• Aucun résultat trouvé

The electrical significance of axon location diversity

N/A
N/A
Protected

Academic year: 2021

Partager "The electrical significance of axon location diversity"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: hal-01740172

https://hal.sorbonne-universite.fr/hal-01740172

Submitted on 21 Mar 2018

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

The electrical significance of axon location diversity

Maarten H. P. Kole, Romain Brette

To cite this version:

Maarten H. P. Kole, Romain Brette. The electrical significance of axon location diversity. Current

Opinion in Neurobiology, Elsevier, 2018, 51, pp.52-59. �10.1016/j.conb.2018.02.016�. �hal-01740172�

(2)

The

electrical

significance

of

axon

location

diversity

Maarten

HP

Kole

1,2

and

Romain

Brette

3

Theaxoninitialsegment(AIS)isauniquedomainofthe proximalaxonservingcriticalelectricalandstructuralroles includingtheinitiationofactionpotentialsandmaintenanceof cellularpolarity.Recentexperimentalandtheoreticaladvances demonstratethattheanatomicalsiteforinitiationisremarkably diverse.TheAISlocationvariesnotonlyaxially,alongtheaxon, butaxonsalsoemergevariablyfromeitherthesomaor proximaldendrites.Here,wereviewtheevidencethatthe diversityofAISandaxonlocationhasasubstantialimpacton theelectricalpropertiesandspeculatethattheanatomical heterogeneityofaxonlocationsexpandssynapticintegration withincelltypesandimprovesinformationprocessinginneural circuits.

Addresses

1DepartmentofAxonalSignalling,NetherlandsInstitutefor

Neuroscience,RoyalNetherlandsAcademyofArtsandSciences (KNAW),Meibergdreef47,1105BAAmsterdam,theNetherlands

2CellBiology,FacultyofScience,UtrechtUniversity,3584CHUtrecht,

TheNetherlands

3SorbonneUniversite´s,UPMCUnivParis06,INSERM,CNRS,Institut

delaVision,17rueMoreau,75012Paris,France

Correspondingauthor:Kole,MaartenHP(m.kole@nin.knaw.nl)

CurrentOpinioninNeurobiology2018,51:52–59

ThisreviewcomesfromathemedissueonCellularneuroscience EditedbyJuanBurroneandErikaHolzbaur

https://doi.org/10.1016/j.conb.2018.02.016

0959-4388/ã2018TheAuthors.PublishedbyElsevierLtd.Thisisan openaccessarticleundertheCCBY-NC-NDlicense( http://creative-commons.org/licenses/by-nc-nd/4.0/).

Introduction

Neurons,thecellularcomputationalunitsof thecentral nervoussystem,aremorphologically polarizedcells and segregated into diverse functional compartments. A uniqueandcriticalsiteoftheproximalaxonof mamma-lianneuronsistheaxoninitialsegment(AIS),clustering high densities of voltage-gated sodium (Nav) channels [1].The AIS definesthelocationfrom whereall action potentials(APs)are initiatedand propagate bidirection-ally,towardsthepresynapticterminalsandbackintothe soma and dendrites (reviewed in [2,3]).Understanding the structural and molecular properties of the site of initiationisof fundamentalimportance as itaffectsthe electricalfunctionofneurons.ThediscoverythattheAIS cytoskeleton and associated ion channel clustering change in response to network activity has led to the

conceptthattheAISmayservetohomeostaticallyscale intrinsic excitability [4,5,6]. In addition, evidence is accumulating that the morphological diversity of the AIS and its functional impact are greater than appre-ciated; not only is the AIS location variable along the axon branch, but axons themselves may also emerge eitherfromthesomaorfromdendrites,andinsomecell typesevenuptohundredsofmicrometresfromthesoma. Here,wereviewrecentelectrophysiologicaland theoret-icaladvancesintothisanatomicalheterogeneityfuelling theideathatspikeinitiationlocationmaynotonlyimpact excitability,butalsothebackpropagationofaction poten-tialsandsynapticintegration.

Location,

location,

location

ThepositionoftheAISalongtheaxonvaries substan-tiallybetweenneuronalcelltypes[7],withincelltypes andacross early neuronal development [8,9].In addi-tion,alreadysincetheseminalstudiesofRamo´nyCajal, it is known thataxons havevariable sites fromwhere theyemerge, often fromthe soma but also from den-drites,such asthe parallel fibresof cerebellargranule cells or the axons fromthe avian optical lobe neuron [10,11] (Figure 1a). Although neurons with dendritic axonsweregenerallybelievedtoberare,detailed mor-phologicalreconstructionsshowthattheyexistacrossa wide variety of cell types including the hippocampal dentategyrusbasketcellsandsomatostatin interneur-ons[12,13],inapproximately75%ofthepopulationof dopaminergiccellsofthesubstantianigra[14–16]andin 40%ofthecerebellargranulecells[11,17](Figure1a–d). Furthermore, staining for ankyrin-G or bIV-spectrin, markers for the AIS structure, combined with Cre recombinase reporter mice made it possible to obtain detailedinformationabouttheAIS locationwithinthe axon, as well as the axon location itself, across large populationsofidentifiedcelltypes.Alsothisrecentbody of work revealed that dendritic axons are present in approximately60%ofthehippocampalpyramidal neu-rons,30%ofthethick-tuftedsomatosensorylayer5 pyra-midalneurons,40%ofcorticalinterneuronbasketcells and60% ofMartinotti cells [7,18,19] (Figure 1e–f). Giventheabundanceofdendriticallytargetedaxonsthe questionarises:whatcouldbetheroleofsuch asymme-tryinaxonposition,andmorebroadlyofthediversityof AISlocation?Asearlyasin1898Ramo´nyCajalproposed thatincellswithdendriticaxons,“ ... thesoma,orcell bodydoesnotalwaystakepartintheconductionofthenerve impulseswhicharereceived.The afferentwaveis sometimes propagateddirectlyfromthedendritestotheaxon”(reviewed in[20]).Recentpatch-clamprecordings,combinedwith morphologicalreconstructionsandtheoreticaladvances,

