• Aucun résultat trouvé

Behavior of macrophage and osteoblast cell lines in contact with the β-TCP biomaterial (beta-tricalcium phosphate)

N/A
N/A
Protected

Academic year: 2022

Partager "Behavior of macrophage and osteoblast cell lines in contact with the β-TCP biomaterial (beta-tricalcium phosphate)"

Copied!
10
0
0

Texte intégral

(1)

Disponibleenlignesur

ScienceDirect

www.sciencedirect.com

ORIGINAL ARTICLE

Behavior of macrophage and osteoblast cell lines in contact with the-TCP biomaterial (beta-tricalcium phosphate)

Comportement de lignées cellulaires de macrophages et d’ostéoblastes en contact avec le biomatériau-TCP (phosphate bêta tricalcique)

B. Arbez , H. Libouban

GEROMGroupeétudesremodelageosseuxetbiomatériaux,IRIS-IBSinstitutdebiologieensanté, universitéd’Angers,CHUd’Angers,49933Angerscedex,France

Availableonline19September2017

KEYWORDS

␤-TCP;

Macrophages;

Osteoblasts;

Osteoconduction;

Resorption

Summary Beta-tricalcium phosphate (␤-TCP) is a synthetic ceramic used for filling bone defects.Itisagoodalternativetoautologousgraftssinceitisbiocompatible,resorbableand osteoconductive.Previousinvivostudieshaveshownthatmacrophagesareoneofthefirstcells comingincontactwiththebiomaterialfollowedbyosteoclastsandosteoblaststhatwillelab- oratenewbonepackets.Studieshavefocusedonosteoclastmorphologyandveryfewofthem haveinvestigatedtheroleofmacrophages.Theaimsofthisstudyweretocharacterize(i)the biomaterialsurface;(ii)theinvitrobehaviorofmacrophages(J774.2andRaw264.7cells)using thedescriptionofcellmorphologybyscanningelectronmicroscopy(SEM)at7and14days;(iii) thebehaviorofosteoblasts(SaOs-2andMC3T3-E1cells)seededatthesurfaceofthebiomate- rial24,48and72hoursbySEMandconfocalmicroscopy.CellproliferationwasanalyzedbyMTT assays.Viabilityandaffinityofthemacrophagesfor␤-TCPwerefoundsignificantlyincreased after7and14d.MC3T3-E1cellswereanchoredandstretchedontothe␤-TCPsurfaceasearlyas 24hwithahighproliferationrate(+190%)whencomparedtothesurfaceofawellplate.SaOs- 2exhibitedthesamemorphologicalprofileat72h.Proliferationbecamesignificantlyhigher comparedtotheplasticsurfaceatonly72h(+129%).Thisstudyemphasisestheimportanceof choiceofthecelllineusedinexploringtheosteoconductiveandosteoinductivepropertiesofa biomaterial.Additionalstudiesareneededtoanalyzedifferentiationofmacrophagesintogiant multinucleatedcellsandhowthebiomaterialsurfaceinfluencesosteoblastdifferentiation.

©2017ElsevierMassonSAS.Allrightsreserved.

Correspondingauthor.GEROMLHEAIRIS-IBS,CHUd’Angers49933,Cedex-FRANCE.

E-mailaddress:helene.libouban@univ-angers.fr(H.Libouban).

http://dx.doi.org/10.1016/j.morpho.2017.03.006 1286-0115/©2017ElsevierMassonSAS.Allrightsreserved.

(2)

Morphologyofmacrophagesandosteoblastson␤-TCP 155

MOTSCLÉS

␤-TCP;

Ostéoconduction; Résorption; Macrophages; Ostéoblastes

Résumé Lebêta-tricalciumphosphate(␤-TCP)estunecéramiquesynthétiqueutiliséepour le comblement de defects osseux. Étant biocompatible, résorbable et ostéoconducteur, il représenteunebonnealternativeauxgreffesautologues.Desprécédentesétudesinvivoont montré quelesmacrophages étaient l’undes premiers typescellulairesen contactavec le biomatériauavecdescellulesmésenchymateursetdescapillaires.Ilsontsuivisparlesostéo- clastespuislesostéoblastesapposentdelamatriceosseuse.Lesétudessesontcentréessur lacaractérisationdesostéoclastesetlamorphologiedesmacrophagesaététrèspeuétudiée.

Lesobjectifsdecetteétudeontété(i)decaractériserlasurfacedubiomatériau;(ii)lamor- phologie invitrodesmacrophages déposéssurla biomatériaux(lignéesJ774.2etRaw264.7) parmicroscopieélectroniqueàbalayage(MEB)à7et14jours;(iii)d’analyserlecomporte- ment cellulairede2lignéesostéoblastiques(SaOs-2etMC3T3-E1)enMEBetenmicroscopie confocaleà24,48et72haprèsensemencementLaproliférationaétéanalyséeparuntestau MTT.Lesrésultatsontmontréunebonnesurvieetunebonneaffinitédesmacrophagessurle

␤-TCPà7et14jours.LescellulesMC3T3-E1ontprésentéunaspectaplatiettrèsétiréàla surfacedu␤-TCPdès24havecuneproliférationplusélevée(+190%)parrapportcelleobtenue surunesurfaceplastique.LescellulesSaOs-2ontmontrélemêmeprofilmorphologiqueà72h.

