• Aucun résultat trouvé

Single-neutron orbits near $^{78}$Ni: Spectroscopy of the N=49 isotope $^{79}$Zn

N/A
N/A
Protected

Academic year: 2021

Partager "Single-neutron orbits near $^{78}$Ni: Spectroscopy of the N=49 isotope $^{79}$Zn"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: in2p3-01093962

http://hal.in2p3.fr/in2p3-01093962

Submitted on 5 Jan 2015

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Single-neutron orbits near

Ni: Spectroscopy of the

N=49 isotope

79

Zn

R. Orlandi, D. Mücher, R. Raabe, A. Jungclaus, S.D. Pain, V. Bildstein, R.

Chapman, G. De Angelis, J.G. Johansen, P. Van Duppen, et al.

To cite this version:

R. Orlandi, D. Mücher, R. Raabe, A. Jungclaus, S.D. Pain, et al..

Single-neutron orbits near

78

Ni: Spectroscopy of the N=49 isotope

79

Zn. Physics Letters B, Elsevier, 2014, 740, pp.298-302.

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Single-neutron

orbits

near

78

Ni:

Spectroscopy

of

the

N

=

49

isotope

79

Zn

R. Orlandi

a

,

b

,

c

,

d

,

e

,

,

D. Mücher

f

,

R. Raabe

b

,

A. Jungclaus

a

,

S.D. Pain

g

,

V. Bildstein

f

,

R. Chapman

c

,

d

,

G. de Angelis

h

,

J.G. Johansen

i

,

P. Van Duppen

b

,

A.N. Andreyev

c

,

d

,

j

,

e

,

S. Bottoni

b

,

k

,

T.E. Cocolios

m

,

H. De Witte

b

,

J. Diriken

b

,

J. Elseviers

b

,

F. Flavigny

b

,

L.P. Gaffney

n

,

b

,

R. Gernhäuser

f

,

A. Gottardo

h

,

M. Huyse

b

,

A. Illana

a

,

J. Konki

l

,

o

,

p

,

T. Kröll

q

,

R. Krücken

f

,

J.F.W. Lane

c

,

d

,

V. Liberati

c

,

d

,

B. Marsh

r

,

K. Nowak

f

,

F. Nowacki

s

,

J. Pakarinen

l

,

o

,

p

,

E. Rapisarda

b

,

F. Recchia

t

,

P. Reiter

u

,

T. Roger

b

,

v

,

E. Sahin

h

,

M. Seidlitz

u

,

K. Sieja

s

,

J.F. Smith

c

,

d

,

J.J. Valiente Dobón

h

,

M. von

Schmid

q

,

D. Voulot

r

,

N. Warr

u

,

F.K. Wenander

r

,

K. Wimmer

f

aInstitutodeEstructuradelaMateria,IEM-CSIC,Madrid,E-28006,Spain bKULeuven,InstituutvoorKern- enStralingsfysica,B-3001Heverlee,Belgium

cSchoolofEngineering,UniversityoftheWestofScotland,Paisley,PA12BE,UnitedKingdom dScottishUniversitiesPhysicsAlliance(SUPA),UnitedKingdom

eAdvancedScienceResearchCenter,JapanAtomicEnergyAgency,Tokai,Ibaraki, 319-1195,Japan fPhysikDepartmentE12,TechnischeUniversitätMünchen,D-85748 Garching,Germany gPhysicsDivision,OakRidgeNationalLaboratory,Oak Ridge,TN 37831,USA

hIstitutoNazionalediFisicaNucleare,LaboratoriNazionalidiLegnaro,Legnaro,I-35020,Italy iDepartmentofPhysicsandAstronomy,AarhusUniversity,DK-8000Aarhus,Denmark jDepartmentofPhysics,UniversityofYork,Heslington,YO10 5DD,UnitedKingdom kDipartimentodiFisica,UniversitàdiMilanoandINFNSezionediMilano,I-20133,Italy lPHDepartment,CERN 1211,Geneva 23,Switzerland

mSchoolofPhysicsandAstronomy,UniversityofManchester,Manchester,M13 9PL,UnitedKingdom nOliverLodgeLaboratory,UniversityofLiverpool,LiverpoolL69 9ZE,UnitedKingdom

oHelsinkiInstituteofPhysics,UniversityofHelsinki,P.O. Box 64,FIN-00014 Helsinki,Finland pDepartmentofPhysics,UniversityofJyväskylä,P.O. Box 35,FIN-40014 Jyväskylä,Finland qInstitutfürKernphysik,TechnischeUniversitätDarmstadt,D-64289Darmstadt,Germany rABDepartment,CERN 1211,Geneva 23,Switzerland

sIPHC,CNRS/IN2P3,UniversitédeStrasbourg,F-67037Strasbourg,France tUniversitàdeglistudidiPadovaandINFNSezionediPadova,Padova I-35131,Italy uInstitutfürKernphysik,UniversitätzuKöln,D-50937Köln,Germany

vGANIL,CEA/DSM-CNRS/IN2P3,F-14076Caen,France

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received5October2014

Receivedinrevisedform18November2014 Accepted3December2014

Availableonline9December2014 Editor: D.F.Geesaman Keywords: Nuclearstructure γ-Raytransitions Transferreactions N=50 shellclosure

Single-neutronstatesinthe Z=30,N=49 isotope79Znhavebeenpopulatedusingthe78Zn(d, p)79Zn transfer reaction at REX-ISOLDE, CERN. The experimental setup allowed the combined detection of protons ejected inthe reaction, and of

γ

rays emitted by79Zn.The analysis reveals thatthe lowest excitedstatespopulatedinthereactionlie atapproximately1 MeVofexcitation,and involveneutron orbitsabovetheN=50 shellgap.Fromtheanalysisof

γ

-raydataandofprotonangulardistributions, characteristicoftheamountofangularmomentumtransferred,a 5/2+ configurationwasassignedtoa stateat983 keV.Comparisonwithlarge-scale-shell-modelcalculationssupportsarobustneutronN=50 shell-closurefor78Ni.Thesedataconstituteanimportantsteptowardstheunderstandingofthemagicity of78Niandofthestructureofnucleiintheregion.

©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/3.0/).FundedbySCOAP3.

*

Correspondingauthorat:AdvancedScienceResearchCenter,JapanAtomicEnergyAgency,Tokai,Ibaraki,319-1195,Japan.

E-mailaddress:orlandi.riccardo@jaea.go.jp(R. Orlandi).

http://dx.doi.org/10.1016/j.physletb.2014.12.006

(3)

Shell structure characterizes several many-body systems of fermions moving in a common potential, such as atomic elec-trons,metal clustersandnuclei.Angular momentumquantization inducesabunchingofthesingle-particlestates,resultinginshells separatedbyenergygaps.Inthenuclearmedium,suchshellgaps are revealed by nuclei withneutron andproton numbers corre-sponding to closed-shell configurations. The properties of these so-calledmagic nucleiandof their neighbors,which were cardi-naltothedevelopment ofthenuclearshellmodel,couldonly be reproducedwhentherole played bythenuclear spin–orbit inter-actionwasrecognized[1].

Inrecent years,experiments with radioactiveion beamshave shownthatinsomeneutron-richnucleiwell-establishedshell clo-surescan vanish,andnewmagicnumbersappear[2,3].The chal-lengetoexplainandpredictthesizeofshellgapsawayfrombeta stabilityhas ledtoconsiderable progressinnuclearphysics, both experimentally and theoretically. Despite some remarkable steps forwardindescribingtheevolution ofshellstructure,e.g. the in-clusion of the tensor interaction [4] and three-body forces [5,6], rare-isotope data are still essential to test and guide theoretical advances.Nucleiawayfromthevalleyofbetastabilitywithmagic numbers of neutrons and protons, and isotopes in their vicinity, havebecomenewcornerstones forthedevelopment ofa reliable theoreticalpictureofallnuclei.

Theregionofisotopes near78Niisthefocusofintense exper-imentalandtheoreticalresearch (cf., forexample,[7–12] and ref-erences therein).Whether78Nicanbe consideredadoubly-magic

sphericalnucleusdependsultimatelyonthesizeoftheZ

=

28 and N

=

50 shellgaps.Todate,however,scarceinformationisavailable on78Ni andon its immediateneighbors,and contrasting

predic-tionshavebeenmade[12,13]aboutitsmagicity.

Thepropertiesofnucleilyingcloseto78Nialsoimpactstrongly on astrophysical models ofstellar nucleosynthesis andevolution. A recentexampleisrelatedtothemeasurementofthe82Zn bind-ing energy and its implications on the composition of neutron-star crust [14]. Furthermore, a sensitivity studyon the effect of neutron-captureratesontheA

80 andA

130 r-processpeaks

[15] revealed that 78Zn and 79Zn are among the few isotopes which can causethe largest change (

>

15%) in theoverall abun-dance pattern, affecting the abundances of masses as high as A

195.