(3)

are shedding more light on the excitability and the associatedcurrentflow.

AIS

location

diversity

and

intrinsic

excitability;

the

theory

Inordertounderstandtheelectricalimpactofthespatial variationinaxonlocation,itisimperativetoconsiderthe cellularmorphologyfromabiophysicalperspective.Ina

situationwheretheinitiationsiteoftheactionpotentialis located to a thinaxon,electrotonically closeto amuch larger somatodendritic compartment, resistive coupling theoryapplies[21,22].Thesodium(Na+)current gener-atedintheAISflowsprimarily towardsthesoma,which thus acts as a current sink, and subsequently exits as capacitive current through the large somatodendritic membrane(Figure2a).Becausetheintracellularmedium

TheelectricalsignificanceofaxonlocationdiversityKoleandBrette 53

Figure1

(a)

(d) (e) (f)

(c) (b)

Current Opinion in Neurobiology

Dendriticaxonsareacommonfeatureofvariousneurontypes.(a)Exampleofadendriticorigin(redopenarrow)oftheparallelfibre(greenclosed arrow)fromacerebellargranulecellprojectingtoaPurkinjecell.BlackarrowsdepicttheaxipetalcurrentflowdrawnbyRamo´nyCajal.(b)A substantianigradopaminergicneuronwithdendriticaxonillustratedwithpatchpipetterecordinglocations.Theaxon-somadistanceofthiscellis 215mm.(c)Distalaxonorigin(100mmfromthesoma)inahippocampaldentategyrusbasketcell.(d)Exampleofaratparietalcortexlayer2/3 pyramidalneuronwithaxonemergingfromthickbasaldendrite.(e)Immunofluorescenceofabiocytin-filledratthick-tuftedlayer5pyramidal neuron(red)withdendriticoriginoftheAIS(bIV-spectrinidentified,green).Filledarrowsmarktheaxons.Openarrowsindicatetheaxon-carrying dendrites.(f)ImmunofluorescenceimageofaThy1+mousehippocampalCA1pyramidalneuron(red)withAnkyrin-G(green).Scalebars;b, 100mm;c–f,20mm.

(4)

isresistive,theaxialcurrentfollowsOhm’slaw:avoltage gradient develops between the soma and axonal site, equal to the product of the input current and axial coupling resistance (Ra) between the two sites, DV=RaI (Figure 2a) [21]. Ra is furthermore deter-minedbythegeometryoftheaxonalordendriticbranch inbetweenthesomaandAIS,proportionaltothedistance andinverselyproportionaltothecross-sectionarea (diam-eter squared). This simplified model predicts a strong influenceof thegeometryof theAIS andneighbouring dendritic sites and makesseveral predictionsaboutthe functionalimpactthatwewill reviewin detailbelow. The amount of Na+ current needed for agiven axonal depolarizationisinverselyproportionaltoaxialresistance (I=DV/Ra).Therefore,aneuronwithamoredistalAISor thinneraxonshouldeitherbemoreexcitable,reflectedin

ahyperpolarizationofthevoltagethresholdandreduced rheobase (current to threshold) for AP generation or require a lower Na+ channel density for a given level ofexcitability(Figure2bandc).Thistheoretical predic-tionhasalso beenconfirmedin detailed multi-compart-mentalcomputationalmodelsinwhichmembrane prop-erties can be maintained constant while axonal compartments are varied in their location [18,22,23] and is consistent with the notion that spike initiation occurs at the distal end of the AIS due to its larger electrotonicisolation[24,25].

Notably, some simulation studies showed that a distal location of the AIS can reduce neuronal excitability [5,23,26].Theoretically,thiscanhappen iftheproximal axonand thesomatodendritic compartment are compa-rableinsize,sothatthesomaisnolongeracurrentsink fortheAIS[22].However,incorticalpyramidalneurons, theaxon diameter scaleswith soma size,and isalways much smaller compared to the soma [27,28]. Another situation where excitability could be reduced with increasingsoma-AIS distance iswhenahyperpolarizing currentislocallystronglyactivatedattheAIS,for exam-ple by Kv1 or Kv7 channels [21,26]. Direct recording fromtheAISandestimatesofconductancedensityshow thatbelow thespike threshold theslowly-activated M/ Kv7currentandfast-activatingKv1currentare,however, relativelysmallcomparedtotheinwardNa+current[29– 31].Similar differencesbetween Kv7and Nav conduc-tancedensitieswerefoundintheaviannucleus magno-cellularis[32].Thusforthesecellstheorypredictsthatif allmembranepropertiesremainconstant,adistalshiftof theAISmakesthecellmoreexcitable.Finally,forin vivo-like fast excitatory postsynaptic potentials (EPSPs), a significant frequency-dependent voltage attenuation couldoccuralongtheaxon.Inthiscase,largedistalshifts of the AIS could reduce excitability, resulting in a U-shapedrelationshipbetweenAISpositionandexcitability [33].Whatis theexperimentalevidence for the theo-reticalpredictions?

