• Aucun résultat trouvé

On Zeta Functions and Tetrahedral Numbers

N/A
N/A
Protected

Academic year: 2021

Partager "On Zeta Functions and Tetrahedral Numbers"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-02297262

https://hal.archives-ouvertes.fr/hal-02297262

Preprint submitted on 25 Sep 2019

On Zeta Functions and Tetrahedral Numbers

César Aguilera

To cite this version:

César Aguilera. On Zeta Functions and Tetrahedral Numbers. 2019. �hal-02297262�

(2)

On Zeta Functions and Tetrahedral Numbers.

C´ esar Aguilera.

September 25, 2019

Abstract

In this short paper we analyze a possible relation betweenζ(n) (for n odd and greater than one) and the Tetrahedral Numbers (number of balls in a triangular pyramid in which each edge contains n balls).[1], also the irrationality of all these (ζ) functions.

Introduction.

The Zeta Functions, are functions of the form:

ζ(2n) =

X

r=1

1 r2n

ζ(2n+ 1) =

X

r=1

1 r2n+1

in this paper, we will study the second one. In 2000, T. Rivoal proved that there are infinitely many integers n such thatζ(2n+ 1) is irrational, and subse- quently in 2001 that at least one ofζ(5), ζ(7), ζ(9), ...ζ(21) is irrational. Again in 2001 this result has been tightened by Zudilin to replace 21 by 11.[2]

In the case ofζ(3), it was proven to be irrational in 1978 by Roger Apery and is called Apery’s constant.

(3)

Zeta Functions for (n) odd.

The first ten values of the Zeta Functions of the form: ζ(2n+ 1) =P r=1

1 r2n+1

are next.

ζ(3) = 113 +213 +313 +...+r13 = 1.202056903 ζ(5) = 115 +215 +315 +...+r15 = 1.036927755 ζ(7) = 117 +217 +317 +...+r17 = 1.008349277 ζ(9) = 119 +219 +319 +...+r19 = 1.002008392 ζ(11) = 1111 +2111 +3111 +...+r111 = 1.000494188 ζ(13) = 1113 +2113 +3113 +...+r113 = 1.000122713 ζ(15) = 1115 +2115 +3115 +...+r115 = 1.000030588 ζ(17) = 1117 +2117 +3117 +...+r117 = 1.000007637 ζ(19) = 1119 +2119 +3119 +...+r119 = 1.000001908 ζ(21) = 1121 +2121 +3121 +...+r121 = 1.000000476

if we order them, we have:

1 13

1 23

1 33

1 43

1 53

1 63

1 73

1

83 · · · r13

1 15

1 25

1 35

1 45

1 55

1 65

1 75

1

85 · · · r15

1 17

1 27

1 37

1 47

1 57

1 67

1 77

1

87 · · · r17

1 19

1 29

1 39

1 49

1 59

1 69

1 79

1

89 · · · r19

... ... ... ... ... ... ... ...

(4)

now, we divide column by another column, and we have:

P r=1

1

r2n+1 ÷P r=1

1 (r+1)2n+1

assigning values:

P r=1

1

22n+1 ÷P r=1

1 32n+1 = 4 P

r=1 1

32n+1 ÷P r=1

1

42n+1 = 2.5 P

r=1 1

42n+1 ÷P r=1

1 52n+1 = 2 P

r=1 1

52n+1 ÷P r=1

1

62n+1 = 1.75 P

r=1 1

62n+1 ÷P r=1

1

72n+1 = 1.6 P

r=1 1

72n+1 ÷P r=1

1

82n+1 = 1.5 P

r=1 1

82n+1 ÷P r=1

1

92n+1 = 1.4285714 = 107 P

r=1 1

92n+1 ÷P r=1

1

102n+1 = 1.375

multiplying results in sequence we obtain the Tetrahedral Numbers.

Table 1: Tetrahedral Numbers.

Multiplying Results Tetrahedral Number

(4)(2.5) 10

(4)(2.5)(2) 20

(4)(2.5)(2)(1.75) 35

(4)(2.5)(2)(1.75)(1.6) 56

(4)(2.5)(2)(1.75)(1.6)(1.5) 84

(4)(2.5)(2)(1.75)(1.6)(1.5)(1.4285714) 120 (4)(2.5)(2)(1.75)(1.6)(1.5)(1.4285714)(1.375) 165

The Tetrahedral Numbers, are numbers of the form (n)(n+1)(n+2) 6

(5)

Now, if we divide row by column, we have:

