• Aucun résultat trouvé

Mechanisms of virus-vector interactions mediating disease transmission

N/A
N/A
Protected

Academic year: 2021

Partager "Mechanisms of virus-vector interactions mediating disease transmission"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02947634

https://hal.inrae.fr/hal-02947634

Submitted on 24 Sep 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Copyright

Mechanisms of virus-vector interactions mediating disease transmission

Christiane Then, Fanny Bellegarde, Geoffrey Schivre, Tou Cheu Xiong, Martin Drucker, Stoyan Yordanov, Kaloian Koynov, Hans-Jürgen Butt,

Jaclyn S Zhou, James C. K. Ng

To cite this version:

Christiane Then, Fanny Bellegarde, Geoffrey Schivre, Tou Cheu Xiong, Martin Drucker, et al.. Mech-anisms of virus-vector interactions mediating disease transmission. 19. HFSP Awardees Meeting, Jul 2019, Tsukuba, Japan. 2019. �hal-02947634�

(2)

INRA Colmar (France): Christiane Then, Fanny Bellegarde, Géoffrey Schivre, Tou-Cheu Xiong, Martin Drucker

MPI Mainz (Germany): Stoyan Yordanov, Kaloian Koynov, Hans-Jürgen Butt

UC Riverside (USA): Jaclyn S. Zhou, James C.K. Ng

A

phid punctures trigger instant calcium elevations at the puncture site. They might be the first step in establishment of plant defense responses against these predators (see model above).

M

any plant viruses are transmitted by aphids. There is evidence that viruses modify plant defenses, for example to modify interactions of plants with virus-transmitting aphids.

S

uch modifications could effect the very first steps in virus-aphid interactions (transmission).

T

herefore, we tested whether virus infection interferes with local calcium elevations.

Experimental system

Method:

Recording of aphid activity by bright field microscopy

Recording of calcium concentration by fluorescence ratiometry Tempo-spatial analysis M. persicae Epidermis (1) (2) M es ophy ll (3) (4) (5) (6) (7) (8) (9) Apoplast Cytosol Vacuole Extracellular Ca2+entry Intracellular Ca2+release Plant defense GLR3.3 GLR3.6 BAK1 TPC1 Unknown receptor ? (1) Puncture (2) local [Ca2+] (3) HAMP (4) Activation (5) Ca2+influx (6) Activation (7) Ca2+flux (8) Activation (9) Aphid effector?

Adapted from Vincent, T. R. et al. Plant Cell 29, 1460–1479 (2017)

5s 10s 15s 25s 35s Healthy / M. p. 5s 10s 15s 25s 55s TuMV / M. p. 5s 10s 15s 20s 25s TuYV / M. p.

Analysis of calcium signal

Curtain by Freepik

Acknowledgments:

CaMV / M. p. 5s 10s 15s 20s 25s

0.2mm

Signal duration (frames)

Num ber of s ignal s 3 4 5 6 7 8 9 10 11 12 13 14 0 2 4 6 8 10 12 14 16

CaMV Healthy TuMV TuYV

Bimodal distribution for CaMV and TuMV, unimodal for TuYV and healthy

CaMV Healthy TuMV TuYV 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

*

**

Sign al v elo c it y

Decreased velocity for CaMV

Decreased surface for CaMV

CaMV Healthy TuMV TuYV 0 10000 20000 30000 40000 50000 60000

*

Sign al s ur fa c e( mm 2 )

Mean velocity of signal

 Viruses alter calcium signaling

differently

Signal duration (frames)

Num ber of s ignal s 3 4 5 6 7 8 9 10 11 12 13 14 0 2 4 6 8 10 12 14 16

CaMV Healthy TuMV TuYV

Bimodal distribution for CaMV and TuMV, unimodal for TuYV and healthy

CaMV Healthy TuMV TuYV 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

*

**

Sign al v elo c it y

Decreased velocity for CaMV

Decreased surface for CaMV

CaMV Healthy TuMV TuYV 0 10000 20000 30000 40000 50000 60000

*

Sign al s ur fa c e( mm 2 )

Mean velocity of signal

Mechanisms of virus-vector interactions mediating disease transmission

Excitation 440 nm Visible Fluorescence 480/535 nm Bright field camera CCD Camera Plant leaf expressing the

calcium sensor YC3.6

Probing aphid Plant viruses

CaMV TuMV TuYV

Model

Results

Time lapse video

**

*

Plant hosts

of whiteflies

Virus Inoculation by

whitefly vector

Brassica napus

Brassica rapa

Experimental system

Membrane feeding: LIYV virion acquisition

B. napus

B. rapa

400 whiteflies 400 whiteflies V iru s Re ten tion Assa y s Collect 100 whiteflies Collect 100 whiteflies

Transmitted light Widefield fluorescence

Results

Establish virus host (B. rapa) and non-host (B. napus)

Establish whitefly colonies

Can a plant virus perceive the presence of a

plant while being retained in its insect vector?