Single-nucleontransferreactionsareaverysensitivetechnique topopulatesingle-particlestatesandtoinvestigatethestructureof theisotopesproduced[16–19].Performingsuchreactionson78Ni willrevealtheenergiesofthesingle-particleorbitsgoverningthe properties of 78Ni and its neighbors. The necessary experiments

however still require years of developments in radioactive-ion-beam production. Revealing insights about the structure of 78Ni cannonethelessbegainedbystudyingclose-lyingisotopes. More-over,anaccurate descriptionoftheevolutionofnuclearstructure acrossneighboringnucleiisanimplicittestfortheoretical predic-tionsofthepropertiesof78Ni.

In this Letter, the first spectroscopic study of the Z

=

30, N

=

49 isotope79Znispresented.Inthisnucleus,neutronscan oc-cupyorbitswhichliebothbelowandabovethe N

=

50 shellgap. Priortothiswork, theavailable informationabout79Znwas

lim-itedtoitsground-statehalflife,0.995(19) s[20].Thebetadecayof

79Zn[8]supports a J π

=

9

/

2+ ground-stateconfiguration,inline

withthe shell-modelexpectationthat theoddneutron (hole) oc-cupiestheg9/2 orbit,andwithN

=

49 systematics.Inthepresent

work,the9

/

2+assignmentforthegroundstatehasbeenadopted. Inthiswork,excited statesin79Znhavebeenpopulatedusing

the 78Zn(d, p)79Zn reaction in inverse kinematics at REX-ISOLDE, CERN (Q value

=

1

.

796 MeV [21]). 78Zn (T1/2

=

1

.

47

(

15

)

s) was

producedincollisionsof1.4 GeVprotonsfromtheCERNPSBooster

Fig. 1. (Coloronline.) a)79Znexcitationenergydeducedfromproton kinematics

forallthetransferprotons(blacksolidline)andfromtheprotonsincoincidence withanyγray(green,solidfill).b)79Znexcitationenergyincoincidencewiththe

983-keVγ ray,correctedfor γ-rayefficiency.c) Sameasb),butincoincidence eitherwiththe236-keV(blue)orthe1859-keVγ transitions(red).

witha UCx target. 78Znatomswere laser ionizedusingthe RILIS

set up [22], mass separated, and post-accelerated by the REX-LINAC to 2.83 MeV per nucleon. The 78Zn beam impinged on a thin(105

(

10

)

μg

/

cm2)deuteratedpolyethylene(DPE)target.In

ad-dition to 78Zn, which made up

75% of the total intensity, the beamalsocontained78Rb(

20%)and78Ga(

5%).Exploiting the

fact thatwithoutlaser ionizationonly 78Zndisappeared fromthe beam cocktail, the contribution from the contaminants could be identified andsubtractedoffline by collecting datawiththelaser periodicallyturned on andoff(in total, approximately100hours withand35hours withoutlaser ionization).From theanalysisof elastically scattereddeuterons, the estimatedaverage 78Zn beam intensitywas7

.

8

(

7

)

·

105 particlespersecond.Additionaldata

(ap-proximately20hours),collectedusingathick(

1

.

7 mg

/

cm2)DPE target, permitted to confirm weak coincidences observed in the thin-targetdata.

ThereactionwasstudiedusingthesegmentedT-REXarrayofSi telescopes[23],andeighttriple-clusterHPGedetectorsofMiniball

[24],which surrounded the T-REX scatteringchamber. The coin-cident detection oflight chargedparticles and

γ

rays led to the identificationofstateswhichcouldnotberesolvedusingonlythe proton data. Furthermore, the charged-particle data constrained the placement of states in the level scheme which would have beenambiguousfromthe

γ

-raydataalone.

InFig. 1(a),the79Znexcitationenergydeducedfromreaction

kinematicsisshownforprotonsinglesandprotonsincoincidence with all detected

γ

rays. Three main peaks can be seen, cen-teredrespectively around1.2, 2.5and3.3 MeV. Dueto kinematic compressionandtothedetectionthreshold,onlytransferprotons corresponding to the lowest-energy peak could be detected both at forward and backward angles, and meaningfully compared to DWBAcalculations.Atthisbeamenergy,thetransferredneutrons shouldpopulatemainlystatesorgroupsofstatescorrespondingto low-



orbits,mostlyabovethe N

=

50 gap,namelyd5/2,s1/2 and

d3/2.The g7/2 orbitabove the gap (



=

4) andthe neutron–hole

states based on p or f configuration are likely to be populated veryweakly. Asanillustration, the79Zncasecanbecomparedto

thestudyofthe N

=

81 isotone131Snvia the130Sn(d, p)131Sn re-action [17], inwhich only neutron orbits above the N

=

82 gap werepopulated.