AIS

location

diversity

and

intrinsic

excitability;

the

experimental

observations

Inagreementwiththerole oftheAISin intrinsic excit-ability,geneticallydisruptingthedevelopmentofanAIS or pharmacologically inactivatingthe AISNa+ channels substantially depolarizes the AP threshold (>10mV), increases the rheobase and reduces the firing rate [30,34,35].In accord,anumberof experimentalstudies showedthatincreasingordecreasingtheAISlengthraises or reduces the intrinsic excitability, respectively, by affecting voltage thresholdand firing rate (reviewed in [36,37]).Ontheotherhand,experimentallyisolatingand interpretingthespecific roleoftheAISoraxonlocation hasproventobesubstantiallymorechallengingandthe interpretationof the results iscontentious.The studies observingadistalrelocationoftheAISfoundadecreased

Figure2 1200 20 –64 –50 800 400 0 0 0 μm Axon ΔV = Ra x I 5 μm 45 μm V Soma (mV) I axial (nA) ICap Ra VSoma dV/ d t (V/s) V Soma (mV) 0 60 –60 –400 Dendrites (a) (b) (c)

Current Opinion in Neurobiology

Resistivecouplingbetweentheaxonandsoma.(a)Left,Circulationof currententeringtheaxonemergingfromadendrite.Thecurrent mainlyflowstothesoma,acurrentsink,alongaresistivepath(Ra:

axialresistance).Right,ByOhm’slaw,avoltagegradientforms betweensomaandinjectionsite,proportionaltoRa.(b)Phase-plane

plot(dV/dtversusV)ofsomaticactionpotentialsinasimplemodel withtheAISat3differentlocations(0,5and45mm),revealsalower voltagethresholdwithincreasingsoma-axondistance.(c)Axialcurrent enteringthesomaasafunctionofsomaticpotential:thethresholdis lowerandthecurrentissmallerforlargersoma-axondistance. bandc,Adaptedfrom[22].

(5)

intrinsicexcitabilitywhichinsomecasescorrelatedwith theextentof thedistalrelocation[5,26,38,39].A reduc-tion in intrinsic excitability is opposite to the above described theoretically predicted lower AP voltage threshold. One possibleexplanationfor thediscrepancy couldbethattheexperimentalconditionsusedtoinduce AIS/axon location changes, suchas chronicelevation of neuronalactivitybypharmacologicalapproachesor opto-geneticstimulation, wereinall cases accompaniedbya reduction in the neuronal input resistance (RN), which directly implies an increase in rheobase [5,26,38,39]. Other changesthat havean impact onexcitability may alsooccur,suchasphosphorylationofNa+channels[6]. As mentioned above, another possibility is that a large Kv7conductanceispresentintheAIS,whichcouldlead to decreased excitability with more distalAIS locations [21,26].

An alternative strategy to empirically investigate the electricalroleoftheAIS-somaseparationisacomparative analysisbetweensubpopulationsofneuronswith identi-fiedanatomical locationof theAIS[14,16,18,19,33]. Inlayer5ofthesomatosensorycortex,pyramidalneurons withaxon-carryingdendriteshavea3mVmore hyper-polarizedactionpotentialvoltagethresholdcomparedto neurons with somatic axons [18]. However, detailed geometrical quantification and correlation analysis showed that the AIS-soma distance was not a strong predictor of the voltage threshold and neither for the firing rate. Furthermore, comparative electrophysiologi-calrecordingsfromCA1pyramidalneuronsalsofailedto showdifferencesinactionpotentialvoltagethresholdasa functionofdistancebetweentheAISandthesoma,across a range of 40mm [19]. Interestingly, recent in vivo recordingsfromdopaminergiccellsinthesubstantianigra followedbyreconstructionandcomputationalmodelling found thatalow firingratein neuronswithadistalAIS was bestexplained bythenegativecorrelation between thesoma-AISdistanceandtheAISlength[40].Together, theexperimentalstudiesillustratethatdisentanglingand understandingtheroleofAISlocationinintrinsic neuro-nalexcitabilityrequires extensiveandjointquantitative assessments of multiple factors. However, the general

problem is that correlation does not imply

causation. Conclusively demonstrating the specific impact of AIS/axon location on intrinsic excitability throughexperimentalmeansawaitsfurtherinvestigation and methodologiesto manipulateeach factorseparately and selectively. Perhaps optogenetic tools to control organelle positions [41] mayin thefuture beleveraged to selectivelyrelocatetheinitialsegment.

