• Aucun résultat trouvé

Article pp.617-627 du Vol.22 n°5 (2002)

N/A
N/A
Protected

Academic year: 2022

Partager "Article pp.617-627 du Vol.22 n°5 (2002)"

Copied!
12
0
0

Texte intégral

(1)

NOTE

Minor volatile constituents of essential oil

and extracts of coriander (Coriandrum sativum L.) fruits

Giacomo MAZZA

RÉSUMÉ Les composés volatiles mineurs de l’huile essentielle et des extraits des fruits du coriandre (Coriandrum sativum L.)

L’étude de l’huile essentielle, de l’extrait hydroalcoolique et de l’extrait obtenu par distillation de l’infusion aqueuse des fruits de coriandre, a permis de détec- ter 133 composés volatils. Le linalol est le composé le plus abondant dans tous les échantillons examinés et il atteint 81 % de la fraction volatile totale dans l’extrait aqueux. On a souligné les différences les plus remarquables entre l’huile essentielle et les extraits. Le camphre (5,6 %), l’acétate de géranyle (4 %) et le géraniol (1,5 %) se trouvent en grande quantité dans l’huile essen- tielle, tandis que la teneur en hydrocarbures sesquiterpéniques dépasse 13 %.

Quarante-quatre composés mineurs ont été rapportés pour la première fois dans les extraits aromatiques et dans l’huile essentielle du coriandre, acétate de myrtényle, verbenone, myrténol, p-cymènol-8, et quelques diols comme le diméthyl-2,6-octadiène-3,7-diol-2,6 et le diméthyl-2,6-octadiène-1,7-diol-3,6 étant les plus représentatifs. Dans l’huile essentielle on a identifié deux iso- mères de l’époxy-6,7-linalol ; l’acétate de dihydro-2,3-époxygéranyle a été trouvé dans l’extrait hydroalcoolique seulement. En plus, on a mis en évidence la corrélation entre les diols et les produits d’oxydation des terpènes.

Mot clés : Coriandrum sativum L., coriandre, composés volatiles, chromato- graphie gazeuse, spectrométrie de masse.

SUMMARY

The essential oil, the alcoholic extract and the aqueous extract obtained by steam distillation of coriander fruits were investigated and a total of 133 com- ponents were detected. In all the samples linalool was the main component with a maximum concentration of 81% of the total volatile fraction in aqueous extract. The most meaningful differences between essential oil and extracts were displayed. Camphor (5.6%), geranyl acetate (4%) and geraniol (1.5%) occurred at high amount in essential oil; the presence of sesquiterpene hydro-

Istituto sperimentale per l’enologia di asti, via Pietro Micca 35, 14100 Asti, Italy.

Correspondance enologia@tin.it

©Lavoisier – La photocopie non autorisée est un délit

(2)

carbons was observed at a concentration over 13%. Fourty-four minor new components were reported in coriander aromatic extracts and essential oil;

among them myrtenyl acetate, verbenone, myrtenol, p-cymen-8-ol, and several diols like 2,6-dimethyl-3,7-octadiene-2,6-diol and 2,6-dimethyl-1,7-octadiene- 3,6-diol. Two isomers of 6,7-epoxylinalool were identified in essential oil, and 2,3-dihydroepoxygeranyl acetate in alcoholic extract only. A relationship bet- ween diols and terpene oxidation products is also discussed.

Key-words: Coriandrum sativum L., coriander, volatile components, gas chro- matography, mass spectrometry.

1 – INTRODUCTION

Coriander is an annual herb, belonging to the Apiacaee family, native to the Mediterranean countries, grown in Italy, Morocco, India, Pakistan and Eastern Europe. Essential oil obtained by steam distillation of fruits is used in food, pharmaceutical and perfume industries. Alcoholic extracts and distillates are widely used in spirits aromatisation.