La proliférationestdevenuesignificativement plusélevéeparrapportàlaproliférationsur unesurfaceplastiqueà72h(+129%).L’étudemetenévidencel’importanceduchoixdela lignéecellulairedansl’étudedespropriétésinductivesetostéconductivesd’unbiomatériau.

Desétudessupplémentairessontnécessairesafindemieuxappréhenderlesmécanismesimpli- quantladifférenciationdesmacrophagesencellulesgéantesmultinucléesainsiquel’influence dubiomatériausurladifférenciationostéoblastique.

©2017ElsevierMassonSAS.Tousdroitsr´eserv´es.

Introduction

Beta-tricalcium phosphate (␤-TCP) is a synthetic ceramic thatbelongstothecalciumorthophosphatefamily.Itschem- icalcomposition(␤-Ca3(PO4)2),closetothemineralphase of bone, allows it to be used as a bone substitute for filling defects in neurosurgery, maxillofacial, reconstruc- tive, orthopedics and spinal surgeries. TCP are known to be biocompatible since almost a century. In 1920, Albee andMorrison havereportedfor thefirsttimethe usecal- ciumorthophosphateasbonegraftintherabbitradius[1].

Noadversereaction,inflammationortoxicsymptomswere observed.OsteogenesiswasstimulatedbyTCPleadingtoa fasterbonehealing.Theauthorsconcludedthatthismate- rialwassuitableforclinicalapplicationsandcouldbeused in further studies on human subjects. Studies on ␤-TCP increased in the70s, showing thebioresorption ability of

␤-TCPwiththefirsthistologicobservationsin1971:biore- sorptionoccurredsimultaneouslywiththeappositionofnew bone packets after local recruitment of osteoblasts [2].

Reliable methods of ␤-TCP production were subsequently proposedthatleadtothecommercializationofthematerial inthe80s[3,4].␤-TCPis nowrecognizedasosteoconduc- tiveasitprovidesaresorbabletemplatefortheformation ofnewbone[5].Histologicalstudiesshowamarkedapposi- tionoflamellarbonedirectlyincontactwith␤-TCPwithina periodof6to24months[6,7].Inaratmodel,resorptionof

␤-TCPgranulesoccurs2weeksafterimplantationassociated withnewboneformationinside␤-TCPporesafter5weeks [2].In a rabbit model, newbone trabeculae invading the graftedbiomaterialswereevidencedasearlyas8daysby microcomputedtomography(microCT)[8].Boneformation occurring directly onto a biomaterialsurface necessitates differenttypesofcells:recruitmentofosteoprogenitorcells fromsurroundingmesenchymalcells,adhesionofosteogenic

cellsfollowedbysurvival,proliferationanddifferentiation [9].

However,thedegradationmechanismsof␤-TCPremain unclear. Degradation of calcium/phosphate biomaterials in the body is composed of two stages: cellular resorp- tion and the dissolution of the material [10,11]. Ca/P biomaterials can be eroded, phagocytized or degraded by pH modifications caused by osteoclasts which lead to thedemineralizationof thematerial. Besides osteoclasts, macrophages(ortheirderivedgiantcellsformedbyfusion) areinvolved atan earlystageofresorption[12,13].Some studies on␤-TCP granules grafted in oral surgery suggest thatresorption of the biomaterialmay happenby phago- cytosis with macrophages together with osteoclasts once newbone trabeculae are formed [6,14]. A double mech- anismofcellulardegradation of␤-TCP byosteoclasts and macrophagesismostprobable.

Surfacetopographyandporosity ofimplantsandgrafts canalsoinfluence bioresorption and thebehavior of cells coming in direct contact with the materials [10,15—17].

Interactions of osteoblasts and macrophages with ␤-TCP surfaceremainsunclear.Theaimofthestudywastochar- acterize: (i) the surface of plates made with ␤-TCP; (ii) themorphologyofmacrophagesseededontotheplatesby scanning electron microscopy (SEM); (iii) the behavior of osteoblast-likecellsseededontheseplatesbySEM,confocal microscopyandproliferationassay.

Material And methods

Characterizationandpreparationof-TCP

-TCPsamples

Platesof3D-printed ␤-TCP (Sinus-UpTM)were obtain from Kasios (Kasios, L’Union, France). Sinus-UpTM plates are

(3)

preparedbyrapid prototyping byusingelementary ␤-TCP powder in hydroxypropyl-methylcellulose with water as binder,platesarethensubsequently sinteredathigh tem- perature and the hydroxypropylmeythylcellulose is burnt offduringsintering.Sinus-UpTMarecommerciallyavailable andsold for sinus floor elevation.Sinus-UpTM have a cen- tralmacroporousarea(whichwasdiscardinthisstudy)and flatlateralsideswhichwerecutinplatesforexperimental purposes(0.8cmbyside).

ScanningElectronMicroscopy(SEM)

Surface morphology of the ␤-TCP plateswas analyzed by SEMonaJEOL6301F(JEOLParis,France).Allsampleswere coatedwith a20nmlayer of platinumby sputtering with a high vacuum coater (Leica EM ECA600, Leica, France).

Imageswerecapturedinthesecondaryelectronmodewith anaccelerationtensionof3kV.

Energy-DispersiveX-raySpectroscopy(EDS)

Anelementalanalysiswasperformedonthe␤-TCPplatesby energy-dispersiveX-rayspectroscopy(EDS)onaZeiss,EVO LS10SEM.Thesampleswerenotcarbonorgoldcoated.The workingpressurewas50Paandtheaccelerationtensionwas 5kV.

