• Aucun résultat trouvé

Surface ordering and destruction of the first order phase transition smectic A-smectic C* in free standing smectic films

N/A
N/A
Protected

Academic year: 2021

Partager "Surface ordering and destruction of the first order phase transition smectic A-smectic C* in free standing smectic films"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: jpa-00248083

https://hal.archives-ouvertes.fr/jpa-00248083

Submitted on 1 Jan 1994

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Surface ordering and destruction of the first order phase transition smectic A-smectic C* in free standing smectic

films

E. Demikhov, U. Hoffmann, H. Stegemeyer

To cite this version:

E. Demikhov, U. Hoffmann, H. Stegemeyer. Surface ordering and destruction of the first order phase

transition smectic A-smectic C* in free standing smectic films. Journal de Physique II, EDP Sciences,

1994, 4 (10), pp.1865-1874. �10.1051/jp2:1994237�. �jpa-00248083�

(2)

J. Phv.v. II Fiance 4 (1994) 1865-1874 OCTOBER 1994, PAGE 1865

Cla,,iiication Ph i'ii (I Ah-Iii a( ii

64.711M 68.15

Surface ordering and destruction of the first order phase

transition smectic A-smectic C* in free standing smectic films

E. Demikhov. U. Hoffmann and H.

Stegemeyer

Univer,ity ol Paderborn, ln,iiiuie oi Phy,real Cheiii,try, 33115 P;tderborn, Germany

(R£>( (»led II M(fi£h 1~94. £i(££>/»e(I m tin£d trim Iii./iii£> /994)

Abstract. The therniodynaniic behitviour ot the fir,t order phJ,e iritn,ition ,meciic A-,meciic C in l'ree ,landing film, i, ,tudied numeric,tlly. Profile, of the tilt angle acro,, the film, the tree

energy ~inii ave<~tge ,iructural p;tr;ii1Jeier, ((M)) ;tad

(co,

(M)) tire calculated. By dimini,hing the number of ,niectic layer, the phJ,e iritn,iiion di,Jppeitr, ii it criticitl lilm ihicLne,, ((, which i,

~tpproxiniiitely one order of'mitgnitude litrgcr ih~tn the peneir;ttion length of the ,urlace induced oriier.

Cunipuier,imulatitJn

re,uli, lie,cribe well recent

e,perinientitl

ii;iiJ.

Introductit~n.

Free

,t~inding

,mectic film, are ,tact, of,mectic

layer,

with two free boundarie;. Without any

complication,

one can

produce

film, of ?-I ()I)()

layer,,

which make them J convenient

ob_ject

for

inve,tigation,

ot'low dimen,ion eiiect,

(1-3

(, Pha,e tran,ition, and

precritical phenomena

in the iree

,tanding

,niectic iilm, are iniluenced

by

a combinatiun oi the ,uriace

orderiig

and finite-,ile effect, (,ee al,o

general

review, (4, 5ii,

In many ca,e, the

houndary layer,

oi,mectic iiieiihrane, are niore ordered than the

layer,

in

the iiiidiile. Tfie,tructure of'tfie

hour<tory layer, u,uall»

reilect, order

typical

nor the lower temperature

pha,e,

c)I a

given

material. For

e~ample

the ob,ervation oi,mectic

layer,

in a

,mectic C iiliii ha, been

reported

in (7(. A ,iiectic A-,mectic B

pha,e

tran,ition in

boundary

layer,

ha, been iound in

high preci,ion calorimetry

mea,urement, (8(.

In the pre,ent article we ,hall con,ider,uriace

ordering

eiiect, in the

vicinity

oi the iir,t

order

pha;e

trJn,ition ,mectic A-,mectic C '..

Meyer

<,t <II

(~(

have ,hown that in the ;meciic A

pha,e

oi DOBAMBC the ,iiectic C' appear, in

boundary layer,

tar above the

pha,e

tran,ition temperature. The ieniperature

dependence

ot'the order parameter and the tran,ition tempera-

ture; are t'ound to be iunction, oi the iilm thickne,,. An other

intere,ting example

oi the

influence of confined diiiien,ion on the char;tcter of the

pha,e

tran,ition, I; the

recently

ob,erved eiiect ui the

di,appearance

oi the iir,t order

pha,e

tram,ition SmA-Sm C~

by

dimini,hing

the number oi ,iiiectic

layer,

(10,

11(.

