• Aucun résultat trouvé

Schlesinger Foliation for Deformations of Foliations

N/A
N/A
Protected

Academic year: 2021

Partager "Schlesinger Foliation for Deformations of Foliations"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: hal-01934801

https://hal.archives-ouvertes.fr/hal-01934801

Submitted on 26 Nov 2018

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Schlesinger Foliation for Deformations of Foliations

Yohann Genzmer

To cite this version:

Yohann Genzmer. Schlesinger Foliation for Deformations of Foliations. International Mathematics

Research Notices, Oxford University Press (OUP), 2017, �10.1093/imrn/rnw316�. �hal-01934801�

(2)

FOLIATIONS.

YOHANNGENZMER

Abstrat. Inthisartile,weshowthatfor anydeformationofanalytifo-

liations, there exists a maximalanalyti singular foliationon the spae of

parametersalongtheleavesofwhihthedeformationisintegrable.

ThisworkwaspartiallysupportedbyANR-13-JS01-0002-0.

1. Introdutionandstatements.

ThePainlevéV I equation[1℄,thatmotivatesthiswork,isanon-lineardierential

equationofordertwothat parametrizestheisomonodromideformationsoflinear

Fuhsian systemsoverthe four-punturedomplexsphere. This apartiularase

oftheShlesingersystemsthatparametrizestheintegrabledeformationsofGarnier

systems. In both ase, afoliation onthe spae of parametersof thedeformation

whoseleavesparametrizetheintegrabledeformationsisdesribed.

Ourpurposeistohighlightthisphenomenonin ageneralontext.

Theorem. Let(Xm,Fn)−→π Bp beaproperdeformationofanalytifoliationswith

Bp as spaeof parameters. Then there exists aunique analyti singular foliation

H on Bp of maximal dimension among those that integrates the deformation. In partiular, H satises the following property: for any leaf L of H, the restrited

deformation

(Xm,Fn)|π1(L)

−→π L

isintegrable.

Thedenitionofafoliation integrating agivendeformationwill appearbelow.

Ifweremovethemaximality property,then thetheorem beomes trivial. Indeed,

thefoliationofBp bypointssatisesitsonlusion. Moreover,forageneridefor-

mation, thefoliation Hprodued by theresult above will be indeed thefoliation

by points. Nevertheless, in viewof the example mentionned in the introdution,

the foliationHdeservesto bealled the Shlesinger foliation of thedeformation.

Finally,themaintheoremholdsintherealanalytilassaswellasintheomplex

one.

ItmightbepossiblethatalongsomeexeptionalurvestransversetoH,thedefor-

mationisalsointegrable. Suhaurvehastobemoreorlessisolated: theyannot

foliate themanifoldBp evenloally. Forinstane, in theframework ofthetheory

ofFuhsiansystems,onsiderthesixparametersfamilydenedby

(1.1)

d

dz = A1

z−u1

+ A2

z−u2

+ A3

z−u3

(3)

where Ai =

0 ai

0 0

. Sine the matries Ai ommute, the Shlesingersystem

[9,10℄reduesto

∂Ai

∂uj

= 0, i, j= 1, 2, 3.

Thus,theShlesingerfoliationofthisdeformationisgivenbyda1=da2=da3= 0.

However,ifa1=a2= 0anda36= 0,then(1.1)degeneratestowardasystemwhih isonjugatedto

d

dz =

0 1 0 0

z−u3

.

Therefore,atanypoint(0,0, a3)witha36= 0,thefamily(1.1)isstillintegrablealong

thewholesubmanifolda1=a2= 0,whihisnotaleafoftheShlesingerfoliation.

Hene, in general, the leaf of H does not parametrize the maximal submanifold alongwhih thedeformationisintegrable.

The main theorem an beompared to the following result of Kiso [4℄: letL be

aLie algebraof holomorphivetorelds onaomplexmