• Aucun résultat trouvé

Pointwise curvature estimates for <span class="mathjax-formula">$F$</span>-stable hypersurfaces

N/A
N/A
Protected

Academic year: 2022

Partager "Pointwise curvature estimates for <span class="mathjax-formula">$F$</span>-stable hypersurfaces"

Copied!
13
0
0

Texte intégral

(1)

www.elsevier.com/locate/anihpc

Pointwise curvature estimates for F -stable hypersurfaces

Estimations ponctuelles de la courbure des hypersurfaces F -stables

Sven Winklmann

Universität Duisburg-Essen, Institut für Mathematik, 47048 Duisburg, Germany

Received 2 July 2004; accepted 6 October 2004 Available online 7 April 2005

Abstract

We consider immersed hypersurfaces in euclideanRn+1which are stable with respect to an elliptic parametric functional of the formF(X)=

MF (N )dµ. We prove a pointwise curvature estimate provided thatn5 andF is sufficiently close to the area integrand. This extends the pointwise curvature estimates of Schoen, Simon and Yau [Acta Math. 134 (1975) 275] for stable minimal hypersurfaces inRn+1and of Simon [Math. Z. 154 (1977) 265] for minimizers ofF. Our result follows from an integral curvature estimate and a generalized Simons inequality that were established recently [Calc. Var. Partial Differential Equations (2004), DOI: 10.1007/S00526-004-0306-5], together with a Moser type iteration argument.

2005 Elsevier SAS. All rights reserved.

Résumé

Nous considérons des hypersurfaces dans l’espace euclidienRn+1qui sont stables par rapport à une fonctionnelle paramé- trique elliptique de la formeF(X)=

MF (N )dµ. Nous démontrons une estimation ponctuelle de la courbure sous l’hypothèse n5 et Fest suffisamment proche de l’intégrande aire. Ce résultat étend l’estimation ponctuelle de la courbure obtenue par Schoen, Simon et Yau [Acta Math. 134 (1975) 275] pour les hypersurfaces minimales stables deRn+1et par Simon [Math. Z.

154 (1977) 265] pour les minimiseurs deF. Une estimation intégrale de la courbure, une inégalité de Simons généralisée, établie récemment dans [Calc. Var. Partial Differential Equations (2004), DOI : 10.1007/S00526-004-0306-5], ainsi qu’un argument itératif de type Moser nous permet d’obtenir cette estimation ponctuelle.

2005 Elsevier SAS. All rights reserved.

MSC: 53C42; 49Q10; 35J60

1. Introduction

Ifuis a solution of the two-dimensional minimal surface equation defined over the diskBR(x0):= {x∈R2:

|xx0|< R}, then the principal curvaturesκ1,κ2of the corresponding graph can be estimated by

E-mail address: winklmann@math.uni-duisburg.de (S. Winklmann).

0294-1449/$ – see front matter 2005 Elsevier SAS. All rights reserved.

doi:10.1016/j.anihpc.2004.10.005

(2)

12+κ22)(x0) C R2

with a universal constantC. This is the well-known curvature estimate of Heinz [11] which appears as a quantitative version of Bernstein’s celebrated theorem [1]. In fact, by lettingR→ ∞one deduces that every entire solution of the minimal surface equation inR2has to be an affine linear function.

There are several important extensions and variants of these results, see e.g. [7] and [10]. In particular, Schoen [18] has proved an analogue of Heinz’s estimate for stable minimal surfaces inR3, and again this estimate implies a Bernstein result.

In higher dimensions Schoen, Simon and Yau [19] have obtained an integral curvature estimate for stable mini- mal hypersurfaces immersed in a Riemannian manifoldNn+1, and in the particular case whereN is the euclidean Rn+1this estimate leads to a pointwise curvature estimate up ton5. Improvements forn6 have been made by Simon [21] and Schoen, Simon [20] using regularity theory for minimal hypersurfaces and methods from geometric measure theory, respectively.

In this paper we consider immersed hypersurfacesX:Mn→Rn+1with Gauß mappingNand induced surface measureµwhich are stable with respect to a parametric functional of the form

F(X)=

M

F (N )dµ.

The integrandF is of classC(Rn+1\ {0})and satisfies the homogeneity condition

F (t z)=t F (z) for allzSn, t >0. (1)

Moreover, throughout the paperF is assumed to be elliptic, i.e.

Fzz(z)= 2F

∂zα∂zβ(z)

α,β=1,...,n+1

:zz

is a positive definite endomorphism for allzSn, or equivalently λ(F ):= inf

zSn, Vz\{0}

(∂2F /∂zα∂zβ)(z)VαVβ

|V|2 >0. (2)

Clearly,Fgeneralizes the area functional A(X)=

M

which is obtained in caseF (z)=A(z):= |z|is the area integrand.

In a previous paper [25] we have shown that an integral curvature estimate forF-stable hypersurfaces can be proved, wheneverFis sufficiently close to the area functional. To be precise, define the norm

GCk:=sup

zSn |I|k

|I|G

∂zI (z) 21/2

for an arbitrary integrand GC(Rn+1\ {0}). It was proven in [25, Theorem 1.1] that given n2 and p(4,4+√

8/n), there exists a constantδ(n, p) >0 with the property that ifF is an elliptic integrand satis- fyingFAC4< δand ifXis anF-stable hypersurface, then the integral curvature estimate

M

|S|pϕpC(n, p, F )

M

|∇ϕ|pdµ (3)

(3)

holds for all nonnegative testfunctionsϕCc(M). Here,|S|stands for the length of the Weingarten operator, i.e.

|S|2=κ12+ · · · +κn2, whereκ1, . . . , κndenote the principal curvatures ofX.

In this paper we wish to discuss a pointwise curvature estimate forF-stable hypersurfaces. To this end, define δ(n):=sup

δ(n, p): 4< p <4+

8/n, p > n for 2n5. Moreover, let us use the notation

BR(x0):=

xM: r(x) < R , R >0,

wheneverr:M→Ris a Lipschitz function withr(x0)=0 and|∇r|1µ-a.e.. Our main result is the following:

Theorem 1.1. Let 2n5 and letF be an elliptic integrand satisfyingFAC4 < δ(n). SupposeX is a stable hypersurface for the parametric functional

F(X)=

M

F (N )dµ.

IfBR(x0)Mfor some pointx0Mand radiusR >0, and ifµ(BR(x0))KRn, then we have sup

Bθ R(x0)

|S|2C(n, F, K, θ )

R2 (4)

for allθ(0,1).

In particular, if we choose r(x)=d(x, x0), then we obtain the curvature estimate on the usual open balls Bθ R(x0), and lettingR→ ∞we infer the Bernstein result [25]:

Corollary 1.2. Let 2n5 and letF be an elliptic integrand withFAC4< δ(n). SupposeXis a complete connectedF-stable hypersurface that satisfies the growth condition

µ BR(x0)

KRn

for some pointx0Mand some sequenceR→ ∞. ThenX(M)is a hyperplane.

Observe that in caseF =Ais the area integrand, Theorem 1.1 yields the pointwise curvature estimate of Schoen, Simon and Yau [19, Theorem 3], withRn+1as the ambient manifold.

Moreover, we remark that curvature estimates and Bernstein type results for two-dimensional parametric func- tionals have been obtained by Jenkins [12], White [23,24], Lin [13], Sauvigny [17], Fröhlich [8,9], Räwer [16]

and Clarenz [2]. All these results are strictly two-dimensional. Simon [22] has obtained a pointwise estimate for minimizers ofF up to dimensionn6 provided thatFAC3 is sufficiently small. It is unknown, whether our results can be improved to hold up ton6.

The paper is organized as follows. In Section 2 we recall some preliminary results taken from [25], including a generalized Simons inequality and an equivalent form of the integral curvature estimate. In Section 3 we then use these results to establish anLp-estimate for the curvature. Here, we proceed similarly as in Dierkes [5,6], where a class of singular parametric functionals of the type

Eα(X)=

M

|Xn+1|αdµ, α >0,

is considered. Finally, in Section 4 we use the Lp-estimate together with a Moser type iteration argument to prove (4).

(4)

2. Preliminaries

In this section we recall some preliminary results from [25] concerning the geometry of parametric functionals.

Let X:Mn→Rn+1 be a smooth immersion of ann-dimensional oriented manifold without boundary into euclideanRn+1. LetN:MSnstand for the corresponding Gauß mapping and denote byµthe induced measure with respect to the pull backgof the euclidean metric. Consider the parametric functional

F(X)=

M

F (N )

with an elliptic integrandFC(Rn+1\ {0})satisfying the homogeneity condition (1) and the ellipticity condi- tion (2). We say thatXisF-stationary if

δF(X, ϕ):= d

F(X+εϕN )

ε=0=0

for allϕCc(M)and we say thatXisF-stable, if in addition δ2F(X, ϕ):= d2

2F(X+εϕN )

ε=00 for allϕCc(M).

In order to give a geometric description ofF-stationary hypersurfaces, we need to recall the notion ofF-mean curvature as introduced by Räwer [16] and Clarenz [2]: LetAF be the symmetric, positive definite endomorphism- field given by

AF :=dX1Fzz(N )◦dX,

and letS:= −dX1◦dN denote the Weingarten operator. Then SF :=AFS

is calledF-Weingarten operator and HF:=tr(SF)

is theF-mean curvature ofX. Now, according to [16] and [2] the first variation ofFis given by δF(X, ϕ)= −

M

HFϕdµ.

Hence,XisF-stationary if and only if itsF-mean curvature vanishes. Moreover, for anF-stationary hypersurface the second variation is given by

δ2F(X, ϕ)=

M

g(AFϕ,ϕ)−tr(AFS22 dµ,

where∇ϕdenotes the gradient ofϕwith respect tog. Consequently,XisF-stable if and only ifHF =0 and

M

tr(AFS22

M

g(AFϕ,ϕ)dµ (5)

for allϕCc(M). For further details see also [3] and [4]. Also note that ifF is the area integrand, thenAF=id and so the definitions coincide with their classical analogues.

Now, as in [25], let us introduce as an additional geometric quantity the abstract metric gF(v, w):=g

AF1(v), w

, (v, wT M)

(5)

which can be seen as an n-dimensional analogue of Sauvigny’s [17] weighted first fundamental form. In [25, Propositions 2.2 and 2.3] we have shown the estimates

c(F )|S||SF|FC(F )|S|, (6)

c(F )|∇h|| ∇h|F C(F )|∇h| (7)

and

c(F )dµFC(F )dµ (8)

for suitable positive constantsc(F )andC(F ), whereϕ,|T|F andµF denote the gradient ofϕ, the length of the tensorT and the measure, all taken with respect togF. In particular, these estimates imply the equivalence of the integral curvature estimate (3) to an estimate of the form

M

|SF|pFϕpF C(n, p, F )

M

|∇ϕ|pFF (9)

for all nonnegative functionsϕCc(M).

Now, it was shown in [25, Proposition 2.5] that the stability inequality (5) implies

M

|SF|2Fϕ2FC(F )

M

|∇ϕ|2FF (10)

for all ϕCc(M), where C(F )is a positive constant that tends to 1 asFAC2 →0. Moreover, we have shown that anyF-stationary hypersurfaceXsatisfies the generalized Simons inequality

1

2F|SF|2F 1−η

1+θ

1+2 n

|∇|SF|F|2F− 1

λ(F )+C(η, θ )ε(F )

|SF|4F (11)

for allθ >0 andη(0,1]with a nonnegative constantε(F )that tends to 0 asFAC4→0, cp. [25, Theo- rem 4.2]. Here, of course,F denotes the Laplace-Beltrami operator with respect togF.

