• Aucun résultat trouvé

Modular equations for hyperelliptic curves

N/A
N/A
Protected

Academic year: 2021

Partager "Modular equations for hyperelliptic curves"

Copied!
27
0
0

Texte intégral

(1)

HAL Id: inria-00000627

https://hal.inria.fr/inria-00000627

Submitted on 10 Nov 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Pierrick Gaudry, Eric Schost

To cite this version:

Pierrick Gaudry, Eric Schost. Modular equations for hyperelliptic curves. Mathematics of Computa- tion, American Mathematical Society, 2005, 74, pp.429-454. �inria-00000627�

(2)

ArtileeletroniallypublishedonMay25,2004

MODULAR EQUATIONS FOR HYPERELLIPTIC CURVES

P.GAUDRYAND

E.SCHOST

Abstrat. Wedenemo dularequationsdesribingthe`-torsionsubgroups

of theJaobianof ahyp erelliptiurve. Over a nitebaseeld, weprove

fatorizationprop ertiesthatextendthe well-known resultsused inAtkin's

improvementofSho of'sgenus1p ointountingalgorithm.

Introdution

Mo dularequationsrelatinginvariantsof`-isogenouselliptiurves areafunda-

mentalto olinomputationalarithmetigeometry. Agreateorthasb eendevoted

to obtainingequations sparser or withsmallero eÆientsthan thelassialp oly-

nomials

`

[12℄,sonowadaystheseequationsan b eomputedeÆientlyevenfor

quitelarge`. Oneof theirimp ortantappliations isthedeterminationofthear-

dinalityofanelliptiurvedenedoveraniteeld[24℄: theb estmetho dtodate,

at least for primenite elds, is theSho of-Elkies-Atkin algorithm,inwhih the

`-torsionstruture iswidelyused.

Nevertheless,verylittleisknownab outsimilarequationsforhighergenusurves.

Sinethehyp erelliptiase istheb estsuited foromputations,we restritto this

situation. Ourgoalinthisartileisthentwofold:

We dene mo dularequationsforhyp erelliptiurves, withoutusingmo d-

ularforms. Inthe partiularase of genus 1,ourequations oinide with

thoseintro dued byCharlap,ColeyandRobbinsin[11℄.

When the base eld is nite, we prove that the well-known fatorization

prop erties of genus 1 mo dularequations extend to our highergenus on-

strution. Thismakesthemamenableforuseinhighergenusextensionsof

theAtkinimprovementof Sho of'sinitialalgorithm[27℄.

Here is abrief overview of our onstrution. Consider a hyp erellipti urve C

of genus g ,Ja(C) itsJaobian, and ` aprime. The quotient ofthe Jaobianby

a subgroup of order ` is an ab elian variety `-isogenous to Ja (C), but in genus

greaterthan1itisingeneralnottheJaobianofaurve. Generalab elianvarieties

aremoreintriateto handlethanJaobians ofurves,forwhihinvariantsan b e

easilyomputed,soweratherstudydiretlythe`-torsionsubgroupoftheJaobian.

Ourmo dularequationsare thusdened usingthegroupstruture ofthe`-torsion

subgroup.

ReeivedbytheeditorJuly15,2002and,inrevisedform,August16,2003.

2000MathematisSubjetClassiation. Primary11Y40;Seondary11G20,11Y16.

Key words and phrases. Mo dular equations, hyp erellipti urves, Sho of-Elkies-Atkin

algorithm.

2004Copyrightheldbytheauthors

(3)

More preisely, these equations are univariate p olynomialswhose ro ots are in

orresp ondene with the yli subgroups of the `-torsion group. This denition

avoidstheuseofmo dularforms,soitisvalidoveranyp erfeteld. Theonstru-

tionis very similarto that of resolventsinGalois theory; as suh, whenthe base

eldisnite,thefatorizationpatternsofthemo dularequationsareverysp ei,

and arry enough informationto b e of use inhigher genus Sho of p oint-ounting

algorithms.

Asanexample,wehavedetailedtherelationshipb etweenthe3-torsionmo dular

equation of a genus 2urve and the ardinality of its Jaobian mo dulo 3. This

equationisnowusedwithinMagma'shyp erelliptiurve pakage[1℄aspartofthe

p oint-ountingalgorithm,sineinmanyasestheJaobianordermo dulo3an b e

deduedquiklyusingthisequation. Forlargeniteeldsofryptographisize,the

gainbroughtbythismetho dismarginal,astheomputationmo dulo3b eomesa

tiny part of the whole omputation. Yet,ina generalist systemsuh as Magma,

it isalso imp ortantto optimizep oint ounting algorithmsfor smaller baseelds.