The chemical composition of coriander was studied by several authors; the main volatile components of coriander fruits were isolated by hydroalcoholic steam distillation (TASKINENand NYKANEN, 1975), by supercritical carbon dioxide extraction (KALLIO and KERROLA, 1992; KERROLA and KALLIO, 1993) by direct headspace GC analysis (CHIALVAet al., 1982). Studies on authenticity control of the essential oil of Coriandrum sativum L. (FRANKet al., 1995) were carried out using gas chromatography and/or isotope ratio mass spectrometry (GC-IRMS).

It was observed that an oil built with 18 principle components of coriander did not give the same odour impression as the natural coriander oil and this pointed out the role of minor compounds in the aroma of coriander oil (LAMPARSKYand KLIMES, 1988). The present work is aimed to identify most of the minor compo- nents of coriander; some of them are important for the aroma; others such as epoxy compounds, useful to explain reaction mechanisms involving some diols originating from linalool, were identified in this work. The study of minor compo- nents is also useful in the control of the authenticity of essential oils and their degree of freshness.

2 – MATERIALS AND METHODS

Coriander fruits and essential oil of Italian origin were from the market.

Epoxy compounds of linalool and geranyl acetate were synthetised by reaction of the compound with m-chloroperbenzoic acid (ANDERSON and VEYSOGLU, 1973); the yields for 6,7-epoxylinalool (sum of the two diastereoisomers) and 2,3-dihydroepoxygeranyl acetate were respectively 53% and 75%. Mass spec- tral data of terpene diols and terpene epoxy compounds were shown in table 2. ©Lavoisier – La photocopie non autorisée est un délit

(3)

2.1 Aqueous extract

Ten grammes of ground coriander fruits were soaked in 500 mL of water over 24 h. Aqueous extract were steam distilled for 1 h and volatile components of the distillate were extracted with dichloromethane in a separatory funnel. The extract was dried over anydrous Na2SO4 and concentrated to a volume of 0.5 mL by distillation with a Vigreux column.

2.2 Alcoholic extract

Six grammes of ground coriander fruits were soaked in 40 mL of methanol over 48 h. The methanolic extract was diluted with 250 mL of water and extrac- ted with dichloromethane in a separatory funnel. The extract was dried over anydrous Na2SO4and concentrated to a volume of 0.5 mL by distillation with a Vigreux column.

2.3 Gas chromatography

Quantitative analyses were carried out by using a Carlo Erba HRGC 5300 Mega Series gas chromatograph equipped with a flame ionization detector (FID); the column was a fused silica capillary column J. & W. FFAP 30 m × 0,25 mm i.d.; the carrier was hydrogen at a flow rate of 1 mL/min; split ratio 1:30; injector and detector temperature 250°C; the temperature programme was as follows: 60°C (2 min), 2°C/min to 160°C, 3°C/min to 230°C with a final iso- therm of 15 min. The percentage composition of the samples was evaluated from peak areas without using any response factors.

2.4 Gas chromatography – Mass Spectrometry (GC/MS)

The identification of the compounds was performed with a Hewlett Packard 5890 gas chromatograph coupled with a mass selective detector MSD 5970, on a fused silica capillary column J. & W. FFAP, 30 m ×0,25 mm i.d.; the carrier was helium, at a flow rate of 1 mL/min; splitless injection; injector temperature 250°C; the temperature programme was as follows: 60°C (2 min), 2°C/min to 160°C, 3°C/min to 230°C with a final isotherm of 15 min. The mass spectra were recorded at 70 eV. The Retention Indexes (RI) were estimated by a modi- fied Kovats method (VAN DEN DOOL and KRATZ, 1963). All compounds were identified by comparing the RI and the mass spectrum to those of standard compounds or compounds already identified in other essential oil. Sometimes the identification was carried out by referring to RIs and mass spectra of com- pounds the indexes and spectra of which were reported in the literature (STEN- HAGENet al., 1974) or in the NIST and the Wiley/NBS libraries.