Using (10) and (11), we have shown that if p(4,4+√

8/n)and if F is an elliptic integrand satisfying FAC4< δ(n, p), then (9), and hence (3), holds for anyF-stable hypersurfaceX.

In the next section, we do use the generalized Simons inequality (11) and the integral curvature estimate (9) to establish anLp-estimate for the curvature|SF|F. To accomplish this, we will need the following version of the Michael–Simon Sobolev inequality [14]:

Lemma 2.1. LetF be an elliptic integrand and letX:M→Rn+1be an immersed hypersurface. If 1p < n, then we have

M

|h|nnppF n−p

np C(n, p, F )

M

|h|p|SF|pF+ | ∇h|pFF

1

p

(12)

for allhCc(M).

Proof. From [14] we infer

M

|h|nnppnp

np C(n, p)

M

|h|p|H|p+ |∇h|p

1

p

,

so the obvious inequality|H|2n|S|2together with (6), (7) and (8) gives the desired result. 2

(6)

3. Lp-estimate

Let 2n5, let F be an elliptic integrand satisfying FAC4 < δ(n), and let X:M→Rn+1 be an F-stable hypersurface. Suppose that B1(x0)M with µ(B1(x0))K. The main result of this section is the followingLp-estimate:

Proposition 3.1. Letf:= |SF|pF,p >1, and letηCc (M)be a nonnegative testfunction with supp(η)Bτ(x0), 0< τ <1. Define

q= n

n2, if n3, 2, if n=2.

Then we have

M

(f η)2qF 1/q

Cpα

M

f2η2F+C

M

f2| ∇η|2FF, (13)

whereC=C(n, F, K, τ )andα=α(n, F ) >1.

Proof. Puth:=f ηin the Sobolev inequality (12). By approximation, this choice ofhis valid and ifn3, then we obtain

M

(f η)n2n2F n−2n

C(n, F )

M

| ∇f|2Fη2+f2| ∇η|2F+f2η2|SF|2F

F.

On the other hand, ifn=2, then we have

M

(f η)22rrF 2−r

2r C(n, r, F )

M

(f η)r

F +frηr|SF|rFF

1

r

for allr(1,2), and by virtue of Hölder’s inequality together with supp(η)⊂B1(x0)andµF(B1(x0))C(F )K, see (8), we infer

M

(f η)r

F+frηr|SF|rF

F C(r, F, K)

M

(f η)2

FF r

2

+C(r, F, K)

M

f2η2|SF|2FF r

2

,

hence

M

(f η)22rrF 2−r

r C(n, r, F, K)

M

| ∇f|2Fη2+f2| ∇η|2F+f2η2|SF|2FF.

Chooser=43, so that 2rr =2. Then we have shown

M

(f η)2qF 1

q C1(n, F, K)

M

| ∇f|2Fη2+f2| ∇η|2F +f2η2|SF|2F

F (14)

(7)

with q=

n

n−2, ifn3, 2, ifn=2.

We now use the generalized Simons inequality to estimate the first integral on the right hand side as follows:

Lemma 3.2. We have

M

| ∇f|2Fη2F C2(n, F )p

M

f2η2|SF|2FF +4

M

f2| ∇η|2FF. (15)

Proof of Lemma 3.2. We have 1

2F|SF|2pF =p(2p−1)|SF|2pF 2| ∇|SF|F|2F+p|SF|2pF 1F|SF|F

=2p(p−1)|SF|2pF 2| ∇|SF|F|2F+1

2p|SF|2pF 2F|SF|2F

in a weak sense, and applying the generalized Simons inequality (11) we obtain 1

2F|SF|2pF p(p−1)|SF|2pF −2| ∇|SF|F|2F +p

p−1+ 1−η

1+θ

1+2 n

|SF|2pF −2| ∇|SF|F|2F

p 1

λ(F )+C(η, θ )ε(F )

|SF|2pF +2 for allθ >0 andη(0,1]. Chooseη(n)andθ (n)so small that

1−η 1+θ

1+2

n

1.

