrophone away from t h e s u r f a c e needs t o be c o n s i d e r e d .

The t r a v e l time f o r t w i c e t h e 7.6 c m ( 3 i n . ) d i s t a n c e from t h e dam s u r f a c e t o t h e hydrophone i s 0.10 ms. For a s h a r p l y r i s i n g

i n c i d e n t p u l s e , a r e f l e c t e d p u l s e of t h e same shape b u t 0.67 times i n a m p l i t u d e would t h e n a p p e a r a t 0.10 ms l a t e r , superimposed on t h e

(9)

i n c i d e n t one. T h i s would g i v e r i s e t o a s e c o n d a r y peak and a

l e n g t h e n i n g of t h e r e c o r d e d p u l s e by 0.10 m s as compared w i t h t h e p u l s e t h a t a c t u a l l y e x i s t s a t t h e s u r f a c e o f t h e dam. I f t h e i n c i d e n t wave h a s a v e r y s h a r p peak and w i t h i n 0.1 m s d r o p s t o 0.33 o r less of i t s peak a m p l i t u d e A1, t h e n t h e r e f l e c t e d p u l s e of . a m p l i t u d e 0.67 A1 w i l l n o t be r e g i s t e r e d by t h e h y d r o p h o n e s as b e i n g l a r g e r t h a n t h e peak i n c i d e n t wave. The measured peak a m p l i t u d e s would t h e n a c t u a l l y

r e p r e s e n t t h e f r e e - f i e l d p r e s s u r e s and n o t t h e r e f l e c t e d p r e s s u r e a t t h e dam s u r f a c e .

Every e f f o r t s h o u l d t h e r e f o r e be made t o r e d u c e t h e d i s t a n c e f r o m hydrophone t o t h e dam s u r f a c e and t o i n c r e a s e t h e f r e q u e n c y c o n t e n t of t h e r e c o r d i n g p r o c e s s i n f u t u r e tests.

3. Agreement Between C a l c u l a t e d and Measured P r e s s u r e s : The f r e e - f i e l d and t h e measured p r e s s u r e s n e e d t o b e a d j u s t e d b e f o r e a q u a n t i t a t i v e c o m p a r i s o n c a n be made. U n f o r t u n a t e l y , b e c a u s e of t h e f o l l o w i n g u n c e r t a i n t i e s , t h i s c a n o n l y b e d o n e i n a v e r y a p p r o x i m a t e manner.

a ) The measured p r e s s u r e s are p r o b a b l y t o o low d u e t o t h e 5000 Hz f r e q u e n c y l i m i t a t i o n o f t h e r e c o r d i n g p r o c e s s .

b) A s w a s p o i n t e d o u t a b o v e , t h e p o s i t i o n i n g of t h e hydrophones was s u c h t h a t p r e s s u r e s somewhere b e t w e e n t h e f r e e - f i e l d c o n d i t i o n and t h e r e f l e c t e d p r e s s u r e s a t t h e dam s u r f a c e were measured, a m o u n t i n g t o a maximum o f 1.67 t i m e s t h e i n c i d e n t wave

a m p l i t u d e .

c ) The c a l c u l a t e d p r e s s u r e s need t o be r a i s e d by a maximum of 8 0 % t o a c c o u n t f o r t h e r e f l e c t i o n a t t h e r o c k s u r f a c e .

The a d j u s t m e n t s b) and c ) r e s u l t i n a n u p p e r bound m u l t i p l i e r of (1.67) (1.80) = 3.0, t o b e a p p l i e d t o t h e c a l c u l a t e d r e s u l t s i n T a b l e 4.

T h i s t h e n p l a c e s t h e measured r e s u l t s w i t h i n 113 t o 112 o f a n u p p e r bound of t h e c a l c u l a t e d o n e s . The r a t i o o f measured t o c a l c u l a t e d v a l u e s i s a l s o s e e n t o i n c r e a s e w i t h d i s t a n c e ; however, no p l a u s i b l e e x p l a n a t i o n f o r t h i s t r e n d c o u l d b e found.