3 – RESULTS AND DISCUSSION

A total of 133 volatile compounds were detected and identified in the samples examined; 113 of them were identified. The compounds identified are

©Lavoisier – La photocopie non autorisée est un délit

(4)

listed in table 1 while the total ion chromatogram of the essential oil is showed in figure 1.

Table 1

Identified compounds in coriander fruits

Essential Methanolic Aqueous

N.a RIb Compound oil extract extract IDd

% % %

1 1020 thuyene tr tr tr B

2 1033 α−pinene 1,900 0,130 0,160 A

3 1050 camphene 0,900 0,070 0,120 A

4 1105 β−pinene 0,400 0,050 0,070 A

5 1116 sabinene 0,040 0,030 0,040 B

6 1156 myrcene 0,821 0,120 0,130 A

7 1178 α−terpinene 0,030 0,040 0,030 A

8 1196 limonene 2,868 0,150 0,202 A

9 1208 β−phellandrene 0,060 0,060 0,060 A

10 1208 1,8-cineole tr tr tr A

11 1225 cis-ocimene 0,029 1,010 0,130 A

12 1240 g-terpinene 4,010 0,303 0,611 A

13 1244 trans-ocimene 0,070 0,070 0,070 A

14 1265 p-cymene 2,976 0,363 1,436 A

15 1274 terpinolene 0,444 0,070 0,080 A

16 1321 cis-3-hexenyl acetate tr nd nd A

17 1331 6-methyl-5-hepten-2-one 0,024 0,007 0,012 A

18 1346 hexanol nd 0,032 0,045 A

19 1369 alloocimene isomer 1c tr nd nd A

20 1391 alloocimene isomer 2c tr 0,037 0,030 A

21 1417 perillenec tr nd nd B

22 1434 trans-furan linalool oxide 0,368 0,365 0,344 A

23 1454 acetic acid tr nd nd A

24 1463 cis-furan linalool oxide 0,378 0,359 0,395 A

25 1491 octyl acetatec tr nd nd A

26 1502 camphor 5,615 3,040 4,254 A

27 1515 benzaldehyde tr nd nd A

28 1545 linalool 70,888 79,200 81,410 A

29 1556 1-octanol nd 0,021 0,031 A

30 1581 bornyl acetate tr nd nd A

31 1588 β−caryophyllene 0,048 tr nd A

32 1598 terpinen-4-ol 0,130 0,246 0,322 A

33 1614 methyl benzoatec tr tr nd A

34 1614 hotrienolc 0,026 0,041 0,021 B

35 1621 myrtenalc nd nd tr A

36 1626 β−terpineolc 0,024 0,032 0,021 A

37 1630 trans-2-decenal tr tr tr B

38 1648 α−humulene tr nd nd B

39 1642 perilla ketonec tr nd nd B

40 1642 trans-pinocarveol tr nd nd B

41 1650 4-isopropyl-2-cyclohexen-1-one (cryptone)c tr nd nd B 42 1657 2-vinyl-2-methyl tetrahydrofuran-5-one 0,018 0,030 0,026 B

43 1661 citronellyl acetatec 0,013 nd nd A

©Lavoisier – La photocopie non autorisée est un délit

(5)

Table 1 (continued)