Then we infer 1

2F|SF|2pF p2|SF|2pF 2| ∇|SF|F|2Fp 1

λ(F )+C(η, θ )ε(F )

|SF|2pF +2, whence

1

2Ff2| ∇f|2FC3(n, F )p|SF|2Ff2.

We now multiply this inequality byη2and integrate by parts. This gives

M

| ∇f|2Fη2F −2

M

f η fηF +C3p

M

f2η2|SF|2FF and in view of Young’s inequality

2f η| ∇f|F| ∇η|F 1

2| ∇f|2Fη2+2f2| ∇η|2F the desired estimate follows. 2

Combining (14) and (15) we obtain

M

(f η)2qF 1

q C4(n, F, K)p

M

f2η2|SF|2FF +C5(n, F, K)

M

f2| ∇η|2FF. (16) We now employ the integral curvature estimate to estimate the first integral on the right-hand side.

(8)

Lemma 3.3. We have

M

f2η2|SF|2FFC6γ

M

(f η)2qF 1

q +γs−11

M

f2η2F (17)

for allγ >0, whereC6=C6(n, F, K, τ )ands=s(n, F ) >1.

Proof of Lemma 3.3. We need the following interpolation inequality from [10, p. 145]

abγ as+γs−11 bs−1s

fora, b0,γ >0 ands >1. Lettinga= |SF|2F andb=1, we obtain

M

f2η2|SF|2FFγ

M

f2η2|SF|2sFF+γs11

M

f2η2F

for arbitraryγ >0 ands >1. Applying the Hölder inequality with1q+q1 =1 and noticing that supp(η)⊂Bτ(x0), it follows that

M

f2η2|SF|2FFγ

M

(f η)2qF 1q

Bτ(x0)

|SF|2sqF F q1

+γs11

M

f2η2F. (18)

We now choosesin the following way: According to the definition ofδ(n)there exists a numbert=t (F )(4,4+√

8/n)witht > n, such thatFAC4< δ(n, t ). Choose s=

t

n, ifn3,

t

4, ifn=2.

Then, clearly,s=s(n, F ) >1. Moreover, on account of q=

n

2, ifn3, 2, ifn=2 we have

2sq=t. (19)

Now, letϕbe the cut-off function defined by ϕ(x):=Φ

r(x)τ 1−τ

, xM,

whereΦC1(R)is a nonincreasing function withΦ(y)=1 fory0,Φ(y)=0 fory1 and|Φ(y)|2 for ally∈R. Thenϕ=1 inBτ(x0),ϕ=0 inM\B1(x0)and using (7) we see that

| ∇ϕ|F C(F )|∇ϕ|2C(F ) 1−τ

µF-a.e.. Also note that ϕ is compactly supported in M subject to B1(x0)M. Hence, we can applyϕ in the integral curvature estimate (9) with exponenttand together with (19) andµF(B1(x0))C(F )Kthis leads to

Bτ(x0)

|SF|2sqF F

M

|SF|tFϕtF C(n, F, t )

B1(x0)

| ∇ϕ|tFF C(n, F, K)

2C(F ) 1−τ

t

.

(9)

Thus, we have

Bτ(x0)

|SF|2sqF F

q1

C6(n, F, K, τ )

and inserting this into (18) gives the desired result. 2 According to (16) and (17) we now have

M

(f η)2qF 1

q C7(n, F, K, τ )pγ

M

(f η)2qF 1

q

+C4s11

M

f2η2F+C5

M

f2| ∇η|2FF

for allγ >0, and choosingγ:=2C17p we finally arrive at

M

(f η)2qF 1

q 2C4p1+s11(2C7)s11

M

f2η2F+2C5

M

f2| ∇η|2FF

Cpα

M

f2η2F +C

M

f2| ∇η|2FF,

whereα=α(n, F ):=ss1>1 andC=C(n, F, K, τ ). This completes the proof of theLp-estimate. 2

4. Proof of the curvature estimate

Before we turn to the proof of Theorem 1.1, let us make sure that it suffices to establish the curvature estimate (4) forR=1.