Forsuhsituations,foreldsoforderuptoab out10 6

,usingthe3-torsionmo dular

equationyieldsasigniantsp eed-up.

The pap er is organized as follows. In Setion 1, we preise the notation used

inthesequel. Themo dularequationsare denedinSetion2,where we alsogive

theirbasiprop ertiesanddetailtheexampleofgenus1. InSetion3,weprovethat

themo dularequations havetheexp eted sp eializationprop erties. This isruial

for theomputationalp ointof view, whih is studied inSetion 4. InSetion 5,

wenallyonsidertheniteeldase,andshowhowthefatorizationpatternsof

ourmo dularequationsextendthewell-knownaseofgenus1;weapplythisforthe

p oint-ountingproblem.

Aknowledgments. We thankFranoisMorainforhis numerousommentsand

suggestions. We are grateful to John Boxall for giving us referenes ab out the

Manin-Mumford onjeture. The heaviest omputations were done on the ma-

hines of theCNRS{

Eole p olytehnique MEDICISomputationenter [2℄,using

the Magmaomputeralgebra system[1℄. Theseond author is amemb erof the

TERAprojet[3℄.

1. Notation

Letkb eap erfet eldofharateristi dierentfrom2and Cagenus ghyp er-

ellipti urve dened over k . We supp ose that the aÆne part of C is dened by

theequationy 2

=f(x), withf moniofdegree2g+1,andforsimpliityweshall

saythat C istheurve dened byy 2

=f(x). The uniquep ointatinnityonC is

denoted by1.

We also assume that the harateristi of k is dierent from 2g+1, so that

we an transform f(x) into a p olynomialwhose o eÆient in x 2g

is zero. This

simpliationissimilarto what isoftendoneingenus1whentaking anequation

ofthe formy 2

=x 3

+Ax+B. Our results alsoholdinharateristi 2g+1, but

withdierentequations.

We denote the Jaobian of C by Ja (C). This is a projetive variety dened

overk ;theanonialinjetionC!Ja (C)asso iates toP 2C thedivisorlassof

P 1;itisalsodenedoverk .

If K is an extension eld of k , we may distinguish the urves dened on k

2

(4)

C=K ! Ja (C=K) extends the injetion C=k ! Ja(C=k ), and the group law

onJa (C=K)extends thatofJa (C=k ).

In partiular, let k b e an algebrai losure of k . Then for a prime`, we will

denotebyJa[`℄thesubgroupof`-torsionelementsofJa(C=k).

Let b e the hyp erellipti involution on C=k , and let denote the injetion

C=k!Ja(C=k). Asaonsequene oftheRiemann-Ro htheorem,anyelementin

Ja(C=k )an b e uniquelyrepresented byadivisoroftheformD= P

1jr (P

j )

withthefollowingprop erties:

(1) allP

j

arep ointsontheaÆnepartofC=k ,

(2) P

j 6=(P

j

0)forallj6=j 0

,

(3) risatmostg .

Theintegerrisalled theweight ofD .

Let D and fP

j g

1jr

b e as ab ove; sine the p ointsP

j

are notat innity, we

maytakeP

j

=(x

j

;y

j

;1).ThentheMumford-Cantor representationofD [25,9℄is

dened by

D=hu(x);v (x)i=hx r

+u

r 1 x

r 1

++u

0

;v

r 1 x

r 1

++v

0 i;

where u = Q

1jr (x x

j

) and v (x

j ) =y

j

holds with suitable multipliities, so

that u divides v 2

f. Sine k is p erfet, the divisor D is dened over a eld K

ontainingkifand onlyifthep olynomialsuand vhave o eÆientsinK.

For j in0;:::;r 1, we willdenote by u

j

(D ) (resp. v

j

(D )) the o eÆient u

j

(resp. v

j

)inthisrepresentation.

2. Modular equations

2.1. Denitions. Let`b e ano dd primedierentfromtheharateristi ofk . In

thissubsetion,wedenethe`-thmo dularequationofagenusghyp erelliptiurve

C denedoverk .

