• Aucun résultat trouvé

Statistical biophysics of hematopoiesis and growing cell populations

N/A
N/A
Protected

Academic year: 2021

Partager "Statistical biophysics of hematopoiesis and growing cell populations"

Copied!
7
0
0

Texte intégral

(1)

Statistical biophysics of hematopoiesis and

growing cell populations

(2)
(3)

Contents

1. Introduction 11

I. Population dynamics of hematopoiesis 19

2. Hematopoiesis: the factory for blood 21

2.1. A brief history of hematopoiesis . . . 22

2.2. Cellular differentiation . . . 25

2.2.1. Providing variety and specification . . . 25

2.2.2. Transitional states and cell fate . . . 28

2.2.3. The role of cell divisions in differentiation . . . 30

2.3. Hematopoietic lineages . . . 31

2.4. Hematopoietic stem cells . . . 31

2.5. Differentiational tissues accumulate mutations . . . 33

2.6. Open questions and perspectives . . . 34

3. Mathematical tools 37 3.1. Stochastic processes . . . 37

3.1.1. The Bernoulli process . . . 38

3.1.2. The Poisson process . . . 40

3.2. Markov Chains . . . 46

3.2.1. The state space . . . 47

3.2.2. Markov transition probabilties . . . 48

3.2.3. Discrete time Markov chains . . . 49

(4)

3.2.4. Continuous time Markov chains . . . 50

3.2.5. Non-discrete state spaces . . . 50

3.3. Stochastic population dynamics with Markov chains . . . 51

3.3.1. The birth-death process . . . 51

3.3.2. The Moran process . . . 53

3.4. summary . . . 55

4. Hematopoietic stem cells: a neutral stochastic population 57 4.1. The importance of stochasticity . . . 59

4.2. Assumptions for stochastic HSC dynamics . . . 60

4.2.1. Mutation rate . . . 64

4.2.2. Division rate . . . 64

4.3. Modeling the stochastic dynamics of a mutant clone . . . 65

4.3.1. A birth-death model (is not sufficient) . . . 65

4.3.2. A Moran model . . . 67

4.3.3. Moving to real time . . . 68

4.3.4. The diffusion approximation . . . 69

5. Evolutionary dynamics of paroxysmal nocturnal hemoglobinuria 73 5.1. Paroxysmal nocturnal hemoglobinuria . . . 73

5.2. Applying the Moran model . . . 76

5.2.1. Transition probabilities . . . 76

5.2.2. Ontogenic growth . . . 78

5.2.3. Observing multiple clones . . . 78

5.2.4. Parameter values and diagnosis threshold . . . 80

5.3. Results and predictions . . . 82

5.3.1. Probability and prevalence of PNH . . . 82

5.3.2. Average clone sizes . . . 85

5.3.3. Arrival times of mutated clone and clinical PNH . . . 85

(5)

Contents

5.3.5. Disease reduction . . . 88

5.4. Discussion . . . 89

5.5. Perspective: HSCs under perturbed hematopoiesis . . . 91

5.5.1. Feedback driven division rates . . . 92

5.5.2. Heuristic results . . . 93

5.6. Conclusion . . . 96

6. Subclonal dynamics in hematopoietic stem cells 97 6.1. Clonality . . . 98

6.2. Moran model with asymmetric divisions . . . 100

6.3. Testing with simulations . . . 103

6.4. The single cell mutational burden . . . 104

6.4.1. Mutational burden as a compound Poisson process . . . 104

6.4.2. Markov chain approach . . . 106

6.4.3. Discussion: single cell mutatational burden . . . 108

6.5. The variant allele frequency spectrum (VAF) . . . 109

6.5.1. Dynamics of the VAF expected value . . . 110

6.5.2. Dynamics of the VAF variance . . . 111

6.5.3. Equilibrium distributions . . . 116

6.5.4. Discussion: VAF . . . 116

6.6. The sampling problem . . . 118

6.7. Applications to a human HSC dataset . . . 121

6.7.1. Data: somatic mutations in single HSCs . . . 121

6.7.2. Single cell mutational burden . . . 122

6.7.3. Variant allele frequency spectrum: fitting parameters with Ap-proximate Bayesion Computation . . . 122

6.7.4. Discussion: applications to a dataset . . . 127

6.8. Conclusions and perspective . . . 127

(6)