4. I m p l i c a t i o n s on D a m Response: , I n i t i a l c o m p a r i s o n s o f t h e a c c e l e r a t i o n r e s p o n s e o f E v e n t s 5 , 6 , 7 and E v e n t 11 show t h a t

comparable peak a c c e l e r a t i o n r e s p o n s e s are o b t a i n e d f o r g r e a t l y

d i f f e r e n t peak p r e s s u r e s . T h i s i n d i c a t e s t h a t t h e r e s p o n s e i s n o t w e l l c o r r e l a t e d w i t h t h e a m p l i t u d e of t h e p r e s s u r e wave f r o n t . By way of e x p l a n a t i o n , t h i s c a n b e r a t i o n a l i z e d by r e f e r e n c e t o a n o s c i l l a t o r s u b j e c t e d t o t h e p o s i t i v e and f o l l o w i n g n e g a t i v e p u l s e . F o r

o s c i l l a t o r s h a v i n g n a t u r a l p e r i o d s s u b s t a n t i a l l y g r e a t e r t h a n t h e t i m e

d e l a y between t h e p u l s e s , t h e r e s p o n s e from t h e p o s i t i v e i m p u l s e would b e s u b s t a n t i a l l y c a n c e l l e d o u t by t h e r e s p o n s e o f t h e s u c c e e d i n g

n e g a t i v e p u l s e . The p r e s s u r e f l u c t u a t i o n s b e h i n d t h e wave f r o n t t h u s become more i n f l u e n t i a l .

(10)

A d d i t i o n a l q u a n t i t a t i v e s t u d i e s on t h e dam r e s p o n s e w i l l be c a r r i e d o u t i n o r d e r t o a r r i v e a t more d e f i n i t i v e c o r r e l a t i o n s between t h e c h a r a c t e r i s t i c s of t h e b l a s t wave and t h e r e s p o n s e of t h e dam.

V I . PERFORMANCE OF INSTRUMENTATION

The hydrophones and a s s o c i a t e d c a b l e s and e l e c t r o n i c s performed w e l l u n d e r f i e l d c o n d i t i o n s . F u t u r e measurements, however, should c o n s i d e r t h e f o l l o w i n g changes o r improvements:

1) mounting t h e s e n s i n g element of t h e hydrophone c l o s e t o t h e dam s u r f a c e , from

7.6

cm (3.0 i n . ) t o p r e f e r a b l y 2 t o 3 cm ( a p p r o x i m a t e l y 1 i n . ) ; 2 ) i n c r e a s i n g t h e r e c o r d e r g a i n s f o r a s m a l l e x p e c t e d p r e s s u r e l e v e l s o a s t o improve t h e s i g n a l - t o - n o i s e r a t i o of t h e measurements. F u r t h e r a t t e m p t s s h o u l d a l s o be made t o r e d u c e t h e h i g h f r e q u e n c y n o i s e from t h e hydrophones t h a t c a n be s e e n i n Fig. 12 i n o r d e r t o improve t h e d e f i n i t i o n of low p r e s s u r e s i g n a l s ; 3 ) a n a u t o m a t i c t r i g g e r i n g d e v i c e s h o u l d be d e v i s e d t o produce a common t i m i n g p u l s e on a l l t a p e r e c o r d e r s t h a t a r e employed i n a common e x p e r i m e n t a l set-up. T h i s d e v i c e s h o u l d be a c t i v a t e d by t h e p l u n g e r of t h e b l a s t e r a t o r s l i g h t l y ahead of t h e t i m e of d e t o n a t i o n ;

4 ) one o r more a c c e l e r o m e t e r s i g n a l s d i r e c t l y o p p o s i t e a hydrophone s h o u l d be r e c o r d e d w i t h low p a s s f i l t e r s e t t i n g s s u b s t a n t i a l l y h i g h e r t h a n 50 Hz i n o r d e r t o d e t e c t any p o s s i b l e c o r r e l a t i o n between h i g h f r e q u e n c y a c c e l e r a t i o n s and t h e hydrophone

p r e s s u r e s .