Tothisend,weonsiderthe`-torsiondivisorsinJa(C=k ). Theassumptionthat

` diers fromtheharateristi ofk implies that thenumb erof `-torsiondivisors

of nonzero weightis ` 2g

1[22℄. From nowon, we assumethat all thesedivisors

have weightexatlyg ;seesubsetion 2.3fortherelevaneofthisassumption.

Generiityassumption. Allnonzero`-torsiondivisorsin Ja(C=k )haveweight

g .

LetDb e an`-torsiondivisor. Thedivisors

hD i=

` 1

2

D ;:::; D ;0;D ;:::;

` 1

2

D

forma yli subgroup of ardinality ` in Ja[`℄. Our objetive is to b e able to

\separate" these subgroups, using only algebrai onstrutions. To this eet we

ho ose afuntiont

`

(D ) withvalues ink ,whihtakes aonstant valueoneah of

the subgroups hD i. Our mo dular equations may then b e thought as a minimal

p olynomialoft

` .

Preisely,we denet

`

as thefollowingsum:

(1) t

` (D )=

X

1i

` 1

2 u

g 1 [i℄D

:

Ourgeneriity assumptionimplies that this sumis well-dened for allnonzero `-

torsion divisors D . Note that [ i℄D and [i℄D have the sameu -o ordinate, so

(5)

eventhoughwerestritthenumb erofsummandsto(` 1)=2,t

`

(D ) dep endsonly

onthesubgroupgeneratedbyD ,as requested.

Wenextdenethep olynomial

`

2k [T℄,whosero otsarethevaluestakenbyt

`

onthenonzero`-torsiondivisors:

`

= Y

D 2Ja [`℄nf0g T t

` (D )

:

Thep olynomial

`

isan(` 1)-thp owerink [T℄.IndeedJa[`℄nf0ganb ewritten

as thedisjoint unionof the

` 2g

1

` 1

sets hD inf0g, and the funtiont

`

(D ) takes a

onstantvalueoneahpart ofthispartition.

We nowshow that

`

is atually in k [T℄. Let b e in Gal(k =k ). If D is any

divisor, u

g 1 (D )

=u

g 1 (D )

. Also,ommuteswiththegrouplaw,whene

[i℄D

=[i℄ (D ),soinduesap ermutationamongthenonzero`-torsiondivisors.

IfD issuhadivisor,thentheequality

t

` (D )

= t

` (D )

obviouslyholds. Sine p ermutes the`-torsiondivisors, this equalityshows that

`

is left invariant by , so

`

is ink [T℄. Sine k is ap erfet eld,and

` is an

(` 1)-th p ower ink [T℄,there exists ap olynomial

`

with o eÆients ink suh

that

`

=

` 1

` .

Denition1. Theuniquemonip olynomial

`

suhthat

`

=

` 1

`

isalledthe

`-thmodular equationofC.

Thep olynomial

`

hasdegree

` 2g

1

` 1

. Toemphasizethedep endeneontheurve

C,itmayalsob e denotedby

` (C).

The rest of this artile is devoted to desribing the main prop erties of these

equations,howtoomputethemandhowtousethemforardinalityomputation,

inthease whenkisaniteeld.

Remark 1. Our hoie of thefuntiont

`

is arbitrary. In Setion 5,we show that

theinterestingase iswhen

`

issquarefree, whihhapp ens whent

`

takesdistint

values ondistint ylisubgroups. Unfortunately,this willnotb e theaseforall

urves;forsuh urves,analternativehoieoft

`

maysolve theproblem:

Instead of onsidering the sum of the u

g 1

-o ordinates of half of the divisors

in the subgroup, we ho ose some integer k and form the sum of the k -th p ower

of any linear ombination of all the o ordinates (u;v ). Then, we might have to

extend the summationinequation (1) to all elements inthesubgroup hD i, sine

notallo ordinatesarenegation-invariant. Thesubsequentresultsfollowinasimilar

mannerforsuh alternativeonstrutions.

Yetinpratie,ho osingtheo ordinateu

g 1

yieldsthep olynomialwithsmallest

o eÆientswhen working over Q,and inmostofour exp erimentsingenus 1and

2,thisp olynomialturnedouttob esquarefree, asrequested.

Remark 2. In the sequel, we willoften onsider urves with generi o eÆients.

