• Aucun résultat trouvé

Cocycles over interval exchange transformations and multivalued Hamiltonian flows

N/A
N/A
Protected

Academic year: 2021

Partager "Cocycles over interval exchange transformations and multivalued Hamiltonian flows"

Copied!
46
0
0

Texte intégral

(1)

HAL Id: hal-00462646

https://hal.archives-ouvertes.fr/hal-00462646

Submitted on 10 Mar 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

multivalued Hamiltonian flows

Jean-Pierre Conze, Krzysztof Fraczek

To cite this version:

Jean-Pierre Conze, Krzysztof Fraczek. Cocycles over interval exchange transformations and mul- tivalued Hamiltonian flows. Advances in Mathematics, Elsevier, 2011, 226 (5), pp.4373-4428.

�10.1016/j.aim.2010.11.014�. �hal-00462646�

(2)

FLOWS

JEAN-PIERRECONZEANDKRZYSZTOFFRCZEK

Abstrat. Weonsider interval exhange transformations of periodi type

andonstrutdierentlassesofreurrentergodioylesofdimension1

over thisspeiallassof IETs. Thenusing Poinaré setions we applythis

onstrution to obtain reurrene and ergodiityfor somesmooth ows on

non-ompatmanifoldswhihareextensionsofmultivaluedHamiltonianows

onompatsurfaes.

Contents

1. Introdution 2

2. Preliminaries 3

2.1. Intervalexhangetransformations 3

2.2. IETsofperioditype 4

2.3. GrowthofBVoyles 5

2.4. Reurrene,essentialvalues,andergodiityofoyles 6

3. Ergodiityofpieewiselinearoyles 8

3.1. Pieewiselinearoyles 9

3.2. Produtoyles 10

4. Ergodiityofertainstepoyles 15

4.1. Stepoyles 15

4.2. Ergodioylesinaseκ >1 17

5. Ergodiityoforretedoyles 18

5.1. Rauzy-Veehindution foroyles 18

5.2. Corretionoffuntions ofbounded variation 19

5.3. Ergodiityoforretedstepfuntions 20

6. ReurreneandergodiityofextensionsofmultivaluedHamiltonians 22

6.1. Speialows 22

6.2. BasipropertiesofmultivaluedHamiltonianows 22

6.3. ExtensionsofmultivaluedHamiltonianows 24

7. ExamplesofergodiextensionsofmultivaluedHamiltonianows 30

7.1. ConstrutionofmultivaluedHamiltonians 30

7.2. Examples 33

AppendixA. Deviationofoyles: proofs 35

2000MathematisSubjetClassiation. 37A40,37C40.

Keywordsand phrases. intervalexhangetransformation,oyle,multivaluedHamiltonian

ow,inniteinvariantmeasure,ergodiity.

ResearhpartiallysupportedbyMNiSzWgrantNN201384834andMarieCurie"Transferof

Knowledge"program,projetMTKD-CT-2005-030042(TODEQ).

(3)

AppendixB. Possiblevaluesofθ21 36

AppendixC. Deviation oforretedfuntions 37

AppendixD. Exampleofnon-regularstepoyle 43

Referenes 44

1. Introdution

LetT : (X,B, µ)→(X,B, µ)bean ergodiautomorphism ofastandardBorel probabilityspaeandGbealoally ompatabeliangroupwithidentityelement

denotedby0. Wewillonsider essentiallytheaseG=R,forℓ≥1.

Eah measurable funtion ϕ: X → Gdetermines aoyleϕ(·) : Z×X →G

forT bytheformula ϕ(n)(x) =



ϕ(x) +ϕ(T x) +. . .+ϕ(Tn−1x), if n >0

0, if n= 0,

−(ϕ(Tnx) +ϕ(Tn+1x) +. . .+ϕ(T−1x)), if n <0.