5 ) The hydrophone s i g n a l s s h o u l d be r e c o r d e d a t a h i g h e r speed t o p r o v i d e a h i g h e r f r e q u e n c y r e s p o n s e , p r e f e r a b l y 10,000 Hz o r above.

V I I . CONCLUSIONS

These r e s u l t s p e r m i t t h e f o l l o w i n g c o n c l u s i o n s .

1) A wave f r o n t having a p o s i t i v e and n e g a t i v e p o r t i o n of

a p p r o x i m a t e l y e q u a l s h a p e and a m p l i t u d e h a s been measured. T h i s i s e x p l a i n e d by a w a t e r - s u r f a c e r e f l e c t i o n model. The d e l a y between t h e two p o r t i o n s of t h e p u l s e i s shown t o be a f u n c t i o n of t h e d i f f e r e n c e i n t r a v e l t i m e between t h e d i r e c t and t h e s u r f a c e - r e f l e c t e d p r o p a g a t i o n p a t h .

2 ) The s h i e l d i n g e f f e c t of t e r r a i n on t h e b l a s t wave i s w e l l

d e m o n s t r a t e d by t h e r e s u l t s , v a r y i n g from t h e d i r e c t b l a s t p r e s s u r e s t o a v i r t u a l a b s e n c e of o v e r - p r e s s u r e when t h e s o u r c e i s h i d d e n from t h e t a r g e t . The d e g r e e of s h i e l d i n g from d i r e c t

(11)

t o h i d d e n s o u r c e s i s g r a d u a l and i s n o t accompanied by sudden changes f n t h e p r e s s u r e d i s t r i b u t i o n on t h e t a r g e t .

3 ) The hydrophones and a s s o c i a t e d equipment performed w e l l d u r i n g t h e t e s t s . Some improvements i n n o i s e r e d u c t i o n , r e c o r d i n g t e c h n i q u e and placement of hydrophones a r e i n d i c a t e d f o r f u t u r e t e s t s , however.

4 ) P r e l i m i n a r y r e s u l t s show t h a t t h e maximum dam r e s p o n s e d o e s n o t depend d i r e c t l y o n t h e a m p l i t u d e of t h e b l a s t wave f r o n t , b u t i s

l i k e l y t o depend more on t h e random p r e s s u r e v a r i a t i o n s behind t h e f r o n t . T h i s w i l l b e f u r t h e r i n v e s t i g a t e d i n c o n n e c t i o n w i t h a d d i t i o n a l dam r e s p o n s e s t u d i e s .

5 ) The measured peak p r e s s u r e s a r e from 113 t o 1 / 2 of t h e u p p e r bound p r e s s u r e s a t t h e dam s u r f a c e a s p r e d i c t e d f r o m two

e m p i r i c a l r e l a t i o n s h i p s . The measured p r e s s u r e s i n c r e a s e w i t h d i s t a n c e r e l a t i v e t o t h e p r e d i c t e d ones. U n c e r t a i n t i e s i n

comparisons between measured and c a l c u l a t e d r e s u l t s i n c l u d e f r e q u e n c y r e s p o n s e l i m i t a t i o n s of t h e r e c o r d i n g s y s t e m ,

a s s e s s m e n t of t h e r e f l e c t i o n s o f f t h e r o c k and t h e dam s u r f a c e , and e x c e e d a n c e of t h e r a n g e of v a l i d i t y of t h e e m p i r i c a l

r e l a t i o n s h i p s .