Thus we dene forone and for all the generi urve of genus g as the urve of

equation

C

g :y

2

=x 2g +1

+F

2g 1 x

2g 1

++F

0

;

over therational funtioneld Q(F

0

;:::;F

2g 1

). Inthis ase, thep olynomial

`

b elongstoQ(F

0

;:::;F

2g 1

)[T℄,andsatisesthefollowinghomogeneityprop erty.

(6)

Theorem1. The`-thmodularequationofthe urveC

g

isweightedhomogeneous,

whengiving weight1toT and weight2g+1 i toF

i

fori=0;:::;2g 1.

Proof. Letb e anonzero rational,andlet e

C

g

b etheurve dened by

y 2

=x 2g +1

+

^

F

2g 1 x

2g 1

++ f

F

0

;

where e

F

i

= 2g +1 i

F

i

, fori =1;:::;2g 1. Then the map': C

g

! e

C

g

dened

by'(x;y )=(x;

2g +1

y )isanisomorphismb etween C

g and

e

C

g

. Thisisomorphism

extendsto anisomorphismb etween Ja(C

g

)andJa(

e

C

g

), whihatsasfollowsin

theMumford-Cantorrepresentation:

(u

0

;:::;u

g 1

;v

0

;:::;v

g 1 )7!(

g

u

0

;:::;u

g 1

; 2g +1

v

0

;:::; g +2

v

g 1 ):

Givenan`-torsiondivisorD onJa(C

g

),thevaluet

`

(D ) issenttot

`

(D ). Thus

` (F

0

;:::;F

2g 1

;t

`

)=0 ()

` (

2g +1

F

0

;:::; 2

F

2g 1

;t

` )=0:

Thisprovesthetheorem.

Theweightedhomogeneityimplies that notall monomialsapp ear inthemo d-

ularequation forthegeneri urve. Asaonsequene, ourmo dularequationsare

somewhat sparse, and we shall see b elow that for ellipti urves they provide a

muhsmalleralternativetothelassialmo dularp olynomials

` .

Remark 3. In ourformalism,themo dular equation for2-torsion

2

is ill-dened

ingenus greater than 1. Indeed, the generiity assumptionfor2-torsion is never

satised,sine the2g+1ro otsof thedeningp olynomialf(x)give theabsissae

of2g+1weight1divisorsof2-torsion. Inthepartiularaseofelliptiurves,we

anset

2

=f.

2.2. The elliptiase. We illustrate ourdenitionon an elliptiurve E, given

by an equation y 2

=f(x), with f moni of degree 3. Ingenus 1, the generiity

assumptionisalwayssatised,sine theonlydivisorwhoseweightisnotmaximal

iszero.

IfP =(x;y )isap ointonE andi ap ositiveinteger, theo ordinates of[i℄P are

rationalfuntionsofP,see[30℄:

[i℄P =

i (P)

i (P)

2

;

!

i (P)

i (P)

3

:

The p olynomials

i (P),

i (P)

2

, and also

i

(P) ifi is o dd, are p olynomialsinx

only. Tofollowthenotationoftheprevioussubsetion,weseethemasp olynomials

inthevariableT.

Givenano ddprime`, theabsissae ofthe `-torsionp ointsare thero otsof

` .

LetP b esuhap oint;foriin1;:::;

` 1

2

,thedenominatorintherationalfuntion

i (P)

i (P)

2

is oprimeto

`

. The imageof this rationalfuntion mo dulo

`

is ap olynomial

h

i;`

ink [Twhih givestheabsissa of[i℄P intermsof theabsissa ofP,forP of

`-torsion. Then,forall`-torsionp ointsP,t

`

(P)isgivenbythesum

t

` (P)=

X

1i

` 1 h

i;`

x(P)

:

(7)

Thep olynomial

`

isthus theharateristi p olynomialof

1i

` 1

2 h

i;`

mo dulo

`

,andthemo dularequation

`

2k [Tisthe(` 1)-thro ot of

` .