(4)

Fig. 2. a)Doppler-corrected79Znγ-rayspectrum,gatedbyalltransferprotons.The

strongestpeaksarelabeledbytheirenergy.Thepeaklabeled“c”isduetoasmall amountof78Gainthe beam,duetoin-flight 78Zn

β decay. b) Samespectrum gatedon79Znexcitation energyinthe 0.8–1.7 MeVrange,whereonlythe

441-and983-keVtransitionscanbeseen.Seetextfordetails.

Fig. 3. Coincidenceγ-rayspectragated,respectively, onthe 983-keV (a)or the 1859-keV (b)transitions,obtainedusingthick-targetdata.

discussed below, the analysis of proton angulardistributions are indeedconsistentwithtransferofneutronstothed5/2ands1/2

or-bits.Thegreencurveinthesamefigureshowsthat,incoincidence with

γ

-rays,theintensityofthefirstpeak decreasessignificantly more than that of the two higher-lying peaks. This observation suggeststhe presence, in theexcitation-energy range of thefirst peak, ofone ormorestateswhich aretoo longlived(more than fewnanoseconds)fortheirdecay(s)tobedetectedinflight.

The

γ

rays emitted by 79Zn were identified by requiring a coincidence with the protons ejected in the neutron-transfer re-actions.TheDoppler-corrected

γ

-rayenergyspectrumisshownin

Fig. 2(a).Fig. 1(b) and (c) areexamplesofexcitation-energy spec-tra of79Zngated byindividual

γ

rays. Similarly,Fig. 2 (b) shows thatonlythe441- and983-keVlinesarestillclearlyvisibleifthe

79ZnexcitationenergyisrestrictedtothelowestpeakofFig. 1(a)

(from 0.8 to 1.7 MeV). Such spectra, together with observed

γ

coincidences, such as those presented in Fig. 3, proved essen-tial to place the main transitions in the level scheme. No other

γ

ray was observed below 0.8-MeV excitation energy. It should alsobenotedthatthe

γ

-raydetectionefficiencydropsdrastically below120 keV.Fig. 3 showsthat boththe 441–983-keVandthe 236–1859-keVpairswereeachfoundtobecoincident.

Thepartial levelscheme of79Zn deducedinthiswork is pre-sentedinFig. 4.Accordingtomeasuredintensitiesandcoincidence relations, the 983-keV state decays directly to the ground state, andit isfed by the 441-keV transition. Since the 983-keV tran-sition is prompt, despite a low energy tail,its multipolarity can only be dipole or quadrupole. If the tail is due to the lifetime of the983-keV state, andnot to unobserved feeding, it suggests a lifetime of the order of few hundred picoseconds, with mul-tipolarity E2 or M2. A slow E2 (0

.

05

<

B(E2)

<

0

.

2 W.u.) seems muchmorelikely.AnM2characterwouldinfactrequirethis low-lyingandstronglypopulatedstatetobea5

/

2− state,

correspond-Fig. 4. Partiallevelschemeof79Zndeducedinthiswork.Thewidthofthearrowsis

proportionaltotherelativetransitionintensities.Withtheexceptionoftheisomeric state‘X’at1.10(15) MeV,allenergiesareinkeV,withtheerrorgiveninbrackets. Seetextfordetails.

ing to aneutron–hole inthe f5/2 orbit. Interestingly,comparable

B

(

E2

;

5

/

2+

9

/

2+

)

strengths have been measured in neighbor-ing N

=

49 isotones 81Ge and 83Se (respectively, 0.0383(20)and

0

.

13 W.u.[25]).

The direct and indirect feeding to the 983-keV state, which makes its ground-state decay the most intense transition in the spectrum, supports a 5

/

2+ assignment. The DWBA analysis dis-cussed below confirms the 5

/

2+ assignment deduced from the

γ

-rayanalysis.

Inthecaseofthe1424-keVstate, thepromptcharacterofthe 441-keVtransition,thecoincidencebetweenthe983- and441-keV

γ

raysandtheunobservedcrossoverground-statetransitionfavor aspin3

/

2+or5

/

2+.Fewadditionalweaktransitions,of888,1774 and2321 keV,weretentatively placedin thelevel scheme:their

γ

-ray-gatedexcitationenergyspectrainfactexhibitapeak respec-tively at 2.35(15), 3.30(15) and3.45(15) MeV, compatiblewith a direct feeding toeither the 1424- orthe 983-keV states. Forthe 888-keV transition, this placement is also supported by the ob-servedcoincidencewiththe441-keVtransition.