ACKNOWLEDGEMENTS

The work d e s c r i b e d was c a r r i e d o u t i n c o l l a b o r a t i o n w i t h D r . P a u l Lecomte of Hydro Quebec. The c o o p e r a t i o n and a s s i s t a n c e of D r . Lecomte and of h i s co-workers i s g r e a t l y a p p r e c i a t e d . The Board of C o n s u l t a n t s f o r t h e A d d i t i o n a l Power p r o j e c t a t Manic 5 a r e D r . W. Chadwick of Los Angeles, C a l i f o r n i a , D r . R.W. Clough of B e r k e l e y , C a l i f o r n i a , D r . A.J. Hendron of Urbana, I l l i n o i s , and M r . B. Kihlstrijrn of Stockholm, Sweden. The a s s i s t a n c e of E. L u c t k a r and R. G l a z e r , t e c h n i c a l o f f i c e r s i n t h e D i v i s i o n of B u i l d i n g R e s e a r c h , i n p r e p a r i n g t h e i n s t r u m e n t a t i o n and i n c a r r y i n g o u t t h e measurements i s g r a t e f u l l y acknowledged. I X . REFERENCES 1 ) C o l e , R.H. (1948) Underwater E x p l o s i o n s , P r i n c e t o n U n i v e r s i t y P r e s s , P r i n c e t o n , N.J.

2 ) Delany,

M.E.

(1972) "A P r a c t i c a l Scheme f o r P r e d i c t i n g Noise L e v e l s (L10) A r i s i n g f r o m Road T r a f f i c , " NPL A c o u s t i c s R e p o r t AC 57,

N a t i o n a l P h y s i c a l L a b o r a t o r y , U n i t e d Kingdom.

3) Enhamre, E. (1954) " E f f e c t s of Underwater E x p l o s i o n on E l a s t i c S t r u c t u r e s i n Water," T r a n s . Royal I n s t i t . of Technology, B u l l . 42 of t h e I n s t i t u t i o n H y d r a u l i c s , Stockholm.

4 ) Henrych, J. (1979) The Dynamics of E x p l o s i o n s and i t s U s e ,

Developments i n C i v i l E n g i n e e r i n g , 1 ; E l s e v i e r S c i e n t i f i c P u b l i s h i n g Co., New York, N.Y.

(12)

NATIONAL RESEARCH COUNCIL CANADA DIVISION OF BUILDING RESEARCH

ERRATA

MEASUREMENT OF UNDERWATER BLAST WAVES ON DANIEL JOHNSON DAM

by

J.H.

R a i n e r

DBR I n t e r n a l Report 472, A p r i l 1982.

p.3: below middle of page, change "(20 i t ) " t o "(200 i t ) "

-p.5: Eq. (2) s h o u l d r e a d :

p.6: F o u r t h l i n e from bottom of page s h o u l d r e a d :

-

1 / 3 1 / 3

where: R = R/W (m-kg

)

;

p.7: l a s t p a r t of f i r s t p a r a g r a p h s h o u l d r e a d :

". . .

,

w h i l e from Eq. ( 2 ) , 1

+

0.67 = 1.67, o r 1.67 t i m e s t h e incoming wave i s t r a n s m i t t e d i n t o t h e c o n c r e t e of t h e dam."

(13)

5)

Kolsky,

H.

(1963) Stress Waves in Solids, Dover Publications,

New York, N.Y.,

213

p .

6) Langefors,

U.

and KihlstrGm, B.

(1963) The Modern Technique of Rock

Blasting, John Wiley

&

Sons, Inc.

,

New York, N.Y.

(14)

hl

.

0 4 CO rr) U h

.

9 rn \O

.

d U 0

.

h U h

= ;

rr) u

.

6 ln rr, rr) U hl

.

ln 4 rr) ln 4 h h l O 0 4 6. 4 0 I lnh n m m 3 u D n CO v PO

8

1 UJ t.l PC Q) b rl U Q

3

m Q) b 9 m Q) b 04 d cb d U d c H

4

a 04 n W l n r r ) l d l n h 0 3 l n h V

2

h h I u h l - 4 - 3 0 W l n b

??'?'?'?

?

".

0

.

r r ) U \ O h l W hl h hl m l n l n u r r ) 4 \O 9 a

?02"2"0.'4

?'?

h u o o w r n h l u 0 \ O \ O b h U 4 CO b

*

m h l - ~ u m

. . . * .