By

iinite-,ize eiiect, the variation ot

thermodyn;tmical

parameter, on

dimini,hing

,y,tem

;ile I, under,toad (,ee ion a review

II ?]).

The mo,t

important

iinite-,ize eiiect, are the

(3)

rounding

iii the

pretran,itional

characteri,tic, and

,hiiting

iii tfie tram,ition teiiiperature,.

Experimentally

it I, <iiificult to

di,tingui,h

the finite-,ile effect, iroiii the ,unfree

ordering,

becau,e

u,ually integral propertie,

oi the iilm, are urea,urea

II II-

In thi, wc)rL we have carried out nuiiierical calculation, oi the ,uriace

ordering

eiiect, in iree

,tanding

it Ini, in the

vicinity

iii the iir,t orcier

pha,e

tran,ition ,niectic A-,niectic C in the ca;e oi a ;trong

anchoring

iii'the tilt

angle

at the

houndary.

It wa, iound that at ,ante critical thicLne,, (£l~ the

pha,e

tran;ition

<it,appear,. Average

,truciural paraiiieter, oi the ,y,tent, vary

continuously

from the smectic A state with surface ordered

boundary layers

to the smectic

C*, which correlates with recent

experiments

lo, II,

13].

The

penetration length

of the

surface order is found to be one order of

magnitude

smaller than the critical thickness. A

surface induced

phase

transformation in a thin

boundary region

was found close above the

phase

transition temperature in thick films. In our work we show that the observed

experimental

results

[10,

II can be

explained by taking

surface

ordering phenomena

into account.

Theoretical model.

In our work we u,eii ;i contiiuuiii nie;in iield

lie,cription

iii'tfie t'ir,t order

ph;t,e

tr;tn,ition ,niectic A-;niectic C

.inalogou;

to tfiJt

of']13].

Tfie ,t;tte oi tfie iiIni wa, cfi;ir~icteriled

hy

a

<iependence

of'tfie tilt

migle

((M)) on tfie coordinate (=

perpendicular

to tfie ,iiiectic

plane, Fig,

). The

origii

oi coordinate, ha, heen taken at one oi the houndarie,. To rind ifie

proiile,

oi the tilt

angle

we fiave

nuiiiericall»

iiiiniiiiiled (he li.ee energy oi the l'ilni taken in ;i iorni

coniiiionly

u,ed li>r tfie

de;cription

iii the

pfia,e

ir;in,ition ,iiiectic A-,iiieciic C ~. ]14]

1/

~

=

~

~

L)Z

>

where (I I, tfie thickne,, ot tfie iiIni and

F~

I, tfie part oi tfie li.ee energy

den,iiy

per unit area iii the iiliii, wfiicfi I,

coupled

witfi the tilt oi the directt>r. The tilt

angle

~,;i, u,eci a, an artier

parJiiieter ior the

lie,cription

oi tfie

pfia,e

tram,ition. The iiee energy

lien,ity

F'~ i,

given hy

the

iollowing e~pre,,ion

>~ i

(.~2

+ (">~ +

i

("~< +

i

j~">

~

i~

where <,

= t~

~ ~

<y i, ;i teiiiperature

independent

con,t;int and J'i I, the t~niperatur~ of the

T

ab,olute

in,lability

iii the,niectic A

pha,e

with re,peat to the,niectic C '

ph;i,e.

Mininii/Jtion oi the iree energy with re;peat tLJ (M) re,ult, in the

iollowing

Lliiierenti;iI

e~u;itier

ion the

iunction (M)j=

q

~

+ <, (M) + Ii ("I'+ (Ml'

=

I) 1~)

~=~

There are two adLfitional

bounLf;iry

conLlition,, which are ,utl'icient to,rive e~uation (3)

h)ji)

=

M)j~ at the ,url'ace iii the l'i[iii iii

lLl(.)

= I) in the niiLlLfle iii the l'i [iii j~)

Lf= ~i1

The iir,t

bounLfary

conLlition nioLlel, the ,trong

michoring.