AIS

location

diversity

and

backpropagation

AcriticalfunctionoftheAISisthegeneration ofanAP backpropagating into the soma and the dendritic tree. SomaticallyrecordedAPsacquiredwithsufficientlyhigh temporalresolution show, in mostmammalianneurons,

anearlycomponentreflectingthespikegeneratedinthe AISandalate componentreflectingspikegenerationin the somatodendritic compartment[30,42].According to resistive couplingtheory,thecurrenttransmittedto the soma bytheAISspikeisinversely proportional toaxial resistance[18]andinparticularthesomashould there-forereceivelesscurrentfromadendriticaxoncompared toasomaticaxon(Figure2).Surprisingly,heterogeneity inAISandaxonpositionisnotalwaysreflectedinchanges intheinitialrisingphaseoftheAP.InhippocampalCA1 pyramidal neurons and thick-tufted layer 5 pyramidal neuronsthesomaticallyrecordedAPisindistinguishable betweendendriticandsomaticaxons[18,19].In thick-tufted layer 5 cells detailed geometric analysis showed thatthesmallerantidromiccurrent,withamoredistalAIS position, matches the smaller somatodendritic capaci-tance of neurons with axon-carrying dendrites, which have a thinner apical dendrite [18]. As a resultof the cable properties between the axon and dendrites, the antidromiccurrentflowmaintainsaconstantrise-timeof the somatodendritic spike. Whether a tuning between AIS location and the dendritic tree is a generalrule in building neuronsremainsto befurtherinvestigatedbut evidenceforcovarationisindeedseeninothercelltypes. Forexample,intheaviannucleuslaminaris(NL)ofthe chick,aregioninvolvedinauditory processing,neurons tunedtoahighcharacteristicfrequencyhavelarge soma-AISdistancesbut alsoshorterdendriteswhencompared tothosewithlowcharacteristicfrequency,whichhavea short soma-AIS distancesand largerdendrites[33,43]. In addition, ion channel properties also correlate with frequency tuning, including expression of dendritic T-type Ca2+ channels[44]. However,unlikecortical pyra-midalneurons,NLneuronsdonotregeneratetheAPat the soma with Na+ current and the AP amplitudes between theNL subpopulations differ as afunction of AISpositionandfrequencytuning [33].

Further examples of covariation between AIS location and dendritesare foundin midbraindopaminergic neu-rons withdendriticaxons(Figure 1b).Inthesecellsthe axon-carryingdendriteis2-foldlargerindiameter com-paredtonon-axoncarryingdendrites,whichwillfacilitate backpropagationtowardsthesoma[15,16].Despitesuch morphologicaladaptations,thedistallocationoftheAIS seems to be electrically significant: in these cells the rising phase of the somatic AP is slow, unreliable and canevenfailduringtheintegrationoffluctuatingin vivo-like synaptic inputs [15,45]. Collectively, the findings fromvariousstudiesshowthatthedistancebetweensoma andAISimpactsAPbackpropagationbutthefunctional consequencesarehighlyvariablebetweencell-types.

Dendritic

axons

enrich

synaptic

integration

According to resistive coupling theory, when synaptic currententerstheaxon-carryingdendrite,itflowstowards the soma and thereby produces a voltage gradient

(6)

betweenthesomaandthepointwheretheaxonemerges fromthedendrite,whichaddsuptothesomaticpotential, producing a larger synaptic potential in the axon. In accordwiththetheory,compartmentalsimulationsbased on substantia nigra dopaminergic neurons show EPSP amplification in axon-carrying dendrites (Figure 3a and b).Thesamecurrentinputwillproduceasmaller synap-ticdepolarizationattheaxonwhenenteringthecellatthe non-axoncarrying dendritesor when theaxon emerges from the soma. The difference is theoretically propor-tionalto theaxialresistance betweenthesoma andthe branchingpointoftheaxon,inparticularinverselyrelated todendritediameter(Figure3c).Experimentsaddressing synapticintegration inthesecells havebeen performed with simultaneous dual or triple patch-clamp recording fromtheaxon-carryingandnonaxon-carryingdendrites [14–16]. In support of the theoretical predictions that EPSPsare amplifieddue to resistive coupling,barrages of simulated EPSPs mimicking in vivo activity were observed to trigger APs more reliably when generated intheaxon-carryingdendritecomparedtothenon-axon carrying dendrite [15]. Recently, increased coupling of EPSP input to AP output has also been demonstrated with two-photon uncaging in CA1 pyramidal neurons comparingexcitatorysynapsesontheaxon-carrying den-drites with other dendrites [19]. The difference in

integration is reflectedby a somaticallyrecorded lower AP voltage threshold when uncaging glutamate at the axon-bearingdendrite,thedifferencebeingagaindueto thevoltagegradient betweensoma and axonbranching pointduringstimulation(Figure3d).

