• Aucun résultat trouvé

Phenotypic analysis and transcriptome profiling of <em>Saccharomyces</em> response to medium chain fatty acids

N/A
N/A
Protected

Academic year: 2022

Partager "Phenotypic analysis and transcriptome profiling of <em>Saccharomyces</em> response to medium chain fatty acids"

Copied!
26
0
0

Texte intégral

(1)

HAL Id: hal-02819297

https://hal.inrae.fr/hal-02819297

Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Phenotypic analysis and transcriptome profiling of Saccharomyces response to medium chain fatty acids

Jean Luc Legras, Claude Erny, Y. Adolphe, Christine Le Jeune, Marc Lollier, Pierre Delobel, Bruno Blondin, Francis Karst

To cite this version:

Jean Luc Legras, Claude Erny, Y. Adolphe, Christine Le Jeune, Marc Lollier, et al.. Phenotypic anal- ysis and transcriptome profiling of Saccharomyces response to medium chain fatty acids. 3. Interna- tional Symposium ”New Researches in Biotechnology”, Nov 2010, Bucarest, Romania. �hal-02819297�

(2)

Phenotypic ANALYSIS and transcriptome PROFILING of Saccharomyces RESPONSE to medium chain fatty

acidS

JL Legras , C Erny, C LeJeune, M Lollier, Y Adolphe, C Demuyter, P Delobel, B Blondin, F Karst

INRA UMR SVQV, Colmar,

INRA UMR SPO Montpellier,

UHA LVBE, Colmar

(3)

Fermentation

nn metabolites (esters …) toxic compounds :

Medium chain fatty acids …

(4)

MCFA (medium chain fatty acids)

C8 : octanoïc acid

C10 : decanoïc acid

CH3–(CH2)6-COOH

CH3–(CH2)8-COOH

- Toxics for S. cerevisiae:

fermentation inhibitors

-

S. cerevisiae can adapt to MCFA

-

PDR12 induced by C8 (Hatzixanthis et al., Yeast 2003) but not involved in resistance (Holyoak et al., j Bact. 1999)

=> no clear mechanism of cell resistance

R-COOH

R-COO- H+

(5)

Wine yeast Resistance polymorphism to MCFA

=> 2 partially overlapping mechanisms

C8 Resistance

C10 Resistance

80 wine strains tested on YPD

containing AGCM

(6)

Identification of S. cerevisiae genes involved in MCFA resistance

(Legras et al 2010 AEM)

(7)

Step1 : synthesis of

fluorescent labelled cDNA from each type of cell

Analysis of all mRNA in cell at a specific time in a specific condition.

Transcriptome

Search of genes involved in resistance

(8)

Step2 : DNA microarray production

Transcriptome genes involved in MCFA resistance

Microarray slide:

commercial array spotted with

oligonucleotides (Eurogentec)

(9)

Transcriptome

Step 3 : Hybridization

G G G C T A G

G G G C T A G G

G G C T A G

C C C G A T C

G A A T T C A

G G G A A A T C

C C G A T C

C C C G A T C

G A A T T C A

G A A T T C A C

T T A A G T

C T T A A G T

C T T A A G T

cDNA from the two conditions compete for hybridization on the probes

genes involved in MCFA resistance

(10)

1 2 3

4 5 6

7 8 9

orf 1 orf 2 orf 3

Condition 1 mRNA

Condition 2 mRNA

1 2

6 8

1000 spots per cm2 3

7 8

Transcriptome

Step 3 : Hybridization

Genes involved in MCFA resistance

(11)

Transcriptome

Step 3 : microarray scan

fluorescence measurement for each fluoro phosphorescent

compound (excitation at 2 different λ)

2 images one forCy5 the other for Cy3

Genes involved in MCFA resistance

(12)

Transcriptome

Step 4 : data analysis

connect image data and genes iD (grid)

check for problems (artifacts dust, spot without signal, or saturated spots)

transformation of scanned image into numerical data

Genes involved in MCFA resistance

(13)

Transcriptome re-modeling after exposure to MCFA

-

wine strain U13 resistant to C8 andC10

-

4 independent cultures in three conditions

YPD + 0.05 mM C8 + 0.05 mM C10 Control C8 C10

-

RNA

extraction after 20 min

- comparison by pairs

- analysis : LIMA GUI package (R soft)

C8

T

C10

(14)

Transcriptome re-modeling after exposure to MCFA

Responses with different intensities

log ratio : different threshold for each compound

• 0.3 pour C8

• 0.5 pour C10 to C8

81 genes activated by C8 620 genes by C10

71 genes by C10 to C8

(P-value 0.05 corrected FDR)

(15)

Transcriptome re-modeling after exposure to MCFA

210 are activated in at least one condition

14 C8 / Control

C10 / Control

11+

3

39

28 + 11 -

C10 / C8 22

8 +

14 -

81

: 28 +

53 -

33

: 19+

14-

0

22 :

13+

9-

(16)

Functional categories of genes modulated MCFA (funspec website)

C8 and C10 activate genes shared by the same categories and C10 response involve more genes involved in RNA processing.

(17)

Comparison with other stress

Both responses share many genes with oxidative stress response, and with sorbic acid and SDS stress.