Identified compounds in coriander fruits

Essential Methanolic Aqueous

N.a RIb Compound oil extract extract IDd

% % %

44 1668 109,94, tr tr nd

45 1673 neral 0,018 0,029 0,030 A

46 1676 trans-mirtenyl acetatec 0,133 0,033 0,039 A

47 1680 1,8-menthadien-4-olc 0,035 nd nd B

48 1683 verbenonec 0,024 0,024 0,026 A

49 1689 borneol tr tr tr A

50 1690 α−terpineol 0,432 0,701 0,554 A

51 1703 69,41,68,136,93 0,020 nd nd

52 1705 piperitonec tr tr tr B

53 1707 110,95,43 0,019 nd nd

54 1709 neryl acetate tr nd nd A

55 1715 carvone tr tr tr A

56 1724 geranial 0,064 0,036 0,120 A

57 1731 trans-pyran linalool oxidec 0,035 0,041 0,038 A

58 1762 geranyl acetate 4,026 1,819 1,400 A

59 1766 cis-pyran linalool oxidec 0,036 0,058 0,048 A

60 1768 citronellol 0,056 0,095 0,085 A

61 1777 111,55,93,155 tr nd nd

62 1781 myrtenolc 0,023 0,131 0,112 A

63 1784 γ−isogeraniolc tr nd nd B

64 1797 nerol 0,027 0,107 0,101 A

65 1800 6,7-epoxylinalool isomer 1c tr nd nd A

66 1807 6,7-epoxylinalool isomer 2c tr nd nd A

67 1810 trans-anethole nd tr tr A

68 1816 isopiperitenonec tr nd nd B

69 1819 111,93,55, tr nd nd

70 1827 trans-carveolc 0,007 tr 0,020 A

71 1843 hexanoic acid nd tr nd A

72 1843 guaiacol nd nd tr A

73 1844 p-cymen-8-olc 0,016 0,101 0,159 B

74 1849 geraniol 1,551 2,796 3,240 A

75 1866 trans-2-dodecenal nd 0,014 nd B

76 1866 benzyl alcohol nd 0,020 0,131 A

77 1897 phenyl ethanol tr 0,167 0,126 A

78 1908 69,83,98 0,003 nd nd

79 1917 cis-2,6-dimethyl-3,7-octadiene-2,6-diolc tr nd tr B

80 1925 benzothiazolc nd nd tr A

81 1930 d-lactone ? nd tr tr B

82 1940 heptanoic acid nd nd tr A

83 1942 2-ethylhexanoic acid nd tr nd B

84 1945 caryophyllene oxide 0,008 nd nd A

85 1950 trans-2,6-dimethyl-3,7-octadiene-2,6-diolc 0,059 0,429 0,094 B

86 1975 69,81,94,43,93 tr nd nd

87 1983 2,6-dimethyl-7-octene-2,6-diolc tr nd nd B

88 2005 γ−nonalactone nd tr tr

89 2011 trans-1,8-terpinc tr nd nd A

90 2014 3,7-dimethyl-1,6-octadiene-3,5-diolc tr nd nd B

©Lavoisier – La photocopie non autorisée est un délit

(6)

Table 1 (continued)