Ramanspectroscopy

The chemicalspectrum of the␤-TCP plateswasanalyzed byRamanspectroscopyonaSenterramicroscopewithOPUS 5.5software(Brukeroptic,Ettlingen).Theexcitationlaser wavelengthwas532nmwithanexcitationpowerof25mW and3—5cm1 resolution.The finalspectrumwasobtained byaveragingfivescansof20seceach.Aconcaverubberband baselinecorrectionwasapplied(11iterations,64points).

Cellculturereagentsandpreparation

All cell culture consumables were obtained from GIBCO (ThermofisherScientific,Illkirch,France).Fourculturecell lines were used: two monocyte/macrophage cell lines J774.2(European CollectionofAuthenticatedCell Culture ECACC #85011428, Salibury, UK) and Raw264.7 (American TypeCultureCollection ATCC#TIB-71,Molsheim, France), Human SaOs-2 osteoblast-like cells (ATCC #HTB-85) and pre-osteoblastcellline MC3T3-E1 subclone4 (ATCC #CRL- 2593).J774.2,Raw264.7andMC3T3-E1cellswerecultured in␣-MEM(Minimum EssentialMedium, alphaModification) andSaOs-2 cells wereculturedin DMEM(Dulbecco’s Mod- ified Eagle Medium). For all cultures, the medium was supplementedwith10%heat-inactivated fetalcalfserum, 100IU/ml penicillinand100␮g/mlstreptomycin. Medium wasreplacedevery2—3daysandtheculturesweremain- tained in humidified atmosphere of 5% CO2 at 37C. At 80%confluence,MC3T3-E1andSaOs-2cellsweredetached using trypsin-EDTA (trypsin/ethylenediamine tetraacetic acid)andJ774.1/Raw264.7cellswereharvestedbyscrap- ping.

Priortocellseeding,␤-TCPplatesweresterilizedin70%

ethanolduring 24hoursand dried for an hour. They were subsequentlyimmergedduringanightinthemedia(␣-MEM supplemented with 10% fetal calf serum) to remove any

traceofethanolandtoallowproteinsfromthemediumto adhereontothe␤-TCPsurface.

Macrophagecultureandseedingon-TCP

J774.2 and Raw264.7 cell lines were seeded onto ␤-TCP plates at a density of 3.104 cells/cm2 and cultured dur- ing7 and14days(two samples/time). ␤-TCP plateswere immerged in 1mL of medium in a 24-well plate and macrophages were seeded in a homogenous way in the mediumabovethesamples.Attimeofseeding,themedium wassupplementedwith25ng/mLMacrophageColonyStim- ulatingfactor(M-CSF,Biotechnebrand,R&Dsystems,Lille, France).PreparationofcellsforSEMobservationwasthen done(seebelow).

Osteoblastscultureandseedingon-TCP

MC3T3-E1andSaOs-22osteoblastcellswereseededonto␤- TCPplatesin24wellplatesatadensityof2104 cell/cm2 andculturedduring24,48and72h.The␤-TCPplateswere immerged in 1mL of culture medium and the cells were seeded in a homogenous way in the medium above the samples. Experiments for analysis of cell spreading, cell morphologyandproliferationweredoneinduplicateateach timepoint.

Cellspreadinganalyzedbyconfocalmicroscopy

Cellswerefixedin4% paraformaldehydefor20minutesat 4C.Theywererinsed3times5mininPBSandstainedwith 2␮g/mL 4,6-diamidino-2-phenylindole (DAPI, Sigma, Saint Quentin-Fallavier,France)for2minatroomtemperaturein thedark.Afterrinsing6timesinPBSfor 5mineach,cells werelabeledwith6.6␮MAlexaFluor488-conjugatedphal- loidin(ThermofisherScientificIllkirch,France)for45minat roomtemperature inthedarkandrinsedin PBS(6times, 5min each)anddistilledwater(6times5min).The␤-TCP plateswithlabeledcellsweremountedbetweenglassslides with30%glycerol.LabeledcellswereobservedonaLeica TCSSP8laser-scanningconfocalmicroscope(LeicaMicrosys- tems, Heidelberg, Germany) with a HXC PL APO 63XCS2 oil immersion objective(N.A. 1.40). Excitationand emis- sionwavelengthsweresetat405nmforDAPIlabellingand 488nmforphalloidinlabelling.

Some slides were counterstained with xylenol orange 0.5mg(Sigma)for10minindistilledwaterafterthedouble labellingphalloidin/DAPItolabelthe␤-TCPsurface, CellproliferationbyMTTassay

The numberof totaland viablecells onthe surfaceof ␤- TCP plates was measured with a colorimetric MTT assay and compared with that of cells cultured directly onto the well surface. MTT assay is based on the reduction oftheyellowtetrazoliumsaltMTT(3-(4,5-dimethythiazol- 2-yl)-2,5-diphenyl tetrazolium bromide, Sigma-Aldrich) by themitochondrialsuccinatedeshydrogenase.Ateachtime point,␤-TCPplatesweretransferredinanew24wellsplate;

cellswereincubatedwithMTTat0.5mg/mLfor2hoursina humidifiedatmosphereof5%CO2at37C.MTTwasreduced to purpleformazan crystals which were then dissolved in 500␮Lacidifiedisopropanolperwell.Eachsupernatantwas