? ?

rr)

.

r r ) h l n U h OI Cl hl 9 h h h h l h h d m h l ? O r h l * f n

. .

CO42rr) Q)

.

.

h 4 O C O l n d c \ O O U bCOOICOrr) cd h CO b J= 0 U

"24"."?".,

,024

"0.

COuuCOo * m \ O r r ) h h 0 m r r ) d Q ) CO CO d d

"."2"."0.=?

m

. .

ln hl

.

\O \O h h C O \ D h l m 9 C O l n d m h h U*

2

9 h

. .

e4

".4

m o r r ) e \ O rr) y.) 0 o o l n h l *

*

2

rr) 4 d d d 4

4"0."0.".?

?=?

m h \ o u h l U h u O Q \ O O 4

*

OI 0 d d d * 4 C v h l h l h l h l h l h l d h l

. . .

hl l n m l n l n l n m m r r , l n

z

d d d d 4 d d C n 4 I

+

I

+

I + I

+

a U m a c c U . . O 0 h O b U

.;:

rr) P d (d Q) u a b o h 03 I h U 3 m w a

w

u rn h CO I h 3 V rr) C9 a h CO I h U 3 V a J hl rn h a? I h V 4 a

..

g

d U lu hl 4 d d h l r r ) + l n \ O h rC) 4 a -M l n O a u l n \ o h a o m O d h l d d d

2

'8

\o"

a~ M

5 %

a s

8 Q ) U w 0

w

h ln H 4 I u U d l n rl a d u 0 a 0 b d d a b d haJ (d

x

rn U c)

3

aJ a 0

s

a 0 b a

z

PO 0 PC

2

d n

'8

t.l 9 u c a 0 3 2 W V O . ln h

2

..

(d 04 A \

'e

a UJ

..

U

(15)
(16)

n n n n n n n n n

S S S S S S S S S

* e * * * * * e *

(17)

Table

3

Carparison of Measured and Calculated Differences

in

Arrival Tires

iktrrren Initial Positive

.ad

Begatire Pulses

1 2 3 4

Hyd rop hone

- - -- - - - - - - - -

D i s tance Calcu- Distance Calcu- Distance Calcu- Distance Ca 1 cu-

t o Gauge Measured l a t e d t o Gauge Measured lated t o Gauge Measured l a t e d t o Gauge Measured l a t e d

Event

m

~ 1 6 ms m

m s

m s m I~LS

ms

m

m

m6

(18)

Table 4

Measured and Calculated Peak P o s i t i v e P r e s s u r e s

Hydrophone S t a t i o n

1A a t

V4-5

2A

a t V6-7

3A

a t

V7-8

4A

a t

V9-10

Approximate D i s t a n c e From Charge t o Gauge,

m ( f

t )

315 (1033)

425 (1395)

525 (1722)

665 (2182)

Measured

Average of E v e n t s 4, 5, 6, 7

Peak P r e s s u r e :

kPa ( p s i )

104

(15.1)

77.2

(11.2)

84.7

(12.3)

71.7

(10.4)

- - - -- - pp --- - - -

C a l c u l a t e d

Eq. 3

-

Henrych (1979)

Peak

Ap, kPa ( p s i )

115

(16.7)

88.6

(12.9)

69.3

(10.1)

54.7

(7.9)

P r e s s u r e :

*

Eq.4

-

Cole (1948)

A P ,

kPa ( p s i )

102

(14.8)

73.0

(10.6)

57.3

(8.3)

43.9

(6.4)

*These p r e s s u r e s a r e f r e e - f i e l d p r e s s u r e s a s p r e d i c t e d by t h e e m p i r i c a l r e l a t i o n s h i p s and do n o t account

f o r t h e r e f l e c t e d waves a t t h e dam s u r f a c e o r

a t

t h e r o c k f a c e .

(19)

Fig. 1 Daniel Johnson Dam (Manic/

5)

on

Manicouagan River, Quebec.