From

single

axons

to

neural

circuits

Thestudiesreviewedsofarshowthatbiophysical differ-encesbetweentheaxon-carryingandnon-axoncarrying dendritesmostlyleadstodifferentialcomputational pro-cessing of synaptic inputs. This raises the tantalizing possibility that variation of axon location in single cell classesenriches therepertoire of synapticintegrationat thecircuit level.Even further,withinanindividualcell with dendritic axons, thedistinct branch types maybe receiving specific afferent inputs. Evidence for branch-specificsynapticclusteringcomesfromsingle-cell analy-sisofdopaminergic neurons[46].Anatomical identifica-tionofinputsrevealedahigherdensityofglutamatergic synapsesonthe dendriteslocated near theaxon in the substantianigraparscompacta (SNc)compared to den-dritesinthesubstantianigraparsreticulata(SNr),making the SNc inputs more likely to drive the activity of dopaminergicneurons[46].Notably,inthehippocampus, pyramidalneuronswithdendriticaxonsarepreferentially observed in the superficial layers of the stratum

Figure3

Recording site

Axon

EPSP at axon origin

X1 X1 20 ms non AcDendrites 0.5 mV X2 X2 X3 X3 4 4 4 2 0 -2 -4 -6 -8 0 5 10 15 5 3 EPSP ratio Δ AP threshold (mV)

Dendritic diameter (μm) distance: stim. branch to soma (μm) 2 2 3 1 1 0 0 AcDendrites (a) (b) (c) (d)

Current Opinion in Neurobiology

Differentialsynapticintegrationindendriticaxons.(a)Simulatedmorphologywithadendriticaxonemerging50mmfromthesoma,andsynaptic inputsatdifferentlocations;onadendrite(X1)andontheaxon-carryingdendrite(locationsX2andX3).(b)SimulatedEPSPsmeasuredattheaxon

originforthethreelocationsshownina,showinglargerandmorerapidEPSPswhensynapsesontheaxon-carryingdendriteareactivated.(c)The EPSPamplificationvariesinverselywiththediameteroftheaxon-carryingdendrite(decreasingRa).(d)Somaticrecordingsofactionpotentialsin

CA1pyramidalcellsrevealamorehyperpolarizedvoltagethresholdwhentheaxon-carryingdendrite(AcDendrite,red)isstimulatedcomparedto non-axoncarryingdendrites(black),withlowerthresholdpotentialswhentheAISisfurtherfromthesoma(equivalentwithincreasingRa).

(7)

pyramidale[19].Asubdivisionofdendriticand somatic-axon pyramidal neuronsalong thesuperficial-to-deeper layer axis is in accord with experimentally observed gradients at the level of genetics, type of inhibitory inputs,sharpwaveripples,andactivityrecruitment dur-ing behavioural tasks [47,48]. In addition, recent data showed that the layer 5 neurons with dendritic axons haveadistinct dendriticmorphology, putatively reflect-ingamorphologicalsubtype[18].Whetherthe subdivi-sion has a geneticbasis is not known but classification basedonsingle-celltranscriptomeanalysisrevealedthree distincttypesinthedeeperlayersoflayer5[49].Recent retrogradetraceranalysisshowedthatthick-tufted layer 5 neurons can be subdivided based on their projection area,dendritic morphologyand invivofiringproperties, with cells projecting to theposterior medial divisionof thethalamus(POm) showingreduceddendritic branch-ing in thelayer 5 lamina and higherspontaneous firing rate [50].WhetherthePOm projectinglayer5 cells are characterizedbydendriticaxons,however,isnotknown and remainstobeexamined.

Interestingly,reconstructionsandmodellingofthe cere-bellargranulecells(CGCs)showedthatCGCswith axon-carrying dendrites are characterized by more complex claw-shapedendingsreceivingagreaterexcitatoryinput frommossy-fibres[17].Thesignificanceforprocessingin theCGClayerremainstobefurtherexaminedandmay be different from the examples described above since CGCs are electrotonically extremely compact, showing uniformEPSPsalongtheirdendriteandsoma[51]. Nev-ertheless, it is tempting to speculate thatresistive cou-plingofaxonswithinthethinCGCdendritesimpactsthe temporal processing of the high-frequency information from mossy fibre inputs and expands the integrative capabilities of the CGC layer to relay information to the Purkinje cells. Both theoretical and experimental studiesthus convergeto theideathatdiverse dendrite-axonarchitecturesinneuronsexpandsynapticintegration and theencoding capabilitiesof cellularcircuits.

Conclusion

In summary, recent studies are slowly shedding more lightonboththeabundanceandsignificanceofdendritic axons but manyquestionsremain to be resolved.First, whileinsomecelltypestheAIS/axonlocationco-varies with the structure of the dendritic tree, it is not well understood whether this is a generic phenomenon. Addressing this would require an integrated imaging approach for both theaxonaland dendritic treein con-junctionwithelectricalrecordings.Secondly,whatarethe molecularmechanismsinvolvedinestablishingtheaxon originandareneuronswithdendriticaxonsrepresenting genetic subtypes? Recently developed patch-clamp RNA-sequencingapproaches[52,53]couldinprinciple beemployedtoharvestthecytoplasmiccontentof iden-tifiedneuronswithorwithoutdendriticaxonsandlinkthe

morphological types to the single-cell transcriptome to resolve whether they represent genetic subtypes. Fur-thermore, the emerging theoretical and experimental evidencethatisreviewedindicatesthatalthoughintrinsic excitability isonly marginallydifferentin neuronswith dendritic axons, the neuronal architecture provides a unique integrative pathway for synaptic potentials. Addressing the question of significance of axon place-mentwillthereforerequirelinkingthecellularproperties to connectivity and resolving its role at the level of information processing in the circuit. Ultimately, com-biningcomputational,anatomical andfunctional record-ingapproacheswillanswerthelong-standingquestionof the functional significance of AIS/axon location variability.