(4)

Morphologyofmacrophagesandosteoblastson␤-TCP 157 transferred in 96 well plates for absorbance reading at

570nmwithaspectrophotometricplatereader(SpectraMax M2,MolecularDevices,Sunnyvale,CA)becauseabsorbance isproportionaltothenumberofviablecells.Numberofcells wasdeterminedusingastandardcurvewitharangeofeach celltypeconcentrationbetween0and10cells/cm2andthey werereportedtotheseeded surfacearea(wellsurfaceor

␤-TCPplatesurface).Priortocellculture,the␤-TCPplates wereimagedwitha numericradiographyequipment(Fax- itronX-RayLX-60,Edimex,France)andthesurfacearea(in cm2)wasmeasuredusingtheImageJsoftware1.45.

SEMofcellsseededon␤-TCPplates

Sampleswererinsedwithcacodylatebuffer(37C,pH7.4) andfixedduringonenightat4Cwithglutaraldehyde(2.5%

in cacodylate buffer 0.2M). Samples were subsequently postfixedwithosmium tetroxide(1%in distilledwaterfor 1hour). Theyweredehydratedwitha gradientof ethanol anddesiccatedwithhexamethyldisilazaneandexaminedas abovedescribed.

Statisticalanalysis

Statisticalanalysiswasperformedwiththestatisticalsoft- ware MedCalc version 8.2.10 (Ostend, Belgium). All data werereportedasmean±standarderrorofthemean(SEM).

Statistical significance between groups for MTT test was determinedby anon-parametricKruskal-Wallis analysisof varianceandcomparisonbetweengroupswasdeterminedby post-hoctest.Adifferencewasconsideredsignificantwhen P<0.05.

Results

-TCPcharacterization

SEM

Theraw surfaceof the␤-TCPsamplesappearsonFig.1A.

Althoughthesurfaceofthebiomaterialseemedratherflat macroscopically,theSEManalysisrevealedinfact arough surfacewithvalleysandhills.Athighermagnifications,the material surface showed a polycrystalline pavement with different polygonalcrystallites separated by grain bound- aries.Defectlineswerealsopresentonthesurfaceofthe material.Somecrystallitesshowedahexagonalpatternat thesurfaceof thepolygonalpavement(Fig.1B). Amicro- porosity was evidenced at the surface of the biomaterial betweenthesinteredgrains,itwasalsovisibleoffractured sections(datanotshown).

Ramanspectroscopy

TheRamanspectrumofthe␤-TCPplatesappearsonFig.2 forawavenumberrangingfrom50to1550cm1.Thelabeled peaks are characteristic of the internal vibration of the PO43 tetrahedricgroupsofthe␤-TCPmolecule.Thesym- metric stretching (␯1) of P O bonds of the tetrahedron correspondstothepeakswiththehighestintensityataround 950cm1and970cm1.Theasymmetricstretching(␯3)has a lower intensity and is located in the 1015—1090cm1

Figure1 (A)SEMimageofthesurfaceofa␤-TCPsintered platefromaSinusUpTMshowinggrainboundaries(whitearrows) anddefectlines(blackarrows).Notethepresenceofamicrop- orositybetweenthesinteredgrains.(B)SEMimageofthe␤-TCP surfaceshowingshearbandswithahexagonalpattern.

108910471016971949

612549

442407

200 400 600 800 1000 1200 1400

Wavenumber (cm-1)

PO43-

ν 2 PO43- ν 4

PO43-

ν 1

PO43-

ν 3

Raman intensity (arbitrary units)

Figure2 Ramanspectrumofthe␤-TCPplate.

range.Theother vibrationalmodes(␯2and␯4)correspond toO P Obendingdeformationsofthe tetrahedron.They arerespectivelylocatedat407and548cm1.

Monocyte/macrophagecellsmorphologybySEM After7and14days,RAW264.7andJ774.2cellshavesur- vivedon␤-TCPsurface.At7daysofculture(Fig.3A),the majority of Raw264.7 cells had a round shape. After 14 days,someRAWcellsappearedflattenedwhensomeothers hadmaintaineda roundshape(Fig.3B). These cells have

(5)

Figure3 RAW264.7cellsafter(A)7daysand(B)14daysofculture.At14days,somecellshadanelongatedshape(whitearrows) andsomeothershadaroundshape(blackarrows).HighermagnificationofaRAW264.7cellon␤-TCPafter(C)7daysand(D)14 daysofculture.

emittedlongfilopodiathatanchorthemontothe␤-TCPsur- face(Fig.3D).Thenumberoffilopodiaincreasedbetween7 days(Fig.3C)to14days;eveniftheycannotbecountedon sucharoughmaterial,thiscorrespondstoafirmeranchor capacityofthecellstothebiomaterial.

At 7 and 14 days, the osteoblastic J774 cells seeded onthe ␤-TCP had a round shape(Fig. 4). They appeared anchoredtothesurfacewithlessfilopodiathanRAW264.7 cellsinthesameconditions;cytoplasmicveil-likestructures wereobservedontheirsurface(Fig.4C-D).Nodifferencein morphologybetweenthetwotimesofculturewasobserved.