7. Feedback-driven compartmental dynamics of hematopoiesis 129

7.1. A compartmental model of hematopoiesis . . . 132

7.1.1. Dingli model . . . 132

7.1.2. Introducing feedback . . . 134

7.2. Analysis . . . 136

7.2.1. Sequential coupling elicits three types of behavior . . . 136

7.2.2. Increasing cell amplification between compartments reduces stability138 7.2.3. Recovery time as a measure of efficiency . . . 140

7.2.4. Inclusion of feedback allows prediction of erythrocyte dynamics . . 140

7.2.5. Chronic perturbations lead to new equilibrium states . . . 143

7.3. Discussion and conclusions . . . 144

II. Statistical mechanics of proliferating cells 167 8. Cell movement as a stochastic process 169 8.1. Motility in cancer: a motivating example . . . 171

8.2. Cells as motile particles . . . 175

8.3. Basics of stochastic motion . . . 176

8.3.1. Brownian motion . . . 177

8.3.2. Generalizations and other models . . . 183

9. Stochastic motion under population growth 185 9.1. The problem of growth . . . 185

9.2. Brownian motion in an ideal gas . . . 186

9.2.1. Velocity correlation of the random walk . . . 187

9.3. Coupling the Brownian Langevin equation to the particle density . . . 189

9.3.1. Fixed density populations . . . 189

9.3.2. Growing populations . . . 190

(7)

Contents

9.4. Comparison of the Langevin equation with direct particle simulations . . 192

9.4.1. Fixed density results . . . 193

9.4.2. Growing population results . . . 198

9.5. Perspective: localizing the LE for interacting particles . . . 198

9.6. Discussion . . . 200

10. Conclusions 213 10.1. Population dynamics of hematopoiesis . . . 213

10.2. Statistical mechanics of proliferating cells . . . 217

A. Population dynamics of hematopoiesis 221 A.1. Combining Poisson processes . . . 221

A.2. Simulations of the Moran model with mutant accumulation . . . 222

A.2.1. The cell population . . . 223

A.2.2. Events which alter the population . . . 223

A.2.3. Mutations . . . 224

A.2.4. Time evolution . . . 224

A.3. Obtaining the mean and variance of the compound Poisson distribution . 224 A.4. Compartment model of hematopoiesis: fixing parameter values . . . 225

B. Statistical mechanics of cell motion 227 B.1. Particle simulation . . . 227

B.1.1. Particle properties . . . 227

B.1.2. Particle collisions . . . 228

B.1.3. Confined space: minimum image periodic boundaries . . . 228

B.1.4. Accounting for center of mass drift . . . 228

B.1.5. Population growth . . . 229

B.1.6. Sketch of the simulation algorithm . . . 229

B.2. Numerically simulating the Langevin equation . . . 230

Références

Documents relatifs

This research study is not simply a comparison of the amount of steel and concrete required (direct flows), but includes the parallel production flows of those materials,

A study of published test reports suggests however that by careful selection of interior and exterior surface materials it should be possible to specify exterior stud walls having

Pour l’instant, on se trouve donc toujours dans la situation antérieure à 2000, à savoir qu’il n’est question de courrier électronique nulle part dans le Code judiciaire..

This journal welcomes submissions that use computa- tional approaches to advance the field, in the expectation that this will accelerate our progress towards a person- alized,

As this model represents the influence of dynamic crowding on a ballistically moving particle, it can be coupled with any other models of active motion given by a

We suppose that there is only one checkpoint that occurs at the end of the cell cycle with for each cell, the choose between to leave the HSC compartment (by apoptosis

Sur le littoral métropolitain, les acteurs portuaires privés ont alors mis un grand nombre de terminaux au niveau des autres ports mondiaux, avec des installations

The simultaneous availability of NSC, and of a population of non- proliferating astrocytes (mAGES) derived directly therefrom allowed us a direct comparison of the two