Identified compounds in coriander fruits

Essential Methanolic Aqueous

N.a RIb Compound oil extract extract IDd

% % %

91 2018 93,111,59,110 0,003 nd nd

92 2031 69,111,93,81 0,003 nd nd

93 2035 2,3-dihydro-2,3-epoxygeranyl acetatec nd tr nd A

94 2038 nerolidol tr tr tr A

95 2043 71,84,43,69,55 0,027 tr tr

96 2074 98,55,43,83,111 0,010 nd nd

97 2103 69,81,95,41,93 isomer 1 tr nd nd

98 2109 71,43,84 0,020 nd nd

99 2130 2,6-dimethyl-1,7-octadiene-3,6-diolc 0,037 0,236 0,048 B

100 2154 eugenol nd tr tr A

101 2159 69,81,41,95 isomer 2 0,030 nd nd

102 2164 octanoic acid nd 0,239 0,110 A

103 2185 4-vinylguaiacolc nd tr 0,012 A

104 2184 thymol tr tr 0,009 A

105 2210 carvacrol 0,005 0,150 0,081 A

106 2210 methyl hexadecanoate nd tr nd A

107 2240 nonanoic acid nd 0,230 0,090 A

108 2248 109,151,69 0,003 nd nd

109 2254 109,151,69 0,004 nd nd

110 2259 myristicine nd 0,100 1,700 A

111 2270 p-menth-8-ene-1,2-diolc 0,004 nd nd B

112 2272 trans-8-hydroxylinaloolc tr nd nd B

113 2274 decanoic acid nd 0,100 1,900 A

114 2295 dihydroactinidiolide nd tr tr B

115 2314 cis-8-hydroxylinaloolc 0,005 nd nd B

116 2338 trans-geranic acidc nd nd tr A

117 2361 81,69,43,136 0,002 nd nd

118 2366 cis-3,7-dimethyl-2,7-octadiene-1,6-diolc 0,009 nd nd B

119 2389 4-vinylphenolc nd nd tr A

120 2391 undecanoic acid nd 0,020 0,030 A

121 2406 indolec nd nd tr A

122 2403 farnesolc tr nd nd A

123 2425 methyl oleate nd 0,178 nd A

124 2444 trans-3,7-dimethyl-2,7-octadiene-1,6-diolc tr nd nd B

125 2458 dodecanoic acid nd 0,070 0,110 A

126 2458 methyl linoleate nd 0,165 nd A

127 2494 71,83,69,82 0,007 nd nd

128 2500 methyl linolenate nd 0,153 nd A

129 2501 vanillinc nd tr nd A

130 2505 methyl vanillatec nd tr nd A

131 2581 tetradecanoic acid nd 0,305 0,420 A

132 >2600 pentadecanoic acid nd 0,070 0,070 A

133 >2700 hexadecanoic acid nd 0,725 0,220 A

anumbers to refer figure 1; bmodified Retention Indeces on FFAP column; creported for the first time; dA, identities confirmed by comparing mass spectra and retention time with those of authentic standards; B, identities assigned by comparing mass spectra with those obtained from literature or mass spectral databases (NIST or WILEY/NBS); nd, not detected; tr, traces (<0,01 %).

For unidentified compounds, the most intensive mass peaks are represented. ©Lavoisier – La photocopie non autorisée est un délit

(7)

Table 2

Mass spectral data of terpene diols and terpene epoxy compounds

N.a RIb Compound Mass spectral data (m/e %)c

65 1800 6,7-epoxylinalool isomer 1 43(100), 59(70), 71(49), 41(48), 68(47), 67(36), 55(35), 72(31), 39(28), 94(20), 79(19), 69(19), 57(19), 97(16), 83(14).

66 1807 6,7-epoxylinalool isomer 2 43(100), 59(68), 71(49), 41(47), 68(47), 67(38), 55(35), 72(31), 39(28), 94(20), 79(20), 69(19), 57(19), 97(17), 83(14).

79 1917 cis-2,6-dimethyl-3,7-octadiene-2,6-diol 82(100), 67(45), 43(40), 71(37), 41(10), 55(10), 83(7), 81(6), 68(5), 69(5), 70(5), 94(5).

85 1950 trans-2,6-dimethyl-3,7-octadiene-2,6-diol 82(100), 67(40), 43(40), 71(63), 41(9), 85(9), 55(9), 83(8), 39(4), 69(4), 53(3), 68(3).

87 1983 2,6-dimethyl-7-octene-2,6-diol 71(100), 43(68), 68(45), 59(33), 81(32), 57(30), 69(23), 41(21), 55(18), 121(18), 67(12), 139(10).

89 2011 trans-1,8-terpin 81(100), 43 (61), 96(51), 59(51), 71(21), 55(20), 68(15), 139(15), 67(14), 69(14), 95(14), 41(14), 58(11), 108(10).

90 2014 3,7-dimethyl-1,6-octadiene-3,5-diol 68(100), 43(93), 85(76), 67(73), 41(59), 83(55), 55(45), 71(42), 82(37), 39(32), 69(25), 57(22), 96(15), 53(15), 109(14).

93 2035 2,3-dihydro-2,3-epoxygeranyl acetate 43(100), 81(46), 85(45), 41(40), 71(40), 59(38), 79(38), 84(36), 67(34), 57(18), 109(17), 39(17), 68(15 ).

99 2130 2,6-dimethyl-1,7-octadiene-3,6-diol 67(100), 71(82), 43(57), 82(49), 55(33), 68(32), 41(24), 69(17), 81(16), 137(10), 84(11), 83(10), 39(10), 109(9).