MorphologicalaspectofSaOs-2andMC3T3-E1cells on-TCP

SEM

SEManalysisofSaOs-2andMC3T3-E1cellsincontactwith␤- TCPat24,48and72happearsonFig.5.At24h,SaOs-2cells hadaroundshape;at48h,theyflattenedandstretchedon the␤-TCPpavement(Fig.5A).Cellsexhibitedpseudopodia allowingadirectanchoragetothebiomaterialsurface.At 72h,SaOs-2cellsappearedflatandmorestretchedthanat 48h.Cellsexhibitedlongcytoplasmicextensions(pseudopo- diawithsomefilopodia)thatallowedthemtobeanchored ontheroughsurfaceofthe␤-TCP(Fig.5B).At72h,SaOs-2 cellsshowedamorphologicaladaptationtothereliefmade ofvalleysandhills.

At 24h, MC3T3-E1 cells were flat and affixed onto the ␤-TCP surface (Fig. 5C). Cells were anchored by both filopodia andlargerpseudopodia. At 48h,cells had

proliferated andformed adenselayer. At72h,theywere flat,withanenlargedsurfaceandhadestablishednumerous contactbetween eachother; thus amonolayer ofMC3T3- E1 cellscovered almostall thesurfaceof thebiomaterial (Fig.5D).

Confocalmicrocopy

Fig. 6 shows confocal images obtained after a double labellingDAPI/phalloidinofSaOs-2andMC3T3cells.At24h aftercellsseeding,phalloidinlabellingshowedthatSaOs-2 cellswereattachedonthe␤-TCPsurfacebutappearedless spreadthanMC3T3-E1cells(Fig.6A-C).The actinnetwork appearedclearlymuchmoredevelopedinthecytoplasmof MC3T3-E1cellscomparedtoSaOs-2cells.Asearlyas24h, MC3T3-E1cellsappearedincontactandoverlapped;confo- calimagesevidenced cytoplasmicextensions thatinteract withneighboringcells(Fig.6C).At48h,theactincytoskele- ton of SaOs-2 cells remained poorly developed and these cells were not well spread. On the contrary, MC3T3-E1 cellsappearedwellspreadandcytoplasmicextensionswere observed.Confocalobservationatasmallermagnification, clearlyshowedadenselayerof MC3T3-cellsonthe␤-TCP surface(thatappearedinredafterxylenolorangecounter- staining)(Fig.7).

At 72h, SaOs-2 cells formed a dense layer on the ␤- TCPsurfaceandtheirmorphologicalaspectclearlyshowed improvement by exhibiting round shaped nuclei, a devel- oped actin network andcytoplasmic extensions (Fig.6B).

MC3T3-E1cellscoveredalmostthe␤-TCPsurfaceandthese

(6)

Morphologyofmacrophagesandosteoblastson␤-TCP 159

Figure4 J774cellson␤-TCPafter(A)7daysand(B)14daysofculture.HighermagnificationofJ774cellson␤-TCPsurfaceafter (C)7daysand(D)14daysofculture.

Figure5 SEMobservationsofSaOs-2cellsbehaviorincontactwith␤-TCPplatesat48h(A)and72h(B);MC3T3-E1cellsbehavior incontactwith␤-TCPplatesat24h(C)and72h(D).

(7)

Figure6 ConfocalmicroscopyobservationsofSaOs-2cellsadhesion(A-B)andMC3T3-E1cellsadhesion(C-D)on␤-TCPsurfaceat 24and72h.TheactinfilamentsarestainedingreenwithphalloidinandthenucleiarestainedinbluewithDAPI.

cellsappearedwellspreadwithlongcytoplasmicextensions (Fig.6D).

Proliferationofosteoblast-likecellson-TCP Proliferationkineticsof SaOs-2andMC3T3-E1cellsonthe

␤-TCP surface at 24, 48 and 72hours appears on Fig. 8.

The numberof SaOs-2 cells significantlyincreased at 48h (P<0.05 vs 24h) and at 72h (P<0.05 vs 48h). At 24 and 48h SaOs-2 proliferationwasnot significantly higherthan ontheplasticsurface.At72hproliferationofSaOs-2cells onthebiomaterialhadincreasedby129%comparedtocon- trolconditionsontheplasticsurface(P<0.05).Thenumber ofMC3T3-E1cellson␤-TCPincreasedfrom24to72hbutit becamestatisticallysignificantonlyat72hvs48h(P<0.05).

Proliferationonthe␤-TCP surfacewassignificantlyhigher when compared to controls on the plastic surface at each timepoint at 24, 48 and 72h (resp. +190%, +177%, +181%).

Discussion

Thesurfaceofthe␤-TCPplatesobservedbySEMpresented threemain characteristics: micropores, apolygonalpave- ment ofpolycrystalline tessels limitedby grainjoints and defectlines.ThedefectlinesobservedonourSEMimages, represent shear bands, a characteristicsurface defect on ceramics.Duringsinteringathightemperature,themotion of atoms allows the material to form crystallites. When forming,thesecrystallitesaresubmittedtohighshearstress thatleadstotheformationofstructuraldefectscalleddis- locations; they are 2D linear plastic deformations of the crystal. Under the shear stress, they have the ability to moveoverthecrystalliteleadingtotheformationofdefect lines, alsocalled shear bands.Some shear bandsshowan hexagonal pattern characteristic from the hexagonal lat- ticeofthe␤-TCP structure[18].Thesespecificitiesofthe surface topographyis of the upmost importanceand may influence adhesion of macrophages andexpression of dif- ferentcytokines[19].Ithasbeenshownthatthechemical

(8)

Morphologyofmacrophagesandosteoblastson␤-TCP 161

Figure7 ConfocalmicrocopyobservationofMC3T3-E1cells cultures 48h on ␤-TCP surface stained in red with xylenol orange.Theactinfilamentsarestainedingreenwithphalloidin andthenucleiarestainedinbluewithDAPI.