(4)

N° II) SURFACE ORDERING IN FREE STANDING FILMS 1867

x

y

,

8

, ~i

, ZmL

i

to

t~

z.o

Fig, I. Schematic

dr~iwiig

iii the,iruciuie i~ ~i lice,mn<fi~g,meciic A Ii Iii m ~icciird~mce with re,uli, iii IL)(

To finLf red,enable nuniericJl ,olution,

by

a,iiiiul;iurn

proceLfure

we u,eLf the coel'iicieni,

<y. />, iinLf g which were calculated from the

typical

value, of'the

following

parameter,

. jT~ T ), where T~ I, the l'ir,t orLfer

pha,e

tram,itiiin teiiiperature

. the tilt

angle

F)~ ,ii the iron,turn teiiiperature ,niectic A-,iiiectic C

. the pen~tratiiin

length

iii of the ,unlace inLfuceLl orLfer ;inLf the tran,ition

enthalpy

~l-I.

The ,hilt of the fir,i orLler

pha,e

tram,ition tempermur~

(l~

with re,peat to the ab,olute

in,tability

teiiipermure al'the ,niectic A

pha,e

II ' cmi be

e~pre,,eLf by

3]/>]~(

~T T~ T 16)

(5)

the tilt

angle

at the tran;ition temperature (M), can be written ;i,

<m)2

)

j7)

~ 4 <.

In a iir;t

approximation

the variation oi the tiff

angle

in the

boundary region

can be de,cribed

by

an

exponential

iunctiLJn oi =

(M)j= = M)j~ + (M)jj (M)~ exp(

=lij~

). (8)

where

(M)~ i, the value of the tilt iar away irom the

bounLiary.

ij~ I,

given by

ii)

=

~)(

(~)

A

typical

value iii the

penetration length

I~J, been e,timated in

(13(,

Value, iii the tr;in,ition

enthalpy

have been taken irLJm

(15,

l~(. Nuiiierical par;iureter, u,eLf in the ,iniulation

procedure

are ;ummJrized a, fLJllow,

t~ = 6, x 11)~ Jni ~ />

=

(),75 x

lo"

Jiii ~,

<. = 4,4 x lll'~ Jiii ~, g

=

6 x lo '~ Jm

(M)jj = 41i°, T1

=

300 K,

T,

=

301.17 K.

(M), = ?0°. (ii = 8 nni, ~Hl bulk1= 4 x 11)~ Jm ~.

The iiith parameter iii the numerical

procedure

wa, the

boundary

contrition ior

(M), In [hi, paper we report J

,impler

ca,e oi the temperature

inLfepenLient boundary

cLJnLfition,.

thereiore we ha~e taken the tilt

angle

LJn the

boundary

to be a con,t;int (")j, m (M)~, Numerical

procedure

with teiiiper;ilure

dependent boundary

I; now in prLJgre,,. Differential

e~u;ition

3

was ,olved

according

to J nunierical

procedure

de,cribeLl in

ii 7(.

Results and discussion.

PROFILES OF THE TILT ANGLE. Prairie, oi the tilt

angle

calculated iur une half of the

,ample

for three film thicknesses

(400nm~

160nm~ 70nm) are shown in

figures

2-4. All

plots

correspond

to the minimum of the free energy

(E~,

)) (the ,table ;olution;). In the ,imulation

procedure

the

boundary

condition, for the tilt

angle

were

kept

con,t;int for all temperature, and thicLne,,e,,

m.67

3ot.28

o.4

z

/ 100

nm

Fig. ~. Till migle prattle, in ~i 4()() nn> t'ilni ~ldili'erenlleniper~ilure,. The iii,i order ph~,e irmi,ition Sni A/Siii C' i>ccLir, al T~ = I()I ? K.

(6)

N° II) SURFACE ORDERING IN FREE STANDING FILMS 1869

Although

we

applied

a continuou, model ;ometime; we ,hall u;e

«

layer;

» 3,5 nm in

thickne;, I,ee () to illu;trate the relevance of the computer ;imulation result, to known

experiments.

The ;imulation re;ult; for a 400 nm film are shown in

figure

~. In the ,mectic A

pha;e

the tilt

angle

decrea;e,

abruptly

in 3-4

layer;

,tarting from a value of 6)j, to (M) = 0 in the middle of the

film, The

penetration length fjj

is

independent

of the film thicLne,, and temperature far from

the tran,ition. The

=-dependence

of the tilt

angle

ha, no

peculiar point, (Fig,

?, T

=

31~.34 and

~0?,84 K).