Indeed, suppose thatXsatisfies the assumptions of Theorem 1.1. We then consider the hypersurface X:M→Rn+1, X:= 1

RX.

On account of δF(X,ϕ)˜ = d

F(X+εϕ˜N )

ε=0= 1

RnδF(X, Rϕ)˜ =0 and

δ2F(X,ϕ)˜ = 1

Rnδ2F(X, Rϕ)˜ 0

for allϕ˜∈Cc(M), we see thatXisF-stable as well. Moreover, ifrdenotes the abstract distance function ofX, i.e. the Lipschitz function withr(x0)=0 and|∇r|1µ-a.e., then

˜

r:M→R, r˜:= 1 Rr

defines an abstract distance function forXand for the corresponding balls we have Bθ(x0):=

xM: r(x) < θ˜ =Bθ R(x0)

(10)

for allθ >0. In particular, we see thatB1(x0)Mand since the measure scales with 1/Rnwe obtain µ˜ B1(x0)

= 1 Rnµ

BR(x0)

K.

Assume now, that the curvature estimate (4) holds forR=1. Then we can apply it toXand obtain

sup

Bθ(x0)

|S|2g˜C(n, F, K, θ )

for allθ(0,1). Moreover, since the principal curvatures scale withR, we have

|S|2g˜=R2|S|2g and therefore

sup

Bθ R(x0)

|S|2g= sup

Bθ(x0)

|S|2g˜

R2 C(n, F, K, θ ) R2

with the same constantC. Hence, the curvature estimate (4) holds for everyR >0.

Proof of Theorem 1.1. According to the discussion above we only have to consider the case R=1, so let us assume thatX:M→Rn+1is F-stable,B1(x0)M andµ(B1(x0))K. It is our goal to prove the following estimate

sup

Bθ(x0)

|SF|2FC(n, F, K, θ ) (20)

for allθ(0,1)since this will imply the desired curvature estimate sup

Bθ(x0)

|S|2C(n, F, K, θ ) in view of (6).

To establish (20), letθ˜:=1+2θ,τ:=1+ ˜2θ and letρ,ρbe radii satisfying

θ < ρ< ρθ < τ <˜ 1 (21)

and

ρρ−1

2θ ). (22)

Define a cut-off functionηby η(x):=Φ

r(x)ρ ρρ

, xM,

whereΦis to be chosen as in the proof of Lemma 3.3. Then we haveη=1 inBρ(x0),η=0 inM\Bρ(x0)and

| ∇η|F 2C(F ) ρρ

µF-a.e.. Insertingηinto theLp-estimate (13) we infer

Bρ(x0)

f2qF 1

q C1pα

Bρ(x0)

f2F +C1

2C(F ) ρρ

2

Bρ(x0)

f2F,

whereC1=C1(n, F, K, τ )andα=α(n, F ) >1. Sincep >1 and2(ρθ˜θρ)1 it follows that

(11)

Bρ(x0)

f2qF 1

q C2(n, F, K, θ ) ρ)2 pα

Bρ(x0)

f2F

withC2=C1(θ˜4θ )2 +4C1C(F )2. Now, let u:= |SF|2F. Then we have f2= |SF|2pF =up andf2q=uqp, and therefore

Bρ(x0)

uqpF 1

qp C

1 p

2pαpρ)2p

Bρ(x0)

upF 1

p

.

Hence, abbreviating I (σ, t ):=

Bσ(x0)

utF 1

t

we obtain

I (ρ, qp)C

1 p

2pαpρ)p2I (ρ, p) (23)

for allp >1 andρ,ρsatisfying (21) and (22).