Stress Percentage of genes shared between the different responses 

number of genes involved 75 165 137 548 342 621 463 132 69 172 267 936

in each response    

C8 acid 100                      

C10 acid 71 100                    

Sorbic acid   29 19 100                  

POELE 1mM  43 31 43 100                

DCP  3mM   19 22 20 28 100              

Octanol 1%  0 23 18 14 19 100            

SDS 1%  45 39 26 21 20 21 100          

Fluphenazin  12 17 12 26 27 17 37 100        

Benomyl 7mM  12 14 12 17 25 16 23 13 100      

2,4 Dichlorophenoxyacetic acid 3mM 

16 14 17 20 13 15 21 11 6 100    

Oleic acid  7 6 8 8 10 6 17 16 12 5 100  

H202 3mM 52 47 42 27 35 23 40 38 41 30 22 100

                         

(18)

Genes involved in each response

PDR12 transporter has the highest induction level  for C8 (* 3,5) 

The transporter TPO4 is highly activated (* 3,2). Others transporters are  induced : TPO1 , PDR12.

Activation of ethyl ester synthesis EEB1, FAA1 , ELO1

(19)

Phenotypic evaluation of candidate genes

By4741

snq2

yor1

nft1

pxa2

tpo4

tpo3

tpo2

tpo1

pdr12

pdr12

tpo1 YPD

Control

YPD 0.6mM C8

YPD

0.25mM C10 YPD

Control

YPD 0.6mM C8

YPD 0.25mM C10

(20)

Conclusions

PDR12 and TPO1 are responsible for cell resistance to C8 and C10 respectively

Other transporters can increase C10 resistance but in a lower extent

Ethyl ester synthesis is activated and contributes to MCFA

resistance

(21)

Transcription factors involved in MCFA adaptation

and resistance

(22)

Transcription factors involved in MCFA response

http://www.yeastract.com/index.php

(23)

Transcription factors involved in MCFA response

From 

Yeastract 

- 0,5 - 0,3 - 0,1 0,1 0,3 0,5

- 0,3 0 0,3

Abf1p

Adr1p

Aft 1p

Arr1pCad1p

Cat 8p

Cst6p

Ecm22p Fhl1p

Fkh2p

Flo8p Gat3p

Gat4p Gcn4p

Gcr1p

Gcr2p

Gis1p

Hac1p

Hap1p Hap2p

Hap3p

Hap4p

Hap5p Hsf1p

Ino2p Ino4p

Leu3p

Mcm1p

Met31p

Met4p

Mga1p Mig1p

Msn2p

Msn4p

Nrg1p Nrg2p

O af1p

Pdr3p Phd1p Pho4p

Pip2p

Rap1p

Rgm1p

Rpn4p

Rtg3p Sfp1p

Skn7p Sko1p

Sok2p

Stb5p Ste12p

Tec1p Upc2p

Xbp1p

Yap1p

Yap7p

Zap1p

SorbicAc C8whole

C10whole

SDS Octanol

2-4D OleicAc

POELE DCP

H2O2

C8-C10Shared

Transcription Factor Stress

1rst Axis (36% of global variation)

2nd Axis (15% of global variation)

War1p

(24)

Phenotypic evaluation of TF regulating the responses

Involvement of WAR1 PDR3 (confirmed) and PDR16 for C8

Involvement of PDR1 and at a lower level MSN2 and YAP1 for C10

YPD

témoin YPD 0.6 mM C8

YPD 0.25 mM C10 By

pdr1

pdr1/

pdr3

war1

yap1

pdr16

msn2

msn4

pdr3

yap2

msn2 /

msn4

(25)

Conclusion: global view of MCFA response

Nucleus C8

C10

Amino acids metabolism Sugar

metabolism HXT6

PDR12 TPO4

TPO1

C10 C10-CoA

FAA1

C12-CoA C14-CoA

ELO1 ELO1

Éthyl-C10 Éthyl-C12

Éthyl-C14

EEB1

EEB1

EEB1

C8 HXT7

C10

Respiration

C8 C10

SNQ2 C10

(26)

Acknowledgement

Colmar

INRA University of Strasbourg  UMR SVQV Oenologie

A. Alais

F. Karst 

J.L. Legras

 

University de Haute Alsace LVBE

C. Erny

C. Le Jeune

M. Lollier

C. Demuyter

Montpellier

INRA SupAgro UMR SPO 

B. Blondin

P. Delobel

Deletion strains F. Devaux 

C. Rodrigues - Pousada

Multumesc !!!

Références

Documents relatifs

(2012) Heme Binding Proteins of Bartonella henselae Are Required when Undergoing Oxidative Stress During Cell and Flea Invasion.. This is an open-access article distributed under

In the case of the present analysis, four different approaches (Figure 4) were used to evaluate sites of expression and patterns of co-regulation of R-genes in sugarcane, consider-

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Since in trial 2 the C8:0 level of 12% of total fatty acids (2% in diet) decreased significantly larval growth, results of both trials suggest a metabolic alteration when C8:0 ex-

With respect to food safety, these groups numbered I-VII have different growth temperature profiles, and also differ by their involvement in foodborne poisoning incidents,

Subsequently, relative expression levels of ten DEGs determined by quantitative reverse transcription-PCR (qRT-PCR), in addition to RNA-Seq data, indicated that different plant

A identificação e caracterização desses genes possibilitam a realização de novos estudos, como a análise da expressão diferencial entre plantas cultivadas em campo

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.