111 2270 p-menth-8-ene-1,2-diol 43 (100), 71(50), 41(26), 67(26), 39(26), 108(25), 69(20), 58(20), 55(17), 82(16), 109(15), 93(13), 68(11), 111(11), 152(10), 137(8), 83(8).

112 2272 trans-8-hydroxylinalool 43(100), 71(70), 67(63), 41(45), 55(38), 68(32), 82(27), 93(23), 39(22), 81(19), 96(18), 79(16), 69(16), 119(15).

115 2314 cis-8-hydroxylinalool 43(100), 71(75), 67(66), 41(42), 55(36), 68(33), 82(27), 39(25), 93(22), 81(19), 96(18), 79(16), 69(16), 119(16).

118 2366 cis-3,7-dimethyl-2,7-octadiene-1,6-diol 67(100), 84(84), 43(60), 41(32), 68(31), 69(30), 71(29), 82(26), 81(18), 119(18), 55(17), 134(14), 79(12).

124 2444 trans-3,7-dimethyl-2,7-octadiene-1,6-diol 67(100), 84(80), 43(58), 41(37), 68(31), 69(30), 71(29), 82(27), 81(19), 119(19), 55(16), 134(13), 79(13).

anumbers to refer figure 1; bmodified Retention Indeces on FFAP column; cthe most intensive mass peaks are represented.

©Lavoisier – La photocopie non autorisée est un délit

(8)

3.1 Essential oil

Thirteen compounds total 96% of the entire volatile fraction and among them the most abundant are linalool (70.8%), camphor (5.6%) and geranyl ace- tate (4.0%). The amount of monoterpene hydrocarbons is over 13%; γ-terpinene (4.0%), p-cymene (2.9%) and limonene (2.8%) are prevalent. Sesquiterpene hydrocarbons occurred at low levels (< 0.1%) with β-caryophyllene being the main component (0.05%). Several monoterpene alcohols as geraniol (1.5%), terpinen-4-ol, citronellol, α-terpineol, myrtenol, and monoterpene acetates as citronellyl acetate, trans-myrtenyl acetate are important for the aroma. Ten new diols were identified; their origin will be later discussed. Carbonyl compounds were found at high quantity; in addition to camphor, neral and geranial, two compounds which characterise the aroma of lemon essential oil, are worth mentioning. ©Lavoisier – La photocopie non autorisée est un délit

Figure 1

Total ion chromatogram of coriander fruits essential oil, performed on FFAP column

(9)

3.2 Aqueous and alcoholic extracts

Qualitative analysis of aqueous and alcoholic extracts is not very different from that of the essential oil itself. In both extracts linalool was the main compo- nent (81.4 and 79.2%, respectively) and alcohols were the most numerous and abundant compounds. The total amount of monoterpene hydrocarbons both in aqueous and alcoholic extracts (1 and 3%, respectively) was remarkably lower than in essential oil (13%), with γ-terpinene, p-cymene and limonene being the main components. A similar low concentration was found for acetates (1.9 and 1.5% respectively, instead of 4.2% in essential oil) and carbonyl compounds (3.1 and 4.4% respectively, instead of 5.7% in essential oil); only trans-myrtenyl acetate and geranyl acetate were identified in both aqueous and alcoholic extracts. Furan and pyranlinalool oxides occurred in low levels in both extracts (< 1%), as for essential oil; the cis form are slightly prevalent on trans form.

Myristicine, carvacrol and thymol occurred in both aqueous and alcoholic extra- cts.