Conflicts

of

interest

statement

Nothingdeclared.

Acknowledgements

ThisworkwassupportedbytheAgenceNationaledelaRecherche [ANR-14-CE13-0003]andaprogramgrant[16NEPH02]oftheresearch programmeoftheFoundationforFundamentalResearchonMatter(FOM), whichispartoftheNetherlandsOrganisationforScientificResearch (NWO).WearethankfultothemembersoftheKoleandBrettelaboratories fortheircontributionsanddiscussion.

References

and

recommended

reading

Papersofparticularinterest,publishedwithintheperiodofreview, havebeenhighlightedas:

 ofspecialinterest ofoutstandinginterest

1. RasbandMN:Theaxoninitialsegmentandthemaintenanceof neuronalpolarity.NatRevNeurosci2010,11:552-562.

2. KoleMHP,StuartGJ:Signalprocessingintheaxoninitial segment.Neuron2012,73:235-247.

3. BenderKJ,TrussellLO:Thephysiologyoftheaxoninitial segment.AnnuRevNeurosci2012http://dx.doi.org/10.1146/ annurev-neuro-062111-150339.

4. KubaH,OichiY,OhmoriH:PresynapticactivityregulatesNa(+) channeldistributionattheaxoninitialsegment.Nature2010, 465:1075-1078.

5. GrubbMS,BurroneJ:Activity-dependentrelocationoftheaxon initialsegmentfine-tunesneuronalexcitability.Nature2010, 465:1070-1074.

6.

 EvansRapidMD,modulationDumitrescuofaxonAS,KruijsseninitialsegmentDLH,TaylorlengthSE,influencesGrubbMS: repetitivespikefiring.CellRep2015,13:1233-1245.

ThisstudyshowsthattheeffectofAISstructuralplasticityonexcitability iscompensatedbydephosphorylationofNavchannels.

7. HofflinF,JackA,RiedelC,Mack-BucherJ,RoosJ,CorcelliC, SchultzC,WahleP,EngelhardtM:Heterogeneityoftheaxon initialsegmentininterneuronsandpyramidalcellsofrodent visualcortex.FrontCellNeurosci2017,11:332.

8. GutzmannA,Ergu¨lN,GrossmannR,SchultzC,WahleP, EngelhardtM:Aperiodofstructuralplasticityattheaxoninitial segmentindevelopingvisualcortex.FrontNeuroanat2014, 8:11.

9. GalianoMR,JhaS,HoTS-Y,ZhangC,OgawaY,ChangK-J, StankewichMC,MohlerPJ,RasbandMN:Adistalaxonal cytoskeletonformsanintra-axonalboundarythatcontrols axoninitialsegmentassembly.Cell2012,149:1125-1139.

(8)

10. CajalSRY:RecollectionsofMyLife.MITPress;1989.

11. CajalSRY:Estructuradelkiasmao´pticoyteorı´ageneraldelos entrecruzamientosdelasvı´asnerviosas.Rev.Trim.Microgra´fı´ca; 1898.

12. AmaralDG:AGolgistudyofcelltypesinthehilarregionofthe hippocampusintherat.JCompNeurol1978,182:851-914.

13. MartinaM,VidaI,JonasP:Distalinitiationandactive propagationofactionpotentialsininterneurondendrites. Science2000,287:295-300.

14. Ha¨usserM,StuartGJ,RaccaC,SakmannB:Axonalinitiation andactivedendriticpropagationofactionpotentialsin substantianigraneurons.Neuron1995,15:637-647.

15. GentetLJ,WilliamsSR:Dopaminegatesactionpotential backpropagationinmidbraindopaminergicneurons.J Neurosci2007,27:1892-1901.

16. BlytheSN,WokosinD,AthertonJF,BevanMD:Cellular mechanismsunderlyingburstfiringinsubstantianigra dopamineneurons.JNeurosci2009,29:15531-15541.

17. HoustonCM,DiamantiE,DiamantakiM,KutsarovaE,CookA, SultanF,BrickleySG:Exploringthesignificanceof

morphologicaldiversityforcerebellargranulecellexcitability. SciRep2017,7:46147.

18.

 HamadaCovariationMS,ofGoethalsaxoninitialS,desegmentVriesSI,locationBretteR,andKoledendriticMHP: tree normalizesthesomaticactionpotential.ProcNatlAcadSciUS A2016,113:14841-14846.

In this study theoretical analysis, electrophysiological patch-clamp recordinganddetailedidentificationofaxonsanddendritesare com-bined,providingatheoreticalbasisforthediverseAISlocationsacross neocorticalpyramidalneurons.

19.

 ThomeCambridgeC,KellySB,T,BothYanezM,DraguhnA,SchultzA,C,BeckEngelhardtH,EgorovM,AV: Axon-carryingdendritesconveyprivilegedsynapticinputin hippocampalneurons.Neuron2014,83:1418-1430.