From here we intend to employ a well-known iteration scheme originally due to Moser [15]. Let ρk:=θ+2k˜−θ ),

ρk:=ρk+1=ρk−1

2kθ ) and

pk:=qkp0 withp0>1

fork=0,1,2, . . . .Then we infer from (23) I (ρk+1, pk+1)=I (ρk, qpk)C

1 pk

2 p

α pk

k kρk)

2

pkI (ρk, pk)

=C

1 pk

2 p

α pk

0 q

αk

pk4k+1pk ˜−θ )

2

pkI (ρk, pk)C

k+1pk

3 p

α pk

0 I (ρk, pk), whereC3=C3(n, F, K, θ ):=max(4C2˜−θ )2,4qα), and iterating this inequality yields

I (ρk+1, pk+1)C

k j=0

j+1 pj

3 p

k j=0 α

pj

0 I (ρ0, p0).

Now we have

j=0 α

pj =p0(qαq1) and

j=0 j+1

pj =p q2

0(q1)2.Consequently, I (ρk+1, pk+1)C

q2 p0(q−1)2

4 p

αq p0(q−1)

0 I (ρ0, p0) (24)

fork=0,1,2, . . .withC4=C4(n, F, K, θ ):=max(C3,1). Now we need the following simple lemma:

Lemma 4.1. We have sup

Bθ(x0)

ulim inf

k→∞ I (ρk, pk).

(12)

Proof of Lemma 4.1. Givenε >0, there exists a setAεBθ(x0)withµF(Aε) >0 and u sup

Bθ(x0)

uε

inAε. Hence, I (ρk, pk)=

Bρk(x0)

upkF 1

pk

Aε

upkF 1

pk

sup

Bθ(x0)

uε

µF(Aε)1

pk,

and lettingk→ ∞we obtain lim inf

k→∞ I (ρk, pk) sup

Bθ(x0)

uε.

The assertion now follows asε→0. 2 We now apply Lemma 4.1 to (24) and find

sup

Bθ(x0)

uC

q2 p0(q−1)2

4 p

αq p0(q−1)

0 I (ρ0, p0)=C

q2 p0(q−1)2

4 p

αq p0(q−1)

0

Bθ˜(x0)

up0F 1

p0

.

Here,p0>1 can be arbitrarily chosen. In particular, lettingp0→1 we obtain sup

Bθ(x0)

|SF|2FC5(n, F, K, θ )

Bθ˜(x0)

|SF|2FF,

whereC5:=C

q2 (q1)2

4 .

Finally, using a suitable cut-off function in a similar fashion as we did before, we infer

Bθ˜(x0)

|SF|2FFC(F, K,θ )˜

from our stability inequality (10). Hence, we have

Bsupθ(x0)

|SF|2FC6(n, F, K, θ )

which is the desired estimate (20), and this completes the proof of Theorem 1.1. 2

Acknowledgement

The author wishes to thank Prof. Dr. U. Dierkes for many interesting and helpful discussions on this work.

References

[1] S. Bernstein, Über ein geometrisches Theorem und seine Anwendung auf die partiellen Differentialgleichungen vom elliptischen Typus, Math. Z. 26 (1927) 551–558.

[2] U. Clarenz, Sätze über Extremalen parametrischer Funktionale, Bonner Math. Schriften 322 (1999) 1–79.

(13)

[3] U. Clarenz, Enclosure theorems for extremals of elliptic parametric functionals, Calc. Var. Partial Differential Equations 15 (2002) 313–

324.

[4] U. Clarenz, H. von der Mosel, On surfaces of prescribedF-mean curvature, Pacific J. Math. 213 (2004) 15–36.

[5] U. Dierkes, A Bernstein result for energy minimizing hypersurfaces, Calc. Var. Partial Differential Equations 1 (1993) 37–54.

[6] U. Dierkes, Curvature estimates for minimal hypersurfaces in singular spaces, Invent. Math. 122 (1995) 453–473.