Weonsidertheassoiatedskewprodut

Tϕ: (X×G,B × BG, µ×mG) → (X×G,B × BG, µ×mG), Tϕ(x, g) = (T x, g+ϕ(x)),

(1.1)

whereBG denotestheσ-algebraofBorelsubsetsandmG theHaarmeasureofG.

Theoyle(·))anbeviewedasa"stationary"walkinGoverthedynamial

system(X, µ, T). Wesaythatitisreurrentif(n)(x))returnsfora.e. xinnitely

oftenin anyneighborhoodoftheidentityelement. ThetransformationTϕ isthen

onservative for the invariant σ-nite measure µ×mG. If moreoverthe system

(X×G, µ×mG, Tϕ)isergodi,wesaythattheoyleϕ(·)isergodi. Forsimpliity,

the expression "oyle ϕ" refers to the oyle(·)) generated by ϕ over the

dynamialsystem(X,B, µ, T).

Aproblemistheonstrutionofreurrentergodioylesdened overagiven

dynamialsystembyregularfuntionsϕwithvaluesin R. Thereisanimportant

literature on skew produts overan irrational rotation on the irle, and several

lassesofergodioyleswithvaluesinRorRareknowninthatase(see[23℄,[25℄

and[26℄forsomelassesofergodipieewiseabsolutelyontinuousnon-ontinuous

R-oyles, [16℄for examplesof ergodioyleswithvaluesin anilpotent group,

[7℄for ergodi oyles in Z2 assoiated to speial diretional retangularbilliard

owsintheplane).

Skew produtsappearin anaturalway in thestudy of thebilliardowin the

plane withZ2 periodiallydistributed obstales. Forinstane whenthe obstales areretangles,theyanbemodeledasskewprodutsoverintervalexhangetrans-

formations(abbreviated asIETs). Reurreneand ergodiityof these models are

mainly open questions. Nevertheless a rst step is the onstrution of reurrent

ergodi oylesoversome lasses of IETs (see also areent paper byP. Hubert

(4)

For the rotations on the irle, a speial lass onsists in the rotations with

boundedpartialquotients. ForIETs,itisnaturaltoonsidertheso-alledinterval

exhange transformationsof periodi type. Theaim of this paper isto onstrut

dierentlassesof reurrentergodioylesoverIETsin thisspeial lass.

This is donein Setions 3, 4, and 5. In Setion 2we reall basi fats about

IETs of periodi type, as well as from the ergoditheory of oyles. Inthe ap-

pendixproofsoftheneededresultsonthegrowthofoylesofboundedvariation

(abbreviatedasBVoyles)aregiven,mainlyadapted from[24℄.

In Setions 6 and 7 we present smooth models for reurrent and ergodi sys-

tems based on the previous setions. We deal with a lass of smooth ows on

non-ompatmanifolds whih areextensions ofmultivaluedHamiltonian owson

ompat surfaes of higher genus. These ows have Poinaré setions for whih

therstreurrenemap isisomorphito askew produtof anIET andaBVo-

yle. This allowsus to proveasuientonditionfor reurreneand ergodiity

(seeSetion6)whenevertheIETisofperioditype. InSetion7weshowhowto

onstrutexpliitnon-ompatergodiextensionsofsomeHamiltonianows.

2. Preliminaries

2.1. Interval exhange transformations.

In this subsetion, we reall standard fats on IET's, with the presentation and

notationsfrom [32℄ and [33℄. Let Abead-elementalphabet andletπ = (π0, π1)

beapairofbijetionsπε:A → {1, . . . , d}forε= 0,1. DenotebySA0 thesubsetof

irreduiblepairs, i.e.suhthat π1◦π0−1{1, . . . , k} 6={1, . . . , k} for1 ≤k < d. We

willdenotebyπsymd anypair0, π1)suhthatπ1◦π0−1(j) =d+ 1−jfor1≤j≤d.

Letusonsiderλ= (λα)α∈A∈RA+,whereR+= (0,+∞). Set

|λ|= X

α∈A

λα, I= [0,|λ|)

and

Iα= [lα, rα), where lα= X

π0(β)<π0(α)

λβ, rα= X

π0(β)≤π0(α)

λβ.