This study describes a surprisingly vast abundance of dendritically targetedaxonsinpopulationsofhippocampalpyramidalneuronsand demonstratesaroleinsynapticintegrativefunctions.

20. TriarhouLC:Axonsemanatingfromdendrites:phylogenetic repercussionswithCajalianhues.FrontNeuroanat2014,8:133.

21.

 Brettecompartmentalization.R:SharpnessofspikePLoSinitiationComputBiolinneurons2013,9:e1003338.explainedby

Thisstudyintroducesresistivecouplingtheory,anapplicationofcable theorytothecasewhenthesomaactsasacurrentsinkfortheaxonal initiationsite.

22. TelenczukM,FontaineB,BretteR:Thebasisofsharpspike onsetinstandardbiophysicalmodels.PLOSONE2017,12: e0175362.

23. GulledgeAT,BravoJJ:Neuronmorphologyinfluencesaxon initialsegmentplasticity.eNeuro2016:3.

24. BaranauskasG,DavidY,FleidervishIA:Spatialmismatch betweentheNa+fluxandspikeinitiationinaxoninitial

segment.ProcNatlAcadSciUSA2013,110:4051-4056.

25. EyalG,MansvelderHD,deKockCPJ,SegevI:Dendritesimpact theencodingcapabilitiesoftheaxon.JNeurosci2014, 34:8063-8071.

26. LezmyJ,LipinskyM,KhrapunskyY,PatrichE,ShalomL,PeretzA, FleidervishIA,AttaliB:M-currentinhibitionrapidlyinducesa uniqueCK2-dependentplasticityoftheaxoninitialsegment. ProcNatlAcadSciUSA2017http://dx.doi.org/10.1073/ pnas.1708700114.

27. SloperJJ,PowellTP:Astudyoftheaxoninitialsegmentand proximalaxonofneuronsintheprimatemotorandsomatic sensorycortices.PhilosTransRSocLondBBiolSci1979, 285:173-197.

28. PetersA,ProskauerCC,Kaiserman-AbramofIR:Thesmall pyramidalneuronoftheratcerebralcortex.Theaxonhillock andinitialsegment.JCellBiol1968,39:604-619.

29. HallermannS,deKockCPJ,StuartGJ,KoleMHP:Stateand locationdependenceofactionpotentialmetaboliccostin corticalpyramidalneurons.NatNeurosci2012,15:1007-1014.

30. KoleMHP,StuartGJ:Isactionpotentialthresholdlowestinthe axon? NatNeurosci2008,11:1253-1255.

31. BattefeldA,TranBT,GavrilisJ,CooperEC,KoleMHP: HeteromericKv7.2/7.3channelsdifferentiallyregulateaction potentialinitiationandconductioninneocorticalmyelinated axons.JNeurosci2014,34:3719-3732.

32. KubaH,YamadaR,IshiguroG,AdachiR:RedistributionofKv1 andKv7enhancesneuronalexcitabilityduringstructuralaxon initialsegmentplasticity.NatCommun2015,6:8815.

33.

 KubaenhancesH,IshiiauditoryTM,OhmoricoincidenceH:Axonaldetection.siteofspikeNatureinitiation2006, 444:1069-1072.

Thestudypresentsoneofthefirstpiecesevidenceforafunctionalroleof AISlocationdiversityinsensoryintegration.Basedoncellularrecordings fromaviannucleuslaminariscellsthatareorganizedintonotopicmaps theauthorsdemonstratehowdistalAISlocationsoptimizeneuronsforthe integrationofhigh-characteristicfrequencies.

34. JenkinsPM,KimN,JonesSL,TsengWC,SvitkinaTM,YinHH, BennettV:Giantankyrin-G:acriticalinnovationinvertebrate evolutionoffastandintegratedneuronalsignaling.ProcNatl AcadSciUSA2015,112:957-964.

35. ZontaB,DesmazieresA,RinaldiA,TaitS,ShermanDL,NolanMF, BrophyPJ:AcriticalroleforNeurofascininregulatingaction potentialinitiationthroughmaintenanceoftheaxoninitial segment.Neuron2011,69:945-956.

36. KubaH:Structuraltuningandplasticityoftheaxoninitial segmentinauditoryneurons.JPhysiol2012,590:5571-5579.

37. JamannN,JordanM,EngelhardtM:Activity-dependentaxonal plasticityinsensorysystems.Neuroscience2018,368:268-282.

38. WefelmeyerW,CattaertD,BurroneJ:Activity-dependent mismatchbetweenaxo-axonicsynapsesandtheaxoninitial segmentcontrolsneuronaloutput.ProcNatlAcadSciUSA 2015,112:9757-9762.

39. HatchRJ,WeiY,XiaD,Go¨tzJ:Hyperphosphorylatedtaucauses reducedhippocampalCA1excitabilitybyrelocatingtheaxon initialsegment.ActaNeuropathol2017,133:717-730.

40. MezaRC,Lo´pez-JuryL,CanavierCC,HennyP:Roleoftheaxon initialsegmentinthecontrolofspontaneousfrequencyofnigral dopaminergicneuronsinvivo.JNeurosci2018,38:733-744.