At temperature; where the ,mectic C~

pha,e

I, ,table the tilt

angle

varie, from

6)j, to a nonzero temperature

dependent a;ymptotic

bulk value

(Fig.

~, T

=

301? K and

?tl6.67 K). In thi, ca,e the

pha,e

tran,ition I,

abrupt

and the

profile change;

from the ;mectic

A to the ,mectic C" within several tenth, of

degree.

The

pha;e

tran;ition temperature I, a

function of the number of

layers

and I; ,hifted

by approximately

1.6 K to the

higher

temperature, in the 70

layer

film with re;pect to the bulk.

An

intere;ting

feature of the 40(J nm film in the

vicinity

of the transition temperature I; a

«,urface

pha,e

turn,ition

» in the ,mectic A

boundary

region

of'approximately

8

layer,

in

thicLne,, IT

=

3~Jl ?8 K curve in

Fig.

?). The

dependence

oi the iilt

angle

on =-coordinate in

thi; ca,e ha, two inflexion

point,,

which I,

Ljualitatively

diiierent irom the re,ult; at all other temperature;. The

change

of the 6)

profile,

with temperature indicate; that the

pha;e

tram,ition

;mectic A-,mectic C~ I, J di;continuou, one.

By

definition the fir,t order

phase

tran;ition

take,

place

at the temperature where the tilt

angle prof'ile

with two inilection points tran;iorm;

into a monotonou, ;mectic C~

prairie.

The ,imulation re;ult, for a 160 nm iilm and a 70 nm iilm in

figure,

3 and 4 ;how that the

tran,ition temperature increa,e; and the temperature interval where the

profile

varies from the

,mectic A to the ;mectic C." become, broader

by decrea;ing

the number of

layer,.

In the

vicinity

of'the critical thicLne,, the tilt

angle profile e,,entially depend,

on the iilm thicLne;;.

The

« boundJrie,

» oi the,mectic C ",urface

region

at T

=

31)1.46 K in

iigure

3 are

practically

not ob,ervable, but the main ieature of'thi, ,late (two inflexion

point,)

remain,

unchanged.

In

a 7() nm f'ilm

(Fig.

4) the tilt

angle prairie,

with two inilection

point,

were not iound and the

pha,e

tran,ition

Lii,appear,.

The ,late of'[hi, f'ilm I,

continuou,ly changed

irom ;mectic A-like

296.67

xi-w

0.2 0.6 0.8

z

/

nm

Fig. 3, Tilt angle prol'ile, i~,1 161J nm film I'

= 31)1.4 K,

(7)

296.67

3oi.92

31~34 302.84 302.09

0.21 0.28 0.35

z

/ 100

nm

Fig. 4. Tilt angle profile, in a 71J nm film. The ph~i,e iron,ition ,iiectic A-,mectic C di,~ippear, in ihi, film.

tLJ ,iiiectic C' -liLe

by Lfecre;i,ing

the teiiiperature. For iiliii, thinner than 71) nm no

Lju;ilitative change,

of the teniper;ilure

depenLfenc~

iii the tilt

angle profile,

were <>b,erved. It I, iiiiportant

to

enipha,ile

that the critical I'[[iii thicLne,, where (hi, behaviour occur, l'ir,t I, about one artier tit

iiizgni(uLle larger.

thmi the

pene1rMiiin length

ij~. ThJ, i, a nontrivial re,ult, hecau,e triiiii a

naive

point

of view one coulLl expect that the thicLne,, where the fir,t order

pha,e

tran,iiion ,mectic A-,iiiectic Cl

Lfi,appear,

,houlLf be

appriixiiiiJtely

eLju;iI to ~

iii.

Our ,iniulation de,cribe, J

Ljualit;itively

diiferent behaviour anLf deiiion,tr;ite, the

iniportance

iii the tail, oi the (M)j=)

prairie,

I;ir iroiii the

boundary.

Let u, compare our,iiiiulation re,ult, i&.ith the

experinient, reported

in II), (. The author, iii lo have urea,ureLl the average tilt

angle

in iree

,tanding

iiliii, ;i, ;i iunction iii teiiiperature and nuniber LJi

layer,.