3.3 Diols and terpene oxidation products

In the coriander essential oil two diastereoisomers of 6,7-epoxylinalool occurring in traces were identified (table 1). These compounds originate from linalool, following the scheme of radicalic oxidation of linalool and linalyl acetate in bergamot and clary sage essential oils (MAZZA, 1986, 1988). Isomers of 6,7- epoxylinalool are much more unstable than isomers of 6,7-epoxylinalyl acetate and change very easily into furan, pyran linalool oxydes and in 2-vinyl-2-methyl- tetrahydrofuran-5-one. The presence of isomers of 6,7-epoxylinalool, as pos- sible precursors of terpene diols in Muscat of Alexandria grape and wine, was supposed by WILLIAMS et al. (1980), while the two diastereoisomers of 6,7- epoxylinalool were identified in papaya fruit (WINTERHALTER et al., 1986). The presence of several diols in coriander essential oil, particularly cis- and trans- 2,6-dimethyl-3,7-octadiene-2,6-diol, 3,7-dimethyl-1,6-octadiene-3,5-diol, 2,6- dimethyl-1,7-octadiene-3,6-diol, cis- and trans-8-hydroxylinalool can be explained as said before (MAZZA, 1987a). 2,6-dimethyl-3,7-octadiene-2,6-diol and 2,6-dimethyl-1,7-octadiene-3,6-diol were identified, for the first time in muscate grape, by WILLIAMS et al. (1980). 3,7-dimethyl-1,6-octadiene-3,5-diol were find in yudzu peel oil (KITAHARAet al., 1980) and in Muscat of Alexandria grape (STRAUSSet al., 1988). cis- and trans-8-hydroxylinalool were identified by BEHRet al. (1978) in tobacco and successively by RAPPet al. (1984) in Morio- Muskat grape and wine. Isomers of 6,7-epoxylinalool in aqueous and alcoholic extracts were not found while the presence in traces of 2,3-dihydroepoxygera- nyl acetate, originating from the oxidation of geranyl acetate, was observed as well as in bergamot and clary sage essential oils. All these diols are poorly vola- tile and their influence on the aroma of coriander oil is rather poor, while the oxi- dation of monoterpene hydrocarbons as limonene and γ-terpinene is more relevant. γ-terpinene is easily oxidized to p-cymene in coriander oil though slo- wer than it is in citrus oils, particularly in mandarin oil (MAZZA, 1987b); oxidation products as trans-carveol, carvone and p-menth-8-ene-1,2-diol may also form limonene.

©Lavoisier – La photocopie non autorisée est un délit

(10)

4 – CONCLUSION

The study of minor components of coriander is of great importance since it is extremely difficult to build exactly the natural aroma of coriander using only the major components, and this is true for both essential oil and aromatic extracts.

The flavour impact of coriander fruits is dramatically influenced by synergical phenomena which involve the minor components and cause remarkable changes in flavour quality. These phenomena are not very known so far and need further and closer investigation. Moreover, the identification of oxidation products of terpenes gives useful information on the degree of freshness of the essential oil.

Received 6 March 2001, revised 11 January 2002, accepted 15 February 2002.

REFERENCES

©Lavoisier – La photocopie non autorisée est un délit

ANDERSON W.K., VEYSOGLU T., 1973. A simple procedure for the epoxidation of acid- sensitive olefinic compounds with m-chloro- perbenzoic acid in an alkaline biphasic solvent system. J. Org. Chem., 38, 2267- 2268.

BEHR D., WAHLBERG I., NISHIDA T., ENZELL C.R., 1978. Tobacco Chemistry.45.

(2E,6S)-2,6-Dimethyl-2,7-octadiene-1,6-diol, a new monoterpenoid from Greek tobacco.

Acta Chem. Scand., B 32, 228-234.

CHIALVA F., GABRI G., LIDDLE P.A.P., ULIAN F., 1982. Qualitative evaluation of aro- matic herbs by direct headspace GC analy- sis. Applications of the method and comparison with the traditional analysis of essential oils. J. High Res. Chrom., 5, 182- 188.

FRANK C., DIETRICH A., KREMER U., MOSANDL A., 1995. GC-IRMS in the authen- ticity control of the essential oil of Corian- drum sativum L. J. Agric. Food Chem., 43, 1634-1637.

