• Aucun résultat trouvé

INFLUENCE OF DISSIPATIVE PROCESSES ON THE PROPAGATION OF GUIDED ELECTRON PLASMA WAVES ON A PLANAR PLASMA SLAB

N/A
N/A
Protected

Academic year: 2021

Partager "INFLUENCE OF DISSIPATIVE PROCESSES ON THE PROPAGATION OF GUIDED ELECTRON PLASMA WAVES ON A PLANAR PLASMA SLAB"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: jpa-00219279

https://hal.archives-ouvertes.fr/jpa-00219279

Submitted on 1 Jan 1979

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INFLUENCE OF DISSIPATIVE PROCESSES ON THE PROPAGATION OF GUIDED ELECTRON PLASMA

WAVES ON A PLANAR PLASMA SLAB

P.K. Cibin

To cite this version:

P.K. Cibin. INFLUENCE OF DISSIPATIVE PROCESSES ON THE PROPAGATION OF GUIDED

ELECTRON PLASMA WAVES ON A PLANAR PLASMA SLAB. Journal de Physique Colloques,

1979, 40 (C7), pp.C7-599-C7-600. �10.1051/jphyscol:19797290�. �jpa-00219279�

(2)

JOURNAL DE PHYSIQUE CoZZoque C7, szcppZQment au n07, Tome 40, JuiZZet 1979, page C7- 599

INFLUENCE W OISSIPATM PROCESSES ON THE PROPAGATION OF GUIDED ELECTRON PLASMA WAVES ON A PLANAR PLASMA SLAB

P.K. Cibin.

Boris ~ i d r i z I n s t i t u t e of NucZear Sciences, Beograd, YugosZavia.

The aim of this paper is to obtain the propagation and attenuation characteristics of guided electron plasma waves propagating on a planar plasma slab placed between di- fferent dielectrics in the presence of di- ssipative processes.

We consider a planar plasma slab of ufii- form density,thickness a and with the boun- dary planes parallel to X-Z plane.

We describe plasma by equivalent permit- tivity

and neighbouring dielectrics by

E ~ = Aexp (-By+ jay) + B ~ x P ( B Y - ~ ~ Y ~ x

[

The boundary conditions (continuity of tangential components of electric and magne- tic field), with the condition that the ele- ctric and magnetic field must be finite everywhere, form set of four linear homoge- neous equations for the four constants of integration. The requirement that nonzero solution of this set should exist, yields the dispersion relation

It is evident that the propagation coe- E ~ = E ~ ~ - ~ E ~tg ~ = E ~ ~ ( ~ - ~(2) fficient

B

and the attenuation coefficient

a can be given by E ~ = E ~ ~ - (1-j tg 62) ~ E ~ ~ = E ~ ~ (3

( E ~ - E ~ ) ( E -E 1 2 P where tg d l and tg 62 are loss tangents of B= -In

2a ( E +E

B

( 6 2 + ~ p ) the dielectrics, w, up and v are operating, 1 P

plasma and collision frequency, respective- ly.

In the presence of dissipative processes, guided electron plasma waves must attenuate /1-3/ and Z dependence of electromagnetic fields must be given in $he form exp(-az

-

j B z ) , where a and

B

are the attenuation and propagation coefficients respectively. The introduction of this dependence into Maxwe- ll 's equations yields

where ko is the wavenumber in the free spa- ce, E~ the permittivity of free space and E, the relative dielectric constant.

In the slow-wave limit /1/ we can assume that

ja+j~/~*I w

~ € 1

( 6 )

and then the general solution of eqn.(4) is

d aJ

Fig. 1

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19797290

(3)

If the imaqinary parts of the permitti- vities are much smaller in magnitude than the respective real parts, the propagation coefficient $ reaches the maximum values at the resonance conditions

E =-E and E = - E

pr lr pr 2r' (1 1)

and these values are given by

v

For the lower resonance frequency the attenuation coefficient a is equal to n/4aI and for higher resonance frequency is equal to 3a/4a. Between the resonances the propa- gation coefficient reaches the minimum value for

This minimum value is given by

In this case the attenuation coefficient is equal to s/2a.

The normalised propagation and attenua- tion characteristics are plotted for vari- ous ratios of collision and plasma frequen- cy and ~~,=15. ~ ~ ~ tg = 61=tg 62=0, in 3 , fig. 1.

REFERENCES

/1/ A.W.Trivelpiece, R.W.Gould, J.Appl.Phys. v.30 (1959) 1784, /2/ P.J.B.Clarricoats, A.D.Olvef, J . S . L .

Wong, Proc. IEE, v.113 (1966)755, /3/ B.~.AniEin, Fizika, v.1(1968)69,

Références

Documents relatifs

Domego vise à faire apprendre plusieurs notions aux étudiants : (a) les phases et les acteurs d’une opération de construction, (b) les enjeux associés à chaque acteur, (c)

In the case of the interaction of a laser beam at 1.06 um wavelength, the density profile around the cutoff density for the main beam can be measured by UV

Number of accelerated electrons, at the resonant pressure, as the function of their energy gain, for four values of the laser relative intensity.. mension, whereas the longitudinal

By varying the amplitude and duration of the current pulses in the monopolar regime we find that the dis- charge plasma decay follows two different regimes: if the discharge

We see that the growth of amplitude modulation causes de- creasing of instability increment to the value which makes possible the existence of wave chains observed in /I/..

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Discharge tube (1), Thermostatic bath (2), only the lowest mode is acctually excised with Power supply for magnetic bench (3), Coaxial laun- launchers located outside the