In the

optical

thicLne,, oi iiliii, ha, been LfeterniineLf which give, an

average value of co, (")i=), ii one

neglect,

the teiiiper;itune

depenLlence

oi the reiractive inLfex.

llji ~°°o~

~~

~j

+ o~

iA++

o~

§~j ~

+ o

°o

+ °o

o~

°o~

+~ °o

~ +

x~

++~

~~

~

+++~

A

o~x~~ ++++

~

6~ °°o(([[jjxx~

~6666666666666

°°

~DaDDaDaDaDDDDDa°

305 T

/

°C

Fig. 5, Temperature dependence tit the JveiJge tilt angle

((9)

[or film thicLne,,e, 41)li nni (U), fill nm (Zii, ~0 nm lo). 711 nm (x). 5(1nm (+) an~l 30 nni lo).

(8)

I() SURFACE ORDERING IN FREE STANDING FILMS 1871

f~~iiiiiiiiiiiiii

A

~jf~~~~~~~~~~~~~

/

# ~+

~~~ooo

/f

+

~o°

+ ~o

V

j ~i(R++ j++

~o

~o°

))'++(o°°°

~

~o°

oo

300 305 310

T

/

°C

Fig, 6. Teniperiiture dependence al (he average

(co,

(")) for l'ilii 1hicLne,,e, 41)() wt, 161) nni, X() nni. 7() nni, 5() nni >id 3() nni. The ,~inie nol~ilion, ;~, in I'[pure 5.

The critical thicLne,, in I()( i&a,

approxiiiiately

5~ nm and in Ii 315 nni.

Figure;

5 and 6

,how the calculateLf teiiiperature

LfepenLience,

of

(("))

anLf

(co,

(M)) l'or Lfiiierent iilm

thicLne,,e,. In the thick iiIni, both value, reveal Lfi,continuitie, at the

pha,e

trJn,ition

teniperature,. In ;i 7() nni iiliii the

<fi,continuity, Lfi,appear,.

Our calculation, give a critical thicLne,,, which

L~ualitatively carte,ponLf,

to the ie,ult, of II)(. An morel,e of'the

penetration length

in the nunierical

proceLfure

leLf iii an i~cieJ,e al'the critical thicLne,,, Thu,, the different

critical thicLne,,e, f'ounLl in I()( anti can be

explmneLl by

Llif'f'erent

penetration length,

oi the ,urface orLfer at the

bounLiary

liLjuiLf

cry<,tat-;iir,

Ii I,

inteie,ting

to point out that the critical

thicLne,, liiund in the calculation,

of'([pure,

5 anLf 6 coincide, with that oi

figure,

~-4,

although

the <fef'inition LJi the tram,ition teiiiperature, i, diif'erent, To obtain a

Ljuantitative de,cription

iii the experiiiient,

of'(

II), the value, of the LanLf;iu

exp;in,ion

coeiiicient, iiiu,t

be known,

FREE E~ERI;' DENSITY. A

,tuLfy

of'tlie temperature

depenLfence

of'tlie free energy

den,ity

give,

an

iiiiport;int

i~f'ormJtion about the

change

of'the chin.deter oi the

ph;i,e

tr;in,ition cau,eLf

by

~i Lfecrea,e of the l'ilm thicLne,, Fruit the

general theory

of'the iir,t orLfer tran,ition IX it I,

well-known that the iree energy can be Lle,cribe<f

by

a double well f'unction oi the order

pm.Jiiieter in the

viciiity

iii the

pha,e

tr;in,ition temperature. The local miiimJ

corre,pond

to the

ph;i,e, coexi,ting

in the cour,e al the

pha,e

trill,ition (ii our c;i,e the ,niectic A and C.' ).

At certmn teiiiperature, T ' above the

pha,e

tran,ition the Sin C '

mini~ium

di,;ippear,,

The

lower

bounLlm.y

iii the teiiiperature interval where the free energy exhibit; two local minima I, noteLf

by

7 ~. At [hi, teniperature the SW A ~ii~iniuni

Lfi,appear,.

The iree energy oi the ,y,tern

varie,

continuou,ly

at the tran,ition poi~t IX(, thereiore the condition ior the

pha,e

tr;Ln,itit~n

teiiiperature i, given

by

F, =Fj

II())

Figure,

7a-d

Lfi,plJy

the teiiiperature

LfepenLfence

of'the ~ib,olute iree energy minimum