Then|Iα|=λα. Denote byπ thematrix[Ωα β]α,β∈A givenby

α β=



+1 ifπ1(α)> π1(β)andπ0(α)< π0(β),

−1 ifπ1(α)< π1(β)andπ0(α)> π0(β), 0 in allotherases.

Given(π, λ)∈ SA0×RA+,letT(π,λ): [0,|λ|)→[0,|λ|)standfortheintervalexhange

transformation(IET)ondintervalsIα, α∈ A, whih arerearrangedaordingto

thepermutationπ−11 ◦π0,i.e.T(π,λ)x=x+wαforx∈Iα,wherew= Ωπλ.

Notethatforeveryα∈ Awithπ0(α)6= 1thereexistsβ∈ Asuhthatπ0(β)6=d

andlα=rβ. Itfollowsthat

(2.1) {lα:α∈ A, π0(α)6= 1}={rα:α∈ A, π0(α)6=d}.

By Tb(π,λ) : (0,|I|] → (0,|I|] denote the exhange of the intervals Ibα = (lα, rα], α∈ A,i.e.T(π,λ)x=x+wαforx∈Ibα. Notethatforeveryα∈ Awithπ1(α)6= 1

(5)

thereexistsβ ∈ Asuh thatπ1(β)6=dandT(π,λ)lα=Tb(π,λ)rβ. Itfollowsthat

(2.2) {T(π,λ)lα:α∈ A, π1(α)6= 1}={Tb(π,λ)rα:α∈ A, π1(α)6=d}.

Apair(π, λ)satises theKeane onditionifT(π,λ)m lα6=lβ forallm≥1 andfor

allα, β∈ Awithπ0(β)6= 1.

LetT =T(π,λ),(π, λ)∈ SA0 ×RA+,beanIETsatisfyingKeane'sondition. Then λπ−1

0 (d)6=λπ−1

1 (d). Let

I˜=h

0,max lπ−1

0 (d), lπ−1

1 (d)

anddenotebyR(T) = ˜T : ˜I→I˜therstreturnmapofT to theinterval. Set ε(π, λ) =

( 0 if λπ−1

0 (d)> λπ−1 1 (d), 1 if λπ−1

0 (d)< λπ−1

1 (d).

Letusonsiderapairπ˜ = (˜π0,π˜1)∈ SA0,where

˜

πε(α) = πε(α)forallα∈ Aand

˜

π1−ε(α) =



π1−ε(α) if π1−ε(α)≤π1−ε◦π−1ε (d), π1−ε(α) + 1 if π1−ε◦π−1ε (d)< π1−ε(α)< d, π1−επε−1(d) + 1 if π1−ε(α) =d.

AsitwasshownbyRauzyin [27℄,isalsoanIET ond-intervals T˜=Tπ,λ)˜ with˜λ= Θ−1(π, λ)λ,

where

Θ(T) = Θ(π, λ) =I+Eπ−1ε (d)π−1

1−ε(d)∈SL(ZA).

Moreover,

(2.3) Θt(π, λ)ΩπΘ(π, λ) = Ωπ˜.

It followsthat ker Ωπ = Θ(π, λ) ker Ωπ˜. Wehavealsotπ =−Ωπ. Thus taking

Hπ = Ωπ(RA) = ker Ωπ, we get Hπ˜ = Θt(π, λ)Hπ. Moreover,dimHπ = 2g and dim ker Ωπ=κ−1,whereκisthenumberofsingularitiesandgisthegenusofthe

translationsurfaeassoiatedtoπ. Formoredetails wereferthereaderto[33℄.