24 48 72

0 10000 20000 30000 40000

Number of cells

24 48 72 hours

SaOS-2 MC3T3-E1

a a a

* *

#

Figure8 ProliferationofSaOs-2andMC3T3-E1cellcultured directlyon24wellplatesϒandon␤-TCPplates ,expressed innumberofcellspercm2at24,48and72hours.aP<0.05vs plasticsurface;*P<0.05vs24hon␤-TCPsurface;#P<0.05vs 48hon␤-TCPsurface.

androughnesssurfaceof␤-TCPfavoredtheadhesionprocess osteoblastcellsinvitro[20].

The present study focused on cells morphology which havedevelopedinvitroon␤-TCP.Severalstudieshavebeen done usingmacrophages culturedon ␤-TCP [10,16,17]. In most ofthem, macrophageswere culturedin presenceof receptoractivatorofnuclearfactorkappa-Bligand(RANK-L) toformosteoclast-likecellsbutnoneofthemhavefocused onthemacrophagemorphology.Inapreviousstudy,wehave foundbyatime-lapsinvitrostudythatmacrophageswere abletoresorb␤-TCPgranulesandthatosteoblast-likecells couldclimbatthesurfaceofthebiomaterial[21].

The two mouse monocyte/macrophage cell lines used in this study were cultured with M-CSF. This cytokine is known to regulate and control the survival, proliferation anddifferentiationofphagocyticmacrophagesfromundif- ferentiatedprecursors[22,23].AddingM-CSFinthecultures allowscellstodifferentiateintofullymaturemacrophages.

RAW264.7andJ774cellssurvivedbetween7and14days.

Theyhadcytoplasmic veil-likeexpansions ontheirsurface characteristicofhealthymacrophages.Thecellspresented pseudopodiaandnumerousfilopodiathatanchoredthemat thesurfaceofthe␤-TCP.Previousworkonrabbitbonebiop- siesshowedthatcellularresorptionof␤-TCPoccurredintwo steps[24].GiantnucleatedTRAcP-negativecellsfirstcolo- nizedthesurfaceofthebiomaterialfrom7to14days.These cellscontainedagreatamountofmineralcrystalsfromthe calcium-phosphatematerial inside theirvacuoles suggest- ingdegradation by phagocytosis. As new bone is formed, multinucleated TRAcPpositive cells witha ruffled border (characteristicofosteoclasts)areevidencedonthesurface ofCa/Pceramics[24].Thenumberofosteoclastsincreases upontime.So,adoublepopulation ofmultinucleatedcell isresponsibleforthecellularresorptionofceramics:giant TRAcP-negativecellsthaterodethebiomaterialandosteo- claststhat resorbthe biomaterialand remodelthe newly formedbone[24,25].

Besidesosteoclasts,macrophagescouldalsobeinvolved at an early stage of biomaterial resorption. In a series of 14 patients that had sinus lift augmentation in oral surgerywith␤-TCPgranules,TRAcP-positivemultinucleated cellswereobservedincontactwithgranules[6].However, slightlyTRAcP-positivecells (characteristicofmacrophage activation) were also observed with ␤-TCP grains inside their cytoplasm after phagocytosis. Similar findings were also reported by others [8,14,26,27]. This suggests that resorption happens by phagocytosis due to macrophages togetherwithosteoclasts.Theearlyvascularizationaround thegrafted␤-TCPparticlesallowsinsitumigrationofpre- cursorcells,macrophagesandosteoprogenitors[28].Inour study,nogiantmultinucleatedcellswereobservedmeaning thatmacrophagesdidnot fuseintogiant cells in vitro.In thefuture,itcouldbeinterestingtoanalyzetheexpression ofTRAcPbymacrophagesinpresenceof␤-TCPandhowit variesovertime.

Itisadmittedthattheresorptionincaseofabiodegrad- ablematerialoccurssimultaneouslywithappositionofnew bonepackets afterrecruitmentsofosteoblasts. Numerous studies have focused onthe osteoconductive characteris- tics of a biomaterial in culture using an osteoblast cell line and/or bone marrow stroma cells (BMSC)[20,29,30].

The choice of a cell type in an in vitro study is of the upmostimportance.BMSCsareinterestingbecausetheycan differentiate intoosteoblasts. Indeed,such an osteogenic differentiationincontactwithabiomaterialcanreflectits osteoinductivepotential[30].Inthepresent study,SaOs-2 are mature osteoblast derived from a human osteosar- comaastheyexpressalkalinephosphatase[31].Incontrast, MC3T3-E1cellsarepre-osteoblastsastheydonotexpress- ing alkaline phosphatase in the absence of ascorbic acid and␤-glycerophosphate[31].MC3T3-E1havebeen shown tobe the most appropriate model in biomaterial studies [31]. CultureofMC3T3-E1oncalciumphosphate ceramics inducesalkalinephosphatasegeneexpressionafter14days