(F ior iour f~Ini thicLne,,e, 4()(), 161). 7() anLf 50 nni. In the ca,e iii the fir,t order

pha;e

tran,ition ,mectic A-,iiiectic C' m the thick iiIni, (4()0 anLf 16(1nit) the fir,t derivative

~z

i, di,continuou,, iihich i, ,hewn in

figure,

7;i anLf 7b. The location iii the Link

point

d

(9)

« «

b b

~

~

hi

~

4

, ,

v- v-

301.25 100

a) b)

« «

b b

I I

4 4

,

~

,

v- v-

305 T/

ci d)

Fig 7, Temperature dependence ot'the free energy niinmiuni for the following l'ilm ihicLne,,e, 4()() nni (al. 160 nm (b). 70 nm (c) and 5() am (di,

F/(orb. units)

40

_j .' ",, 1' ._ 30

1 ~ ~

~ ~~~

~~

~ 5 6 ~

~

~

~~l~~

/

7

Fig. X, Free energy J, a junction oi t'ilm thicLne,, and the average tilt

angle ((")).

(10)

N° lo SURFACE ORDERING IN FREE STANDING FILMS 1873

corre,pond;

to the turn,ition temperature. The iir,t and the ;econd derivative, oi the iree energy become continuou, at thicLne,;e, lower than </, = 70 nm

(Fig,,

7c and 7d),

indicating

that the

phase

tran;ition

di,appear,

at thi; thicLne,;. Thi, i; an

expected

re,ult becau,e the ,ymmetry of the whole film i,

already

broken in the ;mectic A

pha;e

due to the tilted

boundary layer,

and the thicLne,, of the tilted

boundary region

become,

comparable

with the film

thickne,;

(Fig~.

?-4).

The

di,appeamnce

of the

pha,e

tran;ition I,

qualitatively

illu,trated in

figure

8 where the free energy

den;ity

I; ,hown J, a function of the average tilt

angle

and the film thickne;s at the

tran,ition temperature determined for each thickne;s in an

analogy

to

figure,

7J and 7b. The

,mectic A and ,mectic C'. ,tates are

,eparated by

an energy barrier. The energy barrier

decrea,es and both minima

approach

each other

by

a decrea;e of the number of

layer;.

At the

critical thicLne;s any difference between above mentioned ,tates

di;appear;,

Conclusions.

Surface

ordering

effect; in free

;tanding

film; are de,cribed

u;ing

a computer ;imulatiLJn ba;ed

on the Landau

theory

with ,trong

boundary

condition;.

By

the decrea,e of the nuniber oi

layer;

the

pha,e

tran,ition ,mear; out, the tran;ition temperature I; ,hifted to

higher

temperature, and the di,continuitie, of the

integral

,tructural parameters

( 6))

and

(co, 6))

a, well J; the energy

barrier between ;mectic A and ,mectic C '.

pha,e;

become ,mailer.

The fir,t order

pha,e

tran;ition ,mectic A-,mectic C '

di,appear;

at ,ome critical thickne;,

which

depend,

on the coeiiicient; of the Landau

expan,ion, e;pecially

on the value oi the

paranieter g, A nontrivial re,ult oi [hi, paper I, that the critical thickne;, I,

approximately

one

order oi

magnitude larger

than the

penetration length iii

oi the ,uriace order

characterizing

the variation oi the tilt

angle

irom it, value at the

boundary

6)jj to the bulk

(M)~). In iilm, thinner than the critical thicLne,, all a~er;ige ,tructural parameter, and the iir,t derivative oi the iree

energy become continuou, iunctiLJn, LJi temperature, the energy barrier between the ,mectic A

anti ,mectic C

pha,e,

and the ,uri;ice

ph;i,e

tran,ition

di,appear,

l'he

computer,imul;ition

re,ult, de,cribe

~ualitatively

cLJrrect recent

experiniental

re,ult,

ill),

II (.

Acknow~ledgement~.

The aufhor, are

grateiul

to Prof. P. Pieran,Li