The IETfullls the Keane ondition as well. Therefore we aniterate the

renormalizationproedureandgenerateasequeneofIETs(T(n))n≥0,whereT(n)= Rn(T) for n ≥ 0. Denote by π(n) = (π0(n), π(n)1 ) ∈ SA0 the pair and by λ(n) = (λ(n)α )α∈A thevetorwhih determinesT(n). Then T(n)is therstreturnmap of T totheintervalI(n)= [0,|λ(n)|)and

λ= Θ(n)(T)λ(n)withΘ(n)(T) = Θ(T)·Θ(T(1))·. . .·Θ(T(n−1)).

2.2. IETs ofperiodi type.

Denition (see [29℄). An IET T is of periodi type if there exists p > 0 (alled a

period of T) suh that Θ(T(n+p)) = Θ(T(n))for everyn ≥0 and Θ(p)(T) (alled

aperiodi matrix of T anddenoted by Ain allthat follows) has stritly positive

(6)

Remark 2.1. SupposethatT =T(π,λ) isofperioditype. It followsthat

λ= Θ(pn)(T)λ(pn)= Θ(p)(T)nλ(pn)∈Θ(p)(T)nRA,

andheneλbelongsto T

n≥0Θ(p)(T)nRA whihis aone-dimensionalonvexone (see[30℄). ThereforeλisapositiverightPerron-Frobeniuseigenvetorofthematrix

Θ(p)(T). Sine the set SA0 is nite, multiplyingthe period p ifneessary, we an

assume that π(p) = π. It follows that(p), λ(p)/|λ(p)|) = (π, λ/|λ|) and ρ :=

|λ|/|λ(p)| is the Perron-Frobenius eigenvetor of the matrix Θ(p)(T). Reall that

similarargumentstothoseaboveshowthat everyIETofperioditypeisuniquely

ergodi.

A proeduregivinganexpliitonstrutionof IETsof periodi typewasintro-

dued in [29℄. The onstrution is based on hoosing losed paths on the graph

givingtheRauzylasses. EveryIETofperioditypeanbeobtainedthisway.

LetT =T(π,λ)beanIETofperioditypeandpbeaperiodsuhthatπ(p).

LetA= Θ(p)(T). By(2.3),

AtπA= Ωπ andhene ker Ωπ=Aker Ωπ andHπ=AtHπ.

Multiplying theperiod pifneessary,weanassumethat A|ker Ωπ =Id(seeAp-

pendix C for details). Denote by Sp(A) the olletionof omplexeigenvalues of

A, inluding multipliities. Letus onsider the olletionof Lyapunov exponents

log|ρ|,ρ∈Sp(A). Itonsistsofthenumbers

θ1> θ2≥θ3≥. . .≥θg≥0 =. . .= 0≥ −θg≥. . .≥ −θ3≥ −θ2>−θ1,

where2g= dimHπ and0ourswiththemultipliityκ−1 = dim ker Ωπ (seee.g.

[35℄and[36℄). Moreover,ρ1:= expθ1isthePerron-FrobeniuseigenvalueofA. We

willusesometimesthesymbolθi(T)insteadofθi toemphasizethatitisassoiated

toT.

Denition. AnIETofperioditypeT(π,λ)hasnon-degeneratedspetrumifθg>0.

2.3. Growth ofBV oyles.

The reurreneof aoyle ϕ with valuesin R is related to the growth of ϕ(n)

whenntendsto.

ForanirrationalrotationT :x→x+αmod 1(thisanbeviewedasanexhange

of 2intervals),when ϕ hasa bounded variation, thegrowth of ϕ(n) is ontrolled

bytheDenjoy-Koksmainequality: ifϕisazeromeanfuntion onX =R/Zwith

boundedvariationVarϕ, and(qn)thedenominators(oftheonvergents)givenby theontinuedfrationexpansionof α,thenthefollowinginequalityholds:

|

qXn−1 j=0

ϕ(x+jα)| ≤Varϕ,∀x∈X.

(2.4)

Thisinequalityimpliesobviouslyreurreneoftheoyleϕ(·)andifαhasbounded

partialquotients(wesayforbrevitybpq)

Pn−1

j=0 ϕ(x+jα) =O(logn)uniformlyin x∈X.