Do plant viruses perceive the presence of aphid

vectors?

Plant-to-plant transmission of lettuce infectious yellows virus (LIYV) to B. rapa or B. napus

1 kb ladd er H2O con trol Spray con trol 1 Spray con trol 2 B. rapa 1 B. rapa 2 B. rapa 3 B. rapa 4 B. rapa 5 B. rapa 6 B. rapa 7 B. rapa 8 B. rapa 9 B. rapa 10 No RT ( -) con trol LIYV (+ ) con trol

LIYV virion purified from B. rapa

LIYV (+ ) v irion -50ng LIYV (+ ) v irion -10ng LIYV (+ ) v irion -1ng B. Rapa v irion -1ul B. Rapa v irion -1ul 1/10 dilu ted 28 kDa CP 1 kb ladd er H2O con trol Spray con trol 1 Spray con trol 2 B. nap us 1 B. nap us 2 B. nap us 3 B. nap us 4 B. nap us 5 No RT ( -) con trol LIYV (+ ) con trol LIYV (+ ) con trol B. nap us 6 B. nap us 7 B. nap us 8 B. nap us 9 B. nap us 10 B. nap us 11 B. nap us 12 B. nap us 13 B. nap us 14 B. nap us 15 Spray con trol 3 Spray con trol 4 Reverse transcription (RT) – PCR Western Blot TEM Analysis

Virus Retention Assays

B. napus B. rapa Experiment Total number of whitefly heads viewed Number of whitefly heads with fluorescent signal % of whitefly heads with fluorescent signal Total number of whitefly heads viewed Number of whitefly heads with fluorescent signal % of whitefly heads with fluorescent signal % Relative Change 1 124 19 15.32% 149 11 7.38% -52% 2 81 19 23.46% 79 7 8.86% -62% 3 86 29 33.72% 94 6 6.38% -81% 4 84 15 17.86% 96 7 7.29% -59% 5 100 20 20.00% 97 11 11.3% -43% B. napus B. rapa 22.07 ±3.20 8.25 ±0.87 Ave. % relative  -59.4%

% foreguts with fluorescent signals & relative 

B. napus B. rapa

Transmitted light Widefield fluorescence

B. Rapa (>18 generations) B. Napus (>36 generations) Whole-mount, widefield Fluorescence microscopy of whiteflies (heads)

V

iruses that retain in the foreguts of whitefly vectors must be released and inoculated into the plant in order to achieve transmission.

M

any whitefly-transmitted viruses are emerging viral pathogens of important food and fiber plants.

A

lthough whitefly feeding (on plants) contributes to the inoculation of foregut borne viruses, nothing is yet known about the role(s) that plants play, if at all, in virus inoculation.

T

herefore, we conducted studies to test the hypothesis that the inoculation of a foregut borne virus can be mediated by a plant trigger.

Model

eye eye cibarium stylets

Références

Documents relatifs

Elle retourne la théorie du lapsus contre son créateur à propos des trois mythes que Freud propagea lui-même : qu’il avait toujours éprouvé des difficultés financières (ce

support the development of a variety of experiential fisheries-tourism pilot projects in different coastal management areas of NL involving representatives from commercial

2 Virus-Vector Interactions in Plant Virus Disease Transmission and

Early October 2019, the French National Reference Centre (NRC) for Arboviruses in Marseille confirmed a case of recent ZIKV infection on the basis of detect- ing ZIKV RNA in a

Abstract – African horse sickness virus (AHSV) is an orbivirus that is usually transmitted between its equid hosts by adult Culicoides midges.. In this article, we review the ways

Correction des exercices des pages de 99 á 102 du livre Analyse Mathematique... ero FP an tou

9 Mais au-delà des mesures prises par les pouvoirs publics pour faire face à la crise sanitaire, on peut encore interroger la conception même de l’urgence qui préside au principe

However, when mechanisms of human DENV emergence due to host range expansion of sylvatic strains by adaptation to use humans as reservoirs (via increased magnitude of