41. vanBergeijkP,AdrianM,HoogenraadCC,KapiteinLC: Optogeneticcontroloforganelletransportandpositioning. Nature2015,518:111-114.

42. CoombsJS,CurtisDR,EcclesJC:Theinterpretationofspike potentialsofmotoneurones.JPhysiol1957,139:198-231.

43. KubaH,YamadaR,FukuiI,OhmoriH:Tonotopicspecialization ofauditorycoincidencedetectioninnucleuslaminarisofthe chick.JNeurosci2005,25:1924-1934.

44. FukayaR,YamadaR,KubaH:TonotopicvariationoftheT-type Ca2+currentinavianauditorycoincidencedetectorneurons.J

Neurosci2018,38:335-346.

45. GraceAA,BunneyBS:Intracellularandextracellular electrophysiologyofnigraldopaminergicneurons—2.Action potentialgeneratingmechanismsandmorphological correlates.Neuroscience1983,10:317-331.

46. HennyP,BrownMTC,NorthropA,FaunesM,UnglessMA, MagillPJ,BolamJP:Structuralcorrelatesofheterogeneousin vivoactivityofmidbraindopaminergicneurons.NatNeurosci 2012,15:613-619.

47. DanielsonNB,ZarembaJD,KaifoshP,BowlerJ,LadowM, LosonczyA:Sublayer-specificcodingdynamicsduringspatial navigationandlearninginhippocampalareaCA1.Neuron 2016,91:652-665.

48. ValeroM,CidE,AverkinRG,AguilarJ,Sanchez-AguileraA, VineyTJ,Gomez-DominguezD,BellistriE,laPridadeLM: DeterminantsofdifferentdeepandsuperficialCA1pyramidal

(9)

celldynamicsduringsharp-waveripples.NatNeurosci2015, 18:1281-1290.

49. TasicB,MenonV,NguyenTN,KimTK,JarskyT,YaoZ,LeviB, GrayLT,SorensenSA,DolbeareTetal.:Adultmousecortical celltaxonomyrevealedbysinglecelltranscriptomics.Nat Neurosci2016,19:335-346.

50. Rojas-PiloniG,GuestJM,EggerR,JohnsonAS,SakmannB, OberlaenderM:Relationshipsbetweenstructure,invivo functionandlong-rangeaxonaltargetofcorticalpyramidal tractneurons.NatCommun2017,8:870.

51. DelvendahlI,StraubI,HallermannS:Dendriticpatch-clamp recordingsfromcerebellargranulecellsdemonstrate electrotoniccompactness.FrontCellNeurosci2015,9:93.

52.

 FuzikLinnarssonJ,ZeiselS,HarkanyA,Ma´te´ Z,T:IntegrationCalvigioniD,ofYanagawaelectrophysiologicalY,Szabo´ G, recordingswithsingle-cellRNA-seqdataidentifiesneuronal subtypes.NatBiotechnol2016,34:175-183.

Bothstudies introduce apowerful strategytoobtain single-cellRNA sequencingdatafrompatch-clamprecordings(Patch-seq)tolink mor-phologyandelectrophysiologicalproperties,enablingacomprehensive classificationofneuronalsubtypes.

53.

 CadwellReimerJ,CR,ShenPalasantzaS,BethgeA,M,JiangToliasX,BerensKFetal.:P,DengQ,YilmazM, Electrophysiological,transcriptomicandmorphologic profilingofsingleneuronsusingPatch-seq.NatBiotechnol 2016,34:199-203.

SeeannotationtoRef.[52].

Figure

Figure 2 1200 20 –64 –50800400000 μmAxonΔV = Ra x I 5 μm45 μm V  Soma  (mV) I  axial (nA)ICapRaV SomadV/dt (V/s) V  Soma  (mV)060–400–60Dendrites(a)(b)(c)

Références

Documents relatifs

nis, 1999b), has proposed a model for the propagation and scaling of electric earthquake precursors, according to which the pre-seismic electric field emission is due to some

Rapporter dans la corbeille, le plus d’objets correspondant à la couleur de son équipe en un temps donné. • Le meneur relance les objets déposés par les élèves dans

On a mesuré la valeur efficace de la tension aux bornes d’un enroulement secondaire, U 2v = 1,36 kV, l’intensité efficace du courant appelé au primaire, I 1v = 1,25 A et la

The aims of this study were to assess the effect of perceptual range, topography and matrix heterogeneity on connectivity estimates and to get a more realistic and impartial measure

Quelle masse totale Noémie a-t-elle mise dans le sac.. Combien de bouteilles pleines Noémie peut-elle

On the other hand, the bulldlng neseareh rarorker usually starts hls investlgatlons in a llbrary and, if 1:o is wi-ser makes a thorough seaneh of all avallable

Becker berücksichtigt nämlich nicht nur systematisch die Faktoren der Kommunikationssituation, sondern stellt vor allem auch einen eindeutigen Zusammenhang zwischen

B1: growth cone GC interacts with the shaft of another axon, B2: small incidence angle allows incoming GC to adhere and follow the shaft, B3: the two shafts zipper, increasing