[7] U. Dierkes, S. Hildebrandt, A. Küster, O. Wohlrab, Minimal surfaces I, Grundlehren Math. Wiss., vol. 295, Springer, 1992.

[8] S. Fröhlich, Krümmungsabschätzungen fürµ-stabileG-Minimalflächen, Dissertation, Cottbus, 2001.

[9] S. Fröhlich, Curvature estimates forµ-stableG-minimal surfaces and theorems of Bernstein type, Analysis 22 (2002) 109–130.

[10] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, second ed. 1983, Grundlehren Math. Wiss., vol. 224, Springer, 1977.

[11] E. Heinz, Über die Lösungen der Minimalflächengleichung, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II (1952) 51–56.

[12] H.B. Jenkins, On two-dimensional variational problems in parametric form, Arch. Rational Mech. Anal. 8 (1961) 181–206.

[13] F.H. Lin, Estimates for surfaces which are stationary for an elliptic parametric integral, J. Partial Differential Equations 3 (1990) 78–92.

[14] J.H. Michael, L. Simon, Sobolev and mean-value inequalities on generalized submanifolds ofRn, Comm. Pure Appl. Math. 26 (1973) 361–379.

[15] J. Moser, A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl.

Math. 13 (1960) 457–468.

[16] K. Räwer, Stabile Extremalen parametrischer Doppelintegrale inR3, Dissertation, Bonn, 1993.

[17] F. Sauvigny, Curvature estimates for immersions of minimal surface type via uniformization and theorems of Bernstein type, Manuscripta Math. 67 (1990) 67–97.

[18] R. Schoen, Estimates for stable minimal surfaces in three dimensional manifolds, in: E. Bombieri (Ed.), Seminar on Minimal Submani- folds, in: Ann. Math. Stud., vol. 103, 1983, pp. 111–126.

[19] R. Schoen, L. Simon, S.T. Yau, Curvature estimates for minimal hypersurfaces, Acta Math. 134 (1975) 275–288.

[20] R. Schoen, L. Simon, Regularity of stable minimal hypersurfaces, Comm. Pure Appl. Math. 34 (1981) 741–797.

[21] L. Simon, Remarks on curvature estimates for minimal hypersurfaces, Duke Math. J. 43 (1976) 545–553.

[22] L. Simon, On some extensions of Bernstein’s theorem, Math. Z. 154 (1977) 265–273.

[23] B. White, Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals, Invent. Math. 88 (1987) 243–256.

[24] B. White, Existence of smooth embedded surfaces of prescribed genus that minimize parametric even elliptic functionals on 3-manifolds, J. Differential Geom. 33 (1991) 413–443.

[25] S. Winklmann, Integral curvature estimates forF-stable hypersurfaces, Calc. Var. Partial Differential Equations (2004)10.1007/s00526- 004-0306-5.

Références

Documents relatifs

Similar arguments rule out the cases m^&gt;2; thus each end gives rise to a disc of multiplicity 1. — Theorem 1.4 is false if one drops the hypothesis of finite topological type.

A further analogous construction has been achieved by Kapouleas and Yang in [21], in which they construct a minimal surface (i.e. a surface with constant zero mean curvature)

Our proofs are often elementary, based on decompositions, Taylor formula, Cauchy-Schwarz inequality, Parseval or Plancherel formula..., except for that of Theorem

Si s est modérément ramifiée, elle est induite d’un caractère modérément ramifié Il de l’extension quadratique non ramifiée de F, à. valeurs dans

Soit (n, V) une représentation irréductible de G ayant un caractère central, et de dimension infinie.. Les fonctions de Kirillov

Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention

Toute utilisation commerciale ou impression systématique est constitutive d’une infrac- tion pénale.. Toute copie ou impression de ce fichier doit contenir la présente mention

Scholtz, Optimal I/°°-estimates for a mixed finite element method for second order elliptic and parabolic problems. Squeff, Superconvergence of mixed finite element methods