(9)

ofculturewithoutanymediumsupplementation[30].Inour studyMC3T3-E1cellsadheredandspreadoutonthe␤-TCP surfacemorerapidlythanSaOs-2cells.At72h,thetwocell linesoccupiedmostofthesurfaceandexhibitedadeveloped cytoskeleton with a marked actin network [32]. Interac- tionbetweencellsandthebiomaterialsurfaceiscrucialto induceproliferation,followedbydifferentiation.Ourresults showedaninfluenceofthe␤-TCPsurfaceoncellprolifera- tionasearlyas24hwhichcouldbecorrelatedwitharapid adhesionprocessat24h. Interactionwithanextracellular matrix or a biomaterial involves is mediated by integrins thatinteractedwiththematrix. Anotherstudy hasshown thatspreadingofSaOs-2osteoblasticcellsoccurredwithin 1dayon␤-TCP(asalsofoundhere)andthatfocaladhesion areobservedat4days[20].Inourstudy,cytoplasmicexten- sionswereobservedafter48hoursallowingafirmanchorage ofthecellsontothebiomaterialsurface.

In conclusion, the present study emphasises the importanceofthechoiceofacelllineinexploringtheosteo- conductiveandosteoinductivepropertiesofabiomaterial.

Additional studies are needed to better understand the resorptionprocessinvolvingdifferentiation ofmacrophage intogiantmultinucleatedcells.Thetopographical,chemical andphysicochemicalcharacteristicsof␤-TCPmayaccount for itsexcellentcapacityof inducinga regenerativebone formationassociatedwithprogressiveresorptionofthebio- material.

Disclosure of interest

B.A.receivedaPhDscholarshipfromKasiosSAS.

Acknowledgments

This work was made possible by grants, from ANR, pro- gramLabCom‘‘NextBone’’.SEMandconfocalanalysiswere performed at Service Commun d’Imagerie et d’Analyses Microscopiques(SCIAM),Université d’Angers, thanks toR.

PerrotandR.Mallet.ManythanksforKasiosSAS,18,chemin delaViolette31240L’UNION—FranceforprovidingtheSinus- LiftTMdevices.

References

[1]AlbeeFH.Studiesinbonegrowth:triplecalciumphosphateas astimulustoosteogenesis.AnnSurg1920;71:32.

[2]Bhaskar SN, et al. Biodegradable ceramic implants in bone: electron and light microscopic analysis. Oral Surg 1971;32:336—46.

[3]Jarcho M ea. Synthesis and fabrication of -tricalcium phosphate (whitlockite) ceramics for potential prosthetic applications.JMaterSci1979;14:142—50.

[4]AkaoM,etal.DensepolycrystallineB-tricalciumphosphatefor prostheticapplications.JMaterSci1982;17:343—6.

[5]LeGerosRZ.Propertiesofosteoconductivebiomaterials:cal- ciumphosphates.ClinOrthopRelatRes395,2002:81—98.

[6]ChappardD,GuillaumeB,MalletR,Pascaretti-GrizonF,Basle MF, Libouban H. Sinus lift augmentation and beta-TCP: a microCTandhistologicanalysisonhumanbonebiopsies.Micron 2010;41:321—6.

[7]TanakaT,KumagaeY,SaitoM,ChazonoM,KomakiH,Kikuchi T, et al. Bone formation and resorption in patients after

implantationofbeta-tricalciumphosphateblockswith60%and 75%porosityinopening-wedgehightibialosteotomy.JBiomed MaterResBApplBiomater2008;86:453—9.

[8]Nyangoga H, Aguado E, Goyenvalle E, Basle MF, Chap- pardD.Anon-steroidalanti-inflammatorydrug(ketoprofen) does notdelaybeta-TCP bone graft healing. ActaBiomater 2010;6:3310—7.

[9]SaiNievethithaS,SubhapradhaN,SaravananD,Selvamurugan N,Wei-BorT,SrinivasanN,etal.Nanoceramicsonosteoblast proliferationanddifferentiationinbonetissueengineering.Int JBiolMacromol2017;98:67—74.

[10]Schaefer S, Detsch R, Uhl F, Deisinger U, Ziegler G. How degradationofcalciumphosphatebonesubstitutematerialsis influencedbyphasecompositionandporosity.AdvEngMater 2011;13:342—50.

[11]LegerosRZ, et al. Biphasiccalcium phosphatebioceramics:

preparation,propertiesandapplications.JMaterSciMaterMed 2003;14:201—9.

[12]SheikhZ,AbdallahM-N,HanafiA, MisbahuddinS, RashidH, GlogauerM. Mechanisms ofin vivodegradation and resorp- tion of calcium phosphate based biomaterials. Materials 2015;8:7913—25.

[13]BasléMF,ChappardD,GrizonF,FilmonR,DelecrinJ,DaculsiG, etal.OsteoclasticresorptionofCa-Pbiomaterialsimplanted inrabbitbone.CalcifTissueInt1993;53:348—56.

[14]Kucera T, SponerP, UrbanK, Kohout A. Histological assess- ment of tissue from large human bone defects repaired withbeta-tricalciumphosphate.EurJOrthopSurgTraumatol 2014;24:1357—65.

[15]SamavediS,WhittingtonAR,GoldsteinAS.Calciumphosphate ceramics in bone tissue engineering: a review of proper- ties and their influence on cell behavior. Acta Biomater 2013;9:8037—45.