Theanalysisofthe236- and1859-keVsingle-

γ

-ray-gated exci-tationenergyspectra,showninFig. 1(c),iskeytopositioningthe 236-keV transitioninthelevelscheme.A peakat

3

.

20

(

15

)

MeV canbe seeninbothspectra(blueandredinthefigure),butonly the 236-keV gate showsalso apeak at 2.65(15) MeV,where the large uncertainty is due to the Si-detector resolution (the thin red peak appearing at2.6 MeV in the 1859-keV gated spectrum is notstatisticallysignificant). Theirobservedcoincidence implies that the 236-keV lies below the 1859-keV

γ

ray (otherwise no peak could appear also at 2.65 MeV excitation energy). Hence, the 236-keV transitionmustbe the decayofa state withenergy at leastaslow asthe differencebetween the3.2 MeV excitation energy and the 1859-keV

γ

ray, i.e.1.34(15) MeV. In Fig. 1 (c), however,nopeakappearsaroundorbelow1.3 MeV,whichmeans thatthestateat

1

.

34 MeV isnot(ortooweakly)populatedinthe direct reactionandonlyfed fromhigher-lyingstates.The prompt character of the 236-keV transitionimpliesthat it has E1or M1 multipolarity.Thepositionofthe1185-keVtransitionwasdeduced from its

γ

-gated excitation energyand thecoincidence with the 236-keV

γ

ray.

From the unobserved coincidence withthe983-keV transition it follows that the 236-keV

γ

ray feeds an isomeric state lying approximatelyat1.10(15) MeV.Protonangulardistributions,which are characteristicoftheangular momentumtransfer,



,provide a strongargumenttoidentifythis1.10(15)-keVstatewitha1

/

2+ state.

The measured proton angular distributions were compared to DWBA calculations performed with the codes FRESCO [26]

(5)

Fig. 5. (Coloronline.)a) Protonangulardistributionsforthe79Znexcitationenergy

range0.85–1.55 MeV andscaledDWBA calculationsfor =0,2 andasumof thetwo.b) Sameprotondata,gatedalsoonthe983-keVγ-rayline,andDWBA calculationsfor=0 or 2.

Refs.[28,29].Fortheneutronbound-statepotential,theradiusand diffusenessparameterswere1.25and0.65 fm,respectively. Exper-imentalspectroscopicfactors(SF) weredeterminedfromtheratio ofexperimental andDWBAcrosssections,whichwere calculated forSF

=

1.Thelowbeamenergyleadstoappreciabledifferencesin the DWBAdistributions calculated using different optical-model-potentialparameterizations.Additionalfitswerethereforealso per-formedusingdifferentparametersfromRefs.[30–33],andvarying thebound-state radiusparameter from 1.20 to 1.30. The system-aticuncertaintiesamounttoapproximately20–25%variationinthe calculatedSFs.Itshouldberemarkedhoweverthatthearguments basedon the analysis ofangular distributions do not depend on thechosenparameterization.

IllustrativeangulardistributionsareshowninFig. 5(a) and (b). Inboth cases,theexcitation energyof79Zn wasrestricted tothe lowest peak of Fig. 1 (a). The data in Fig. 5 (a) were not gated onany

γ

-ray line, andare poorly fitted by anysingle



trans-fer. These data are instead well described by a sum of



=

0 and



=

2 distributions. The simultaneous fit of two distribu-tionsyieldsasignificantlysmallerreduced

χ

2 (2.1)thanobtained

byfitting asingle



(

χ

2

=

17

.

8 and 18,respectively). The

scal-ing factors were left as free parameters in the fit and found to be,respectively,0.41(3)(10)and0.51(4)(12)(wherethefirsterror isstatistical,andthesecondsystematic).If,inadditionto



=

0 and 2,alsoathird,



=

1 distributionisaddedtothe simultane-ousfit,thelatterhasa scalingfactorcompatiblewithzerowhile the formerare substantially unchanged, indicating that mostly d ands orbitswerepopulatedinthisenergyrange.

Theangulardistributionchangesinsteadconsiderablyby requir-ingthe coincidentdetectionofthe983-keV

γ

ray. Thisisshown inFig. 5 (b),together withDWBAcalculationsfortransfer to, re-spectively,pure



=

0 or



=

2 states. A pure



=

2 distribution (transfer to a d5/2 or d3/2 neutron state) yields a better fit and

confirmsthe5

/

2+assignmentofthe983-keV statededucedfrom

γ

-raydata. J π

=

3

/

2+caninfactbeexcludedsinceitwouldlead toanisomericM3ground-statetransition.