KALLIO H., KERROLA K., 1992. Application of liquid carbon dioxide to the extraction of essential oil of coriander (Coriandrum sativum L.) fruits. Z. Lebensm. Unters. Forsch., 195, 545-549.

KERROLA K., KALLIO H., 1993. Volatile com- pounds and odor characteristics of carbon dioxide extracts of coriander (Coriandrum

sativum L.) fruits. J. Agric. Food Chem., 41, 785-790.

KITAHARA T., TAGAKI Y., MATSUI M., 1980.

Structure and syntesis of novel constituents of yudzu peel oil and their conversion to rela- ted monoterpenes, Agric. Biol. Chem., 44, 897-901.

LAMPARSKY D., KLIMES I., 1988. Heterocy- clic trace components in the essential oil of coriander. Perfumer & Flavorist, 13, 17-25.

MAZZA G., 1986. Étude de la composition aromatique de l’huile essentielle de berga- mote (Citrus aurantium subsp. bergamia Risso et Poiteau Engler) par chromatographie gazeuse et spectrométrie de masse. J. Chro- matogr., 362, 87-99.

MAZZA G., 1987a. Studio sulle ossidazioni dei monoterpeni negli oli essenziali, Essenze Der. Agrum., 57, 5-18.

MAZZA G., 1987b. Étude de la composition aromatique de l’huile essentielle de manda- rine par chromatographie gazeuse et spec- trométrie de masse. Sci. Aliments, 7, 459-479.

MAZZA G., 1988. L’arôme de la sauge scla- rée: 1-Identification des composés volatils dans l’huile essentielle et dans l’infusion hydroalcoolique des sommités-fleuries, Sci.

Aliments, 8, 489-510.

(11)

RAPP A., MANDERY H., ULLEMEYER H., 1984. Neue Monoterpendiole in Traubenmos- ten und Weimen und ihre Bedeutung fur die Genese einiger cyclischer Monoterpenather, Vitis, 23, 84-92.

STRAUSS C.R., WILSON B., WILLIAMS P.J., 1988. Novel monoterpenes diols and diol gly- cosides in Vitis vinifera grapes, J. Agric. Food Chem., 36, 569-573.

STENHAGEN E., ABRAHAMSSON S., MC LAFFERTY F.W., 1974. Registry of mass spec- tral data. John Wiley and Sons, New York.

TASKINEN J., NYKANEN L., 1975. Volatile constituents obtained by the extraction with alcohol-water mixture and by steam distilla-

tion of coriander fruit. Acta Chem. Scand. B, 29, 425-429.

VAN DEN DOOL H., KRATZ P.D.A., 1963. A generalization of the retention index system included linear temperature programmed gas-liquid chromatography. J. Chromatogr, 11, 463-471.

WILLIAMS P.J., STRAUSS C.R., WILSON B., 1980. New linalool derivatives in Muscat of Alexandria grapes and wines. Phytochemistry, 19, 1137-1139.

WINTERHALTER P., 1986. 6,7-Epoxylinalool and related oxygenated terpenoids from Carica papaya fruit. Phytochemistry, 25, 1347-1350.

©Lavoisier – La photocopie non autorisée est un délit

(12)

Références

Documents relatifs

Le premier qui donne le produit des deux nombres représentés par les doigts levés marque un point (exemple : si un élève montre 5 doigts et l'autre 7, le premier qui dit 35 a

Quand le numérateur est plus grand que le dénominateur il est supérieur à 1.. Quand le numérateur est plus petit que le dénominateur il est inférieur

Les camarades de jeu retiennent la position des cartes pour former plus facilement de nouvelles paires. Pour l’impression du

Pastille à imprimer sur du papier autocollant, à découper et à coller sur des gros bouchons

[r]

[r]

- Puis tu verras que pour d’autres lignes, colonnes et carrés de 9 cases, c’est

- Cela te permet alors de compléter le carré à gauche au milieu, puisqu’il ne manque plus