P r=1,P

n=1

1 rn

1 r2n+1

Forζ(3) (knowing thatζ(3) is irrational.) P

r=1,P n=1

1 r3 1 22n+1

= 7.21204440396 P

r=1,P n=1

1 r3 1 32n+1

= 28.8481776158 P

r=1,P n=1

1 r3 1 42n+1

= 72.1204440396 P

r=1,P n=1

1 r3 1 52n+1

= 144.240888079 P

r=1,P n=1

1 r3 1 62n+1

= 252.421554139 P

r=1,P n=1

1 r3 1 72n+1

= 403.874486622 P

r=1,P n=1

1 r3 1 82n+1

= 605.811729933 P

r=1,P n=1

1 r3 1 92n+1

= 865.445328475 P

r=1,P n=1

1 r3 1 102n+1

= 1189.98732665 If we divide: [P

r=1,P n=1

1 r3

1 (r+1)2n+1

]÷[P r=1,P

n=1

1 r3 1 r2n+1

] We have: 28.8481776158

7.21204440396;72.1204440396

28.8481776158;144.240888079 72.1204440396· · · that gives: 4,2.5,2,1.75· · · etc,

multiplyng them in sequence, we obtain the Tetrahedral Numbers.

(6)

Forζ(5) andζ(7), we have:

P r=1,P

n=1

1 r5 1 22n+1

= 6.22156651616 and P r=1,P

n=1

1 r7

1 22n+1

= 6.05009566429 P

r=1,P n=1

1 r5 1 32n+1

= 24.8862660646 andP r=1,P

n=1

1 r7

1 32n+1

= 24.2003826572 P

r=1,P n=1

1 r5 1 42n+1

= 62.2215665161 andP r=1,P

n=1

1 r7

1 42n+1

= 60.5009566429 P

r=1,P n=1

1 r5 1 52n+1

= 124.431330323 and P r=1,P

n=1

1 r7

1 52n+1

= 121.001913286 P

r=1,P n=1

1 r5 1 62n+1

= 217.754828065 and P r=1,P

n=1

1 r7

1 62n+1

= 211.75334825 P

r=1,P n=1

1 r5 1 72n+1

= 348.407724905 and P r=1,P

n=1

1 r7

1 72n+1

= 338.8053572 P

r=1,P n=1

1 r5 1 82n+1

= 522.611587357 and P r=1,P

n=1

1 r7

1 82n+1

= 508.2080358 P

r=1,P n=1

1 r5 1 92n+1

= 746.587981939 and P r=1,P

n=1

1 r7 1 92n+1

= 726.011479715 P

r=1,P n=1

1 r5 1 102n+1

= 1026.55847517 andP r=1,P

n=1

1 r7 1 102n+1

= 998.265784608 Asζ(2n+1) grows, the whole function approaches to: n(n−1)(n−2) = (n−3)!n! [3].

limζ(2n+1)→∞[

P r=1

1 r2n+1

P r=1

1 (r+1)2n+1

]≈n·(n−1)·(n−2)≈ (n−3)!n!

The sequence of this numbers is:

6,24,60,120,210,336,504,720,990,1320. . . We can also obtain this sequence with

f(n+1)

f(n) wheref(n) = (n+ 2)!·(n+ 1)!·n!2 [4].

(7)

References

[1] N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973.

[2] Julian Havil, Gamma, Exploring Euler’s Constant, Princeton Science Library, 2003.

[3] R. K. Guy, Unsolved Problems in Theory of Numbers, Section D25.

[4] Dr. Wolfdieter Lang.Universitt Karlsruhe (now Karlsruhe Institute of Technology, KIT), Germany.

OEIS Foundation Inc. (2019), The On-Line Encyclopedia of Integer Sequences, http://oeis.org/A090443.

Références

Documents relatifs

There are other similar games we can play in order to say something about the binary expansion of the average of other arithmetic functions evaluated in powers of 2 or in

Generalizing the work of Selberg, Gangolli, Millson, Scott and Hejhal ([S], [G], [M], [Sc], [H]) we will determine the zeroes and poles of the Selberg zeta function associated to

In this paper, we shall study the order of magnitude of the double zeta-function (1.1) in the region 0 ≤ σ j < 1 ( j = 1 , 2 ) , where we use, instead of Mellin-Barnes

Denef, Report on Igusa’s local zeta function, Séminaire Bourbaki, nr. Loeser: Caractéristiques d’Euler-Poincaré, Fonctions zêta locales et Modifications analytiques,

En ce qui concerne les entiers s impairs, on ne connaˆıt pas d’analogue de la formule d’Euler, et on conjecture qu’il n’y en pas (pour un ´enonc´e pr´ecis, voir la conjecture

But if the zeta functions constructed in [2] are no longer invariants for this new relation, however, thanks to a Denef & Loeser formula coming from motivic integration in a

The Pad´ e type approximants constructed in [10] for ζ(s, x) contain as initial cases Beukers and Pr´ evost approximants; Bel [1] used them to prove certain linear independence

Unfortunately, since the crux of the proof for theorem 5.4 concerning the zeta function ζ Selberg is based on a trace formula for the heat kernel of a surface with a constant