[16]DetschR,SchaeferS,DeisingerU,ZieglerG,SeitzH,LeukersB.

Invitro-Osteoclasticactivitystudiesonsurfacesof3Dprinted calciumphosphatescaffolds.JBiomaterAppl2010;26:359—80.

[17]RoyM,FieldingG,BandyopadhyayA,BoseS.Effectsofzincand strontiumsubstitutionintricalcium phosphateon osteoclast differentiationandresorption.BiomaterSci2013:1.

[18]YashimaM,SakaiA,KamiyamaT,HoshikawaA.Crystalstruc- tureanalysisof-tricalciumphosphateCa3(PO4)2byneutron powderdiffraction.JSolidStateChem2003;175:272—7.

[19]MironRJ,BosshardtDD,OsteoMacs:.Keyplayersaroundbone biomaterials.Biomaterials2016;82:1—19.

[20]dosSantosEA,FarinaM,SoaresGA,AnselmeK.Chemicaland topographicalinfluenceofhydroxyapatiteandbeta-tricalcium phosphate surfaces on human osteoblastic cell behavior. J BiomedMaterResA2009;89:510—20.

[21]BeuvelotJ,Pascaretti-GrizonF,FilmonR,MoreauMF,BasleMF, ChappardD.Invitroassessmentofosteoblastandmacrophage mobilityinpresenceofbeta-TCPparticlesbyvideomicroscopy.

JBiomedMaterResA2011;96:108—15.

[22]Stanley ER,et al. Biology and action ofcolony—stimulating factor-1.MolReprodDev1997;46:4—10.

[23]StanleyER,BergKL,EinsteinDB, LeePS,PixleyFJ,Wang Y, etal.Biology andaction ofcolony-stimulatingfactor-1.Mol ReprodDev1997;46:4—10.

[24]BasléMF,etal.Osteoclastic resorptionofCa-Pbiomaterials implantedinrabbitbone.CalcifTissueInt1993;53:348—56.

[25]ChazonoM,TanakaT,KitasatoS,KikuchiT,MarumoK.Electron microscopicstudyonboneformationandbioresorptionafter implantationofbeta-tricalciumphosphateinrabbitmodels.J OrthopSci2008;13:550—5.

[26]LuJ,DescampsM,DejouJ,KoubiG,HardouinP,LemaitreJ, et al. Thebiodegradationmechanism ofcalcium phosphate biomaterialsinbone.JBiomedMaterResA2002;63:408—12.

[27]GhanaatiS,BarbeckM,DetschR,DeisingerU,HilbigU,Rausch V,etal.Thechemicalcompositionofsyntheticbonesubstitutes

(10)

Morphologyofmacrophagesandosteoblastson␤-TCP 163 influencestissuereactionsinvivo:histologicalandhistomor-

phometricalanalysisofthecellularinflammatoryresponseto hydroxyapatite,beta-tricalciumphosphate andbiphasiccal- ciumphosphateceramics.BiomedMater2012;7:015005.

[28] AndersonJM,RodriguezA,ChangDT.Foreignbodyreactionto biomaterials.SeminImmunol2008;20:86—100.

[29] LiuG, ZhaoL, CuiL, Liu W,Cao Y.Tissue-engineeredbone formationusinghumanbonemarrowstromalcellsandnovel beta-tricalciumphosphate.BiomedMater2007;2:78—86.

[30] ZhangJ,SunL,LuoX,BarbieriD,deBruijnJD,vanBlitter- swijkCA,etal.Cellsrespondingtosurfacestructureofcalcium

phosphateceramicsforboneregeneration.JTissueEngRegen Med2017.

[31]CzekanskaEM,StoddartMJ,RichardsRG,HayesJS.Insearch ofanosteoblastcellmodelforinvitroresearch.EurCellMater 2012;24:1—17.

[32]DemaisV,AudrainC,MabilleauG,ChappardD,BasléMF.Diver- sity of bonematrix adhesion proteins modulates osteoblast attachmentandorganizationofactincytoskeleton.Morpholo- gie2014;98:53—64.

Références

Documents relatifs

Thus, in that case, the wear mechanism would be mainly a fracturing within the tablet, involving the intracrystalline organic matrix only (mainly composed by

Interoperability, SCM, Semantic Web, Agent Systems, AI, Supply Chain, Ontology, Business Organization, Adaptive Networks, CPFR, Collaboration, RFID, SDR, Healthcare,

clusters represent five different PEtn transferase families as follows; blue, lipid A-specific PEtn transferases, including EptA; green, PEtn transferases specific for the 6 position

PEKs with phenyl and 3-methylphenyl pendant groups were found to have controlled sulfonation sites with single substituted sulfonic acid per repeated unit via a postsulfonation

mass distributions of cumulated sieved fractions at 63 and 25 µm show that the proportion of fine particles is greater in raw than in weathered sediment (59.1..

In this paper, we present a shallow embedding of Zenon Modulo proofs into the proof checker De- dukti, consisting of an encoding of a typed classical sequent calculus modulo into

the coating process the alkoxysilane is hydrolysed at low pH, resulting in the formation of silanol by the loss of the methoxy groups into methanol. In order to favour the

High Mg-doped b-TCP acid-etched for 5 h in total: overlay of SEM images and crystal orientation maps derived from EBSD and displayed in Inverse Pole Figure (IPF) coloring (the