(7)

Itismuhmorediulttogetapreiseupperboundforthegrowthofaoyle

overanIET. Thefollowingtheorem (provedin Appendix A) givesfor an IET of

periodi type aontrol on the growth of aBV oylein termsof the Lyapunov

exponentsofthematrixA.

Theorem2.2. Supposethat T(π,λ):I→I isan intervalexhangetransformation ofperiodi type, 0≤θ2< θ1arethe twolargestLyapunovexponents,andM isthe

maximal size of Jordan bloks in the Jordan deomposition of its periodi matrix

A. Then thereexistsC >0 suhthat

(n)ksup≤C·logM+1n·nθ21·Varϕ

for every funtion ϕ : I → R of bounded variation with zero mean and for eah

naturaln.

For ourpurpose,this inequalityisusefulwhenθ2(T)/θ1(T)issmall. InAppen-

dixBwewillgiveexampleswitharbitrarysmallvaluesof thisratio.

2.4. Reurrene,essentialvalues, and ergodiityof oyles.

Inthis subsetionwereall somegeneralfats aboutoyles. Forrelevantbak-

groundmaterialonerningskewprodutsandinnitemeasure-preservingdynam-

ialsystems,wereferthereaderto[28℄and [1℄.

DenotebyGtheonepointompatiationofthegroupG. An elementg∈G

issaidto beanessential value ofϕ,ifforeveryopenneighbourhood Vg ofg inG

andanyset B∈ B,µ(B)>0,thereexistsn∈Zsuhthat µ(B∩T−nB∩ {x∈X :ϕ(n)(x)∈Vg})>0.

(2.5)

ThesetofessentialvaluesofϕwillbedenotedbyE(ϕ). Thesetofniteessential

valuesE(ϕ) :=G∩E(ϕ)isalosedsubgroupofG. Wereallbelowsomeproperties

ofE(ϕ)(see[28℄).

Two oyles ϕ, ψ : X → G are alled ohomologous for T if there exists a

measurable funtion g: X →G suh that ϕ=ψ+g−g◦T. Theorresponding skew produts Tϕ and Tψ are then measure-theoretially isomorphi. A oyle

ϕ:X →Gisaoboundaryifitisohomologoustothezerooyle.

Ifϕand ψareohomologousthenE(ϕ) =E(ψ). Moreover,ϕ isaoboundary

ifandonlyifE(ϕ) ={0}.

Aoyleϕ:X→Gisreurrent(asdened intheintrodution)ifandonlyif, foreahopenneighborhoodV0 of0, (2.5)holdsforsomen6= 0. Thisisequivalent

to the onservativity of the skew produt Tϕ (f. [28℄). Let ϕ : X → R be an

integrablefuntion. If itis reurrent, then

R

Xϕ dµ = 0; moreover,for ℓ = 1this

onditionissuientforreurrenewhenT isergodi.

The group E(ϕ) oinides with the group of periods of Tϕ-invariant funtions

i.e.theset ofallg0∈Gsuhthat, iff :X×G→RisaTϕ-invariantmeasurable

funtion,thenf(x, g+g0) =f(x, g)µ×mG-a.e. Inpartiular,Tϕisergodiifand

onlyifE(ϕ) =G.

(8)

Proposition 2.3 (see Corollary1.2 in [5℄). If ϕ:X →R is asquareintegrable

oyle for an automorphism T : (X,B, µ) → (X,B, µ) suh that(n)kL2(µ) =

o(n1/ℓ),thenitisreurrent.

InviewofTheorem2.2,asaonsequenewehavethefollowing.

Corollary2.4. IfT :I→IisanIETofperioditypesuhthatθ2(T)/θ1(T)<1/ℓ

for an integer ℓ ≥1, then every oyle ϕ :I → R over T of boundedvariation

with zero mean is reurrent. If, for j = 1, . . . , ℓ, Tj : I(j) → I(j) are interval

exhangetransformationsofperioditypesuhthatθ2(Tj)/θ1(Tj)<1/ℓ,thenevery

"produt"oyleϕ= (ϕ1, . . . , ϕ) :I(1)×. . .×I(ℓ)→R ofboundedvariationwith

zeromeanoverT1×...×T isreurrent.