Asimilardistributionisobservedwhengatingthesame excita-tionenergyregionbythe441-keVtransition:thedata,notshown here, are best fitted by



=

2, and yield SF

=

0

.

05

(

1

)(

2

)

. The comparisonbetween Fig. 1 (b) and the intensity strength of the 441-keV transitionsuggeststhat the983-keV state isalso fed by additionallow-energyundetected

γ

-ray transition(s)fromoneor morestatesbetween1.0 and1.4 MeV. Themeasuredangular dis-tributions imply however that these states have



=

2 character

Fig. 6. (Coloronline.)ExperimentalandcalculatedN=50 gapsizes(filledandopen diamonds)andfirst-excited5/2+-stateenergies(filledandopencircles)forN=49 isotones. Themeasurementfromthiswork ishighlighted inblue. Thegapsizes weredeterminedfromtwo-neutronseparationenergiescalculatedfrommass ex-cessesfrom[21](and[14]for82Zn).

andfeedthe983-keVstate.Insummary,approximately75%ofthe measured



=

2 strengthinthisenergyrangeresultsinthedirect orindirectfeedingofthestateat983 keV,againconsistentwitha 5

/

2+assignment.

The



=

0 strengthrevealedbytheprotondata(notgatedby any

γ

ray)ofFig. 5(a) testifiesthepresenceofan isomeric1

/

2+ state near1 MeV,withSF

=

0

.

41

(

3

)(

10

)

.The proton-singlesdata were also split in three smaller ranges in excitation energy and comparedtoDWBAcalculationssimilar tothoseinFig. 5(a).The weightedaverageofthe



=

0 strengthsmeasuredinthesub-sets indicates that the1

/

2+ statelies atapproximately1.05(15) MeV. It seemslikely thatthis s1/2 neutronstate corresponds infact to

the1.10(15)-MeV statededuced fromgamma-ray gatedexcitation energyspectra(labeledXinFig. 4).Ifthestronglypopulated1

/

2+ statecoincides indeedwiththelevelat1.1 MeV,thentheprompt observation ofthe 236-keV

γ

-ray limitsthe possible spin of the 1.34(15)-MeVstateto

(

1

/

2

)

or

(

3

/

2

)

(X

+

236inFig. 4).Thelarge amountoffeedingfromhigherlyingstatesfavorsapositiveparity, butanegativeparitycannotbeexcluded.

It is instructive to compare the 5

/

2+-state energy, 983 keV, withstate-of-the-artshell-modelcalculations[12].Thelarge shell-model spaceincludes the proton orbits p1/2, p3/2, f72 and f5/2,

andthe neutron orbits p1/2, p3/2, f5/2, g92 andd5/2, which lies

above the N

=

50 shellgap.Details aboutthe interactioncan be found in Refs. [12,34]. As it can be seen in Fig. 6, these calcu-lations reproduce very well the measured energies of thelowest lying5

/

2+-state N

=

49 isotones.For79Zntheypredictanenergy of1029 keV,strikinglyclosetothemeasured983 keV.Thislowest calculated 5

/

2+ state (SF

=

0

.

53) is formed by the promotion of one neutronfromthe g9/2 to thed5/2 orbit.The calculatedB(E2)

transitionstrengthtothegroundstateisonly4 e2fm4 (0.2 W.u.).

The equivalent lifetime, 240 ps, is compatiblewith the observed tailofthe983-keVtransition.

Fig. 6 shows that the calculations also reproduce reasonably welltheevolutionoftheN

=

50 gapdeducedfrom2-neutron sep-aration energies[14,21],witha minimumat Z

=

32 anda larger gapinzincthaningermanium,althoughtheexperimentalgapsize inthesetwoisotones is450 keVsmaller. Thecalculationspredict adoubly-magic78Niwithshellgapsof4.7 MeVforneutronsand

5.0 MeVforprotons,andafirst2+-statelyingatnearly4 MeV.If atleasttherelativeincreaseingapsizebetweenzincandnickelis correct, the N

=

50 gapin78Ni canbe expectedto beatleastas largeas4.2 MeV.

In conclusion, this spectroscopic study of 79Zn has permitted

(6)

basedontheoccupancyofsingle-particlestatesabovetheN

=

50 shell gap.The agreement betweenthe currentmeasurement and recentlarge-scaleshell-modelcalculationssupportsthepictureof arobust N

=

50 shellclosurefor78Ni.Thisnewlyacquired

knowl-edgeaboutneutronsingle-particle statesin 79Znwillalsobe

im-portanttoconstrainingneutron-capturerateson78Zn,whichhave

beenshowntoimpactthefinal r-process abundancepattern dur-ingfreeze-outperiods.