(Or,ay)

and Dr. M.

O,ipov (Southampton)

fur

many

,tiniulating

di,cu,,ion,. Thi, work ha, been

,upported by

the Deut;che

For;chung,geiiiein,chait

and the Fond; der Chenii,chen Indu,trie.

Reierences

Pier;~n,Li P.. PI <,/ P/,i S,< <, A 194 119~3 364.

]~] Huang C. C, and Siiebe T. A<fi. Pfivs 4211993j 343

(3 Gee' R.. Sioebe T. ~m(I Huaiig C C., PfiSS Rei E 48 l~~3j 40X.

(4( Bmder K.. Pha,e Tr~in,ition, wit) Critical Phenomena. C. Dr~mb and J. L. Lebr~wiiz ELI,.. Vol.

(Academic Pre,,. London, l~X~) p. 2.

(5] Forgac, G.. Lipow,Ly R anti Nieuwenhuizen Th. M.. Pha,e Tran,ition, mid Critical Pheiiomeiia.

C. Donib ~nd J. L. LebtJwitz Ed,., Vol, 14 (Academic Pre,,. LonLlon, l~~ Ii p. 136.

(6( O,LtJ B. M.. BrJ,l~iu A.. Per,han P. S., Al,-Niel,en J. anti Deui,ch M.. P/JVS Ret L<,11 57 lL)X61

~4.

(7( Siroia E. B.. Per,han P. S., AniadtJr S and Soren,en L. B., Plivs Rei A 35 l~X7j 22X3,

(11)

(~( Stoebe T.. Geer R.. Huang C. CT,ind Goodby J. W.. P/Jv.S. R<>I L<>11 69 l~~2j 2(N0.

(~( HeineLamp S., PelLovit, R.. Fonte, E.. Yi Chen E.. PindaL R, and Meyer R., Fiji Rci Leii 52 (t9X4j 1017.

(lo( Bahr Ch. ~md Fliegner D.. P/JVS R<.i A 46 (l~~~) 7657.

II Kr;iu, I., Pier;in,Li P.. DeniiLhov E.. Stegemeyer H.. P/JVS Rci E 48 (lL)~3) l~16.

? Barher M. N.. PhJ,e Tran,turn, and Critical Phenomena, C. Domb and J. L. Lebowitz Ed,.. Vol.

(Academic Pre,,. London, t~X9) p. 146.

ii3( DemiLhov E.. Krau, I.. Piemn,Li P..

Stegemeyer

H..

Goodby

J.. Sl;iney A. ,ind O,ipov M.. B<>J.

BJIJJ,ciJqe, Fiji., C/J<>fir 97(19L)3)1376.

(14( PILI~ S. A. ind

O,ipov

M. A.. Ferroelecinc Lit~uid

Cry,tal,

lGorLion and Breach.

Philadelphia.

lL)L)I p. ~49,

(15( Bahr Ch.. HeppLe G. and SabJ,chu, B.. LJ<j CJ.i,J<,/ II 1199~) 41.

[16] Demikhov E,. Kraus I, and Pieran~ki P., ,I. Phi-I- (Condensed Matter) 6 (1994) A415,

(17( Pre,, W. H.. Fl~mnery B, P., TeuLol,Ly S. A. ~ind Vetterli~g W. T., Numerical Recipe,

lc~imhridge Univer,iiy Pre,,. C~imhridge, 19L)~) p. 645.

Xl Binder K., R<>p. Pi <>qi Pfiv, 51) II 9X71 7X3.

Références

Documents relatifs

High pressure in~lestigation of the re-entrant nematic bilayer srnectic A transition by Cladis, Bogardus, Daniels, and Taylor, henceforth referred to as [l],

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The temperature dependence of the critical stress and strain required to induce mechanically one phase from the other, allows the Landau parameters of the transition to

2. The TBBA molecule and existing DMR data concerning the aromatic core. - Sketch of the TBBA molecule : a) lateral view in a planar trans-conformation showing the

tion is condensed (namely the first harmonic p2qo), SA, a smectic A phase in which both the fundamental P qO and the first harmonic p2Qo of the density modulation are

2014 A model based on second rank tensor orientational properties of smectic phases is developed.. The model predicts a second order smectic A-smectic C phase transition

Considering the above one has to conclude that the smectic A-smectic C phase transition must be due to the appearance of a new order parameter ( X ),..

NAC point as a Lifshitz point [9] implies the first order character of the N-C transition as a result of the tilt fluctuations in the nematic phase; furthermore the N-C