Letustakef =x 3

+F

1 x+F

0

,deningwhatwealledthegeneriurveofgenus

1overQ(F

0

;F

1

). Thentherstvalues of

` are

3 = T

4

+2F1T 2

+4F0T 1

3 F

2

1

;

5 = T

6

+20F1T 4

+160F0T 3

80F 2

1 T

2

128F1F0T 80F 2

0

;

7 = T

8

+84F1T 6

+1512F0T 5

1890F 2

1 T

4

9072F1F0T 3

+( 21168F 2

0 +644F

3

1 )T

2

+5832F 2

1 F

0

T 567F 4

1

;

11 = T 12

+550F1T 10

+27500F0T 9

103125F 2

1 T

8

1650000F1F0T 7

+( 13688400F 2

0

+645700F 3

1 )T

6

+20625000F 2

1 F

0 T

5

+(35793120F1F 2

0

11407385F 4

1 )T

4

+(34041920F 3

0

58614160F 3

1 F

0 )T

3

+( 175832976F 2

1 F

2

0

2177802F 5

1 )T

2

+( 235016704F1F 3

0

+1351692F 4

1 F0)T

110680064F 4

0

+6297984F 3

1 F

2

0

321651F 6

1 :

These p olynomials were already onsidered by Charlap, Coley and Robbins

in [11℄, where the authors onstruted them via mo dular forms. Our mo dular

equationsareageneralizationtohighergenus.

Remark 4. Exept for

3

, forwhihafator 1

3

o urs, there arenodenominators

intheo eÆientsofthemo dularequationsofthegenerielliptiurve. Thisfatis

provenin[11℄ usingprop ertiesofmo dularforms. Inhighergenuswe donotknow

apriori whether there are denominatorsin the mo dularequations of thegeneri

urves. TheomputationinSetion 4showsthat themo dularequation

3 ofthe

genus2generiurvedo esnothaveanydenominator,butwedonotexp etthisto

b etrue ingeneral.

2.3. Relevane of the generiity assumption. As mentionedin the previous

subsetion, thegeneriity assumptionissatised ingenus 1for allurves, for all

torsionindiesoprimetotheharateristiof thebase eld.

This onditionisalso satised forall genus 2urves for3-torsion. Tosee this,

onsider a genus 2 urve C. A divisor with nonmaximal weight is of the form

P 1forsomep ointP 2C. Thentheequality[3℄(P 1)=0an b erewritten

as [2℄ (P 1) = (P 1), whih implies that P = 1 by the Riemann-Ro h

theorem. Thus,exept forzero,all3-torsiondivisorshave weight2.

Thegeneriity assumptionis loselyrelated to theManin-Mumfordonjeture

whihstatesthattheJaobianofaurveovertheomplexeldontainsonlynitely

manytorsionelementsofweight1. Moregenerally,Lang'sonjeture,whihisnow

known tob e true [17,p. 435℄,impliesthat theJaobianofagivenurve overthe

omplexeld ontainsonlynitely manytorsion elements ofnonmaximalweight,

asso onasthisJaobianissimple. Asaonsequene,foragivenurve withsimple

Jaobian,thenumb erofprimes`forwhihthegeneriityassumptiondo esnothold

isnite,hene thename.

Notenallythat thisonditionistrue forall` fortheurve ofgenus 2dened

byy 2

=x 5

+5x 3

+x,see[7℄. Usingthesp eializationtheoremgiveninSetion3,

wededuethatthegeneriityassumptionisalsotrue forall`forthegeneriurve

Références

Documents relatifs

In this work, we focus on p-adic algorithms that compute the explicit form of a rational representation of an isogeny between Jacobians of hyperelliptic curves for fields of

As a proof of concept, we detail an optimized software implementation and an FPGA accelerator for computing the proposed optimal Eta pair- ing on a genus-2 hyperelliptic curve over F

Let me stress that, up to choosing the marked points, any singular irreducible hyperelliptic curves gives rise to KdV, 1D Toda and NL Schr¨odinger solutions, parameterized by

Rene Schoof gave a polynomial time algorithm for counting points on elliptic curves i.e., those of genus 1, in his ground-breaking paper [Sch85].. Subsequent improvements by Elkies

The proof is based on a result on Prym varieties stated in [12], which asserts that a very generic Prym variety, of dimension greater or equal to 4, of a ramified double covering is

Given two points P, Q of Xo(N) such that w(P) ^ Q, due to the fact that X^ has genus zero, there exists a function F on X^ such that di\x F is (0) - (P).. On the other hand,

While we are currently missing the tools we need to generalize Elkies’ methods to genus 2, recently Martindale and Milio have computed analogues of modular polynomials for

Finally, we note that in the non-hyperelliptic curve case, one could show with similar reasoning as in Theorem 1.1 that a modular function having a power of χ 18 in the