Acknowledgements

ThisworkwassupportedbytheEuropeanCommissionthrough theMarie Curie ActionsContracts Nos.PIEFGA-2011-30096 (R.O.) and PIEFGA-2008-219175 (J.P.), by the Spanish Ministerio de Ciencia e Innovación under contracts FPA2009-13377-C02 and FPA2011-29854-C04, by the Spanish MEC Consolider – Ingenio 2010, Project No. CDS2007-00042 (CPAN), by FWO-Vlaanderen (Belgium), by GOA/2010/010 (BOF KU Leuven), by the Interuni-versity Attraction Poles Programme initiated by the Belgian Sci-ence Policy Office (BriX network P7/12), by the European Union Seventh Framework Programme through ENSAR, contract no. RII3-CT-2010-262010, andby the German BMBF under contracts 05P09PKCI5,05P12PKFNE, 05P12RDCIA and06DA9036I.R.O., R.C., J.F.W.L.,V.L.andJ.F.S.alsoacknowledge supportfromSTFC,Grant Nos. PP/F000944/1, ST/F007590/1, and ST/J000183/2. The authors thankA.M. Moroforvaluablediscussions.

References

[1] M. Goeppert Mayer, Phys. Rev. 75 (1949) 1969, http://dx.doi.org/10.1103/ PhysRev.75.1969;

O.Haxel,J.H.D.Jensen,H.E.Suess,Phys.Rev.75(1949)1766,http://dx.doi.org/ 10.1103/PhysRev.75.1766.2.

[2] O.Sorlin,M.-G.Porquet,Prog.Part.Nucl.Phys.61(2008)602,http://dx.doi.org/ 10.1016/j.ppnp.2008.05.001.

[3] R. Kanungo,Phys.Scr. T152(2013)014002, http://dx.doi.org/10.1088/0031-8949/2013/T152/014002.

[4] T. Otsuka, T. Suzuki, M. Honma, Y. Utsuno, N. Tsunoda, K. Tsukiyama, M. Hjorth-Jensen,Phys. Rev.Lett.104(2010) 012501, http://dx.doi.org/10.1103/ PhysRevLett.104.012501.

[5] A.P. Zuker, Phys. Rev. Lett. 90 (2003) 042502, http://dx.doi.org/10.1103/ PhysRevLett.90.042502.

[6] G. Hagen, M. Hjorth-Jensen, G.R. Jansen, R. Machleidt, T.P. Papenbrock, Phys.Rev.Lett.109(2012)032502,http://dx.doi.org/10.1103/PhysRevLett.109. 032502.

[7] Y.Tsunoda,T.Otsuka,N.Shimizu,M.Honma,Y.Utsuno,Phys.Rev.C89(2014) 031301(R),http://dx.doi.org/10.1103/PhysRevC.89.031301.

[8] A.Korgul,K.P.Rykaczewski,J.A.Winger,S.V.Ilyushkin,C.J.Gross,etal.,Phys. Rev.C86(2012)024307,http://dx.doi.org/10.1103/PhysRevC.86.024307.

[9] Z.Y.Xu,S.Nishimura,G.Lorusso,F.Browne,P.Doornenbal,etal.,Phys.Rev. Lett.113(2014)032505,http://dx.doi.org/10.1103/PhysRevLett.113.032505. [10] T.Marchi,G.deAngelis,T.Baugher,D.Bazin,J.Berryman,EPJWebConf.66

(2014)02066,http://dx.doi.org/10.1051/epjconf/20146602066.

[11] L.Coraggio,A.Covello, A.Gargano,N.Itaco,Phys.Rev.C89(2014)024319,

http://dx.doi.org/10.1103/PhysRevC.89.024319.

[12] K. Sieja,F.Nowacki,Phys. Rev.C 85(2012)051301(R), http://dx.doi.org/10. 1103/PhysRevC.85.051301.

[13] M.-G. Porquet,O.Sorlin,Phys.Rev.C85(2012)014307,http://dx.doi.org/10. 1103/PhysRevC.85.014307.

[14] R.N.Wolf,etal.,Phys.Rev.Lett.110(2013)041101,http://dx.doi.org/10.1103/ PhysRevLett.110.041101.