(20)

CHARGE LOCATIONS 1

-

7 I T U R E T A K E A N N E L

--

-

D R A I N A G E A N D S E R V I C E G A L L E R I E S

\

b L O C A T I O N S O F H Y D R O P H O N E S R E S E R V O I R M A N I C O U A G A N 5 EL. 3 5 6 . 2 m f P L A N

-

E L E V A T I O N F I G U R E 3 L O C A T I O N O F C H A R G E S A N D H Y D R O P H O N E S T A T I O N S

(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)

IMAGE POINT OF SOURCE WATER SURFACE

REFLECTED PATHS BLAST

LOCAT l OP ? h l C C . . F I G U R E 1 5 S C H E M A T I C F O R P A T H S O F D I R E C T A N D R E F L E C T E D B L A S T F R O N T S CHARGE EVENT LOCAT l ON

-

CHARGE DEPTH SYMBOL

rn ft

- -

15.2 50 o 15.2 50 O---a 15.2 50 0- o 15.2 50 a- a 35.1 115 .-.-A A

...

15.2 50 A A

-

-

.0

...

-

A"-&.

.

.

..

..

..

-0,-

;*:-.-**

**<--: A ...a -&a. l

-

-

8-

-

0

N

o

.,.-.A A.,

,.,

.-.

.-.-.A

.-.-.

.-.&"-'-

8 a-.

-c i

$5

1

c 7

I

c 8 c 9

I

Clio

V4-5 V6-7 V7-8 V9-10 LOCATIONS ALONG D A M F I G U R E 1 6 M E A S U R E D P E A K I N I T I A L P R E S S U R E S A L O N G D A M

(33)

0.

I I

-

I SHADOW

-

0.

PATH DIFFERENCE d

=

a

+

b

-

c

A

=

WAVELENGTH

-

0.

-

0.

1. F I G U R E 1 7 S H I E L D I N G O F A P U R E - T O I V E P O I N T S O U R C E B Y A B A R R I E R ( D E L A N Y , 1 9 7 2 )

Figure

Fig.  2  Hydrophone mounting.

Références

Documents relatifs

This study examines the international climate policy process and overlapping national policy processes in the United States, Japan, and the Netherlands through the lens

Los gestores directos eran en su mayoría actores locales, empresas y la sociedad civil, mientras que los gestores indirectos eran a menudo organizaciones de alcance nacional y

A ce titre et compte tenu de l’importance de l’investissement dans le monde moderne, les pays développés et ceux en voie de développement tendent à promouvoir le volume

We first consider the information gathering problem, and plot peak and average age for all the proposed trajectories of the mobile agent: the Metropolis-Hastings randomized trajectory

These include: better integration among housing market sub-models, such as predictors of residential mobility becoming determinants of choice set formation; explicit modeling of

Dans bien des cas d'après les enquêtés, les produits de terroir se distinguent par leur qualité organoleptique : ainsi le litchi Thieu de Thanh Ha est réputé &#34;plus sucré, et

ficus‐ indica seeds, in this study cakes resulting from the pressing were macerated in ethanol and then a Supercritical Antisolvent Fractionation (SAF) technique was used for

( دﺎﺼﻴ يذﻝا ئرﺎﻘﻝﺎﻓ نّﻜﻤﺘﻴ ﻻ لﺎﺜﻤﻝا لﻴﺒﺴ ﻰﻠﻋ ﺔﺘوﺤﻨﻤﻝا تﺎﻤﻠﻜﻝا ﻩذﻫ ف ﺎّﻤﻤ ،ﺎﻬظﻔﻝ نﻤ ﺎﻫﺎﻨﻌﻤ كاردإ ﻪﻴﻠﻋ رّذﻌﺘﻴ ﻲﻝﺎﺘﻝﺎﺒو ،ﺎﻬﻨﻤ تذﺨُأ ﻲﺘﻝا ﺎﻬﻝوﺼأ ﺔﻓرﻌﻤ نﻤ