Weontinuethesepreliminariesbysomeusefulobservationsforprovingtheer-

godiity of oyles. Let (X, d) bea ompat metrispae. Let B standfor the σalgebraofallBorelsetsandletµbeaprobabilityBorelmeasureonX. ByχBwe

willdenotetheindiatorfuntionofasetB. SupposethatT : (X,B, µ)→(X,B, µ)

is anergodi measurepreserving automorphismand there exist an inreasingse-

queneofnaturalnumbers(qn)andasequeneofBorelsets(Cn)suhthat µ(Cn)→α >0, µ(Cn△T−1Cn)→0 and sup

x∈Cn

d(x, Tqnx)→0.

Assume that G ⊂ R for some ℓ ≥ 1. Let ϕ : X → G be a Borel integrable

oyleforT withzeromean. Supposethatthesequene(R

Cn(qn)(x)|dµ(x))n≥1

isbounded. Asthedistributions

(µ(Cn)−1(qn)|Cn)(µ|Cn), n∈N)

areuniformlytight,bypassingtoafurthersubsequeneifneessaryweanassume

thattheyonvergeweaklyto aprobabilityBorelmeasureP onG.

Lemma 2.5. The topologial support of the measure P is inluded in the group E(ϕ) ofessential values ofthe oyleϕ.

Proof. Suppose that g ∈ supp(P). Let Vg be an open neighborhood of g. Let ψ : G → [0,1] be a ontinuous funtion suh that ψ(g) = 1 and ψ(h) = 0 for h∈G\Vg. ThusR

Gψ(g)dP(g)>0. ByLemma 5in [13℄, for everyB ∈ B with µ(B)>0wehave

µ(B∩T−qnB∩(ϕ(qn)∈Vg))≥ Z

Cn

ψ

ϕ(qn)(x)

χB(x)χB(Tqnx)dµ(x)

→α Z

X

Z

G

ψ(g)χB(x)dP(g)dµ(x) =αµ(B) Z

G

ψ(g)dP(g)>0,

andheneg∈E(ϕ).

Corollary 2.6 (see also [6℄). If ϕ(qn)(x) = gn for all x ∈Cn and gn →g, then g∈E(ϕ).

Proposition 2.7 (see Proposition 3.8 in [28℄). Let T : (X,B, µ) → (X,B, µ) be

an ergodi automorphism and let ϕ : X → G be a measurable oyle for T. If K⊂GisaompatsetsuhthatK∩E(ϕ) =∅,thenthereexistsB ∈ Bsuhthat µ(B)>0and

µ(B∩T−nB∩(ϕ(n)∈K)) = 0 forevery n∈Z.

Références

Documents relatifs

We apply it to build a wide assortment of explicit examples on four intervals having different dynamical properties: these include the first nontrivial examples with

Lemma 2.5. Let T satisfy the i.d.o.c. This follows from the unique ergodicity of T. S is weak mixing if it has no eigenvalue... The fundamental lemma. In this subsection, we use

We apply it to build a wide assortment of explicit examples on four intervals having different dynamical properties: these include the first nontrivial examples with

But, while Veech’s question stood unanswered, examples of simple transformations remained scarce: there were of course the systems with minimal self-joinings, and some systems

The different steps to reach our objective are first the contour extraction and the definition of a list of positions for each contour belonging to the group of frame, second,

A breather filter on the drive housing cover reduces the ingress of contaminants through the bearings of the disk motor by minimising the pressure drop across

paragraph. You need to adjust to the automatic return because, as you will see later, extra returns will cause unintended results. A typewriter space bar moves

o Updating system Software and Saving Files shows you how to update system software and save the user files on a UNIX PC that contains an earlier version of