[15]R.A.Surman,M.R.Mumpower,G.C.Mclaughlin,R.Sinclair,W.R.Hix,K.L.Jones, in:P.E.Garrett,B.Hadinia(Eds.),Proceedingsofthe14th International Sympo-siumonCaptureGamma-RaySpectroscopyandRelatedTopics,Guelph,2013, WorldScientific,2013,p. 304.

[16] K.L. Jones, et al., Nature 465 (2010) 454–457, http://dx.doi.org/10.1038/ nature09048.

[17] R.L. Kozub, et al., Phys. Rev. Lett. 109(2012) 172501, http://dx.doi.org/10. 1103/PhysRevLett.109.172501.

[18] J.S.Thomas,etal., Phys.Rev.C76(2007)044302,http://dx.doi.org/10.1103/ PhysRevC.76.044302.

[19] D.K. Sharp,etal., Phys. Rev.C87(2013) 014312,http://dx.doi.org/10.1103/ PhysRevC.87.014312.

[20]K.-L.Kratz, H.Gabelmann,P.Möller,B.Pfeiffer,H.L. Ravn,A.Wöhr,ISOLDE Collaboration,Z.Phys.A340(1991)419.

[21] M.Wang,G.Audi,A.H.Wapstra,F.G.Kondev,M.MacCormick,X.Xu,B.Pfeiffer, etal.,Chin. Phys.C36(2012)1603,http://dx.doi.org/10.1088/1674-1137/36/ 12/003.

[22] V.Fedoseyev,G.Huber,U.Köster,J.Lettry,V.I.Mishin,H.Ravn,V.Sebastian, ISOLDECollaboration, HyperfineInteract. 127 (2000) 409,http://dx.doi.org/ 10.1023/A:1012609515865.

[23] V.Bildstein,R.Gernhäuser,T.Kröll,R.Krücken,K.Wimmer,P.VanDuppen, M.Huyse,N.Patronis,R.Raabe,fortheT-REXCollaboration,Eur.Phys.J.A48 (2012)85,http://dx.doi.org/10.1140/epja/i2012-12085-6.

[24] N.Warr,J.VandeWalle,etal.,Eur.Phys.J.A49(2013)40,http://dx.doi.org/ 10.1140/epja/i2013-13040-9.

[25] P. Hoff, B. Fogelberg, Nucl. Phys. A 368 (1981) 210, http://dx.doi.org/ 10.1016/0375-9474(81)90683-7.

[26]I.J.Thompson,Comput.Phys.Rep.7(1988)167.

[27] J.A.Tostevin,UniversityofSurreyversionofthecodeTWOFNR(ofM. Toyama, M. IgarashiandN. Kishida)andcodeFRONT(Priv.Comm.).

[28] H. An, C. Cai, Phys. Rev. C 73 (2006) 054605, http://dx.doi.org/10.1103/ PhysRevC.73.054605.

[29] A.Koning,J.Delaroche,Nucl.Phys.A713(2003)231,http://dx.doi.org/10.1016/ S0375-9474(02)01321-0.

[30] J.M.Lohr,W.Haeberli,Nucl.Phys.A232(1974)381,http://dx.doi.org/10.1016/ 0375-9474(74)90627-7.

[31] Y. Han, Y. Shi, Q. Shen, Phys. Rev.C 74 (2006) 044615, http://dx.doi.org/ 10.1103/PhysRevC.74.044615.

[32] F.G. Perey, Phys. Rev. 131 (1963) 745, http://dx.doi.org/10.1103/PhysRev. 131.745.

[33] F.D.Becchetti,G.W.Greenlees,Phys.Rev.182(1969)1190,http://dx.doi.org/ 10.1103/PhysRev.182.1190.

[34] S.M. Lenzi, F. Nowacki,A. Poves, K. Sieja, Phys. Rev. C 82(2010) 054301,

Références

Documents relatifs

- The Z-expansion method for calculating the energies of atomic ions belonging to a given isoelectronic sequence is discussed in relation to experimental and other theoretical

Another conclusion from this work is that a-cluster states are predominantly excited in the (Li6, d) reac- tion, and the shape of the angular correlation function

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

We present the term level diagams of the doubly excited quartet systems of the L i I isoelectronic sequence up to NeVIII.. beam

measurements revealed that photoexcitation is followed by a sequence of charge transfer evolving from higher singlet excited states (i.e., S 2 – fast

Thus, counter to our hypoth- esis, these results suggests that, within the domain of impulsive choice, when savings in costs associated with distance are removed, proximity

What we want to do in this talk is firstly to explain when (§1) and why (§2) a presupposition trigger becomes obligatory in the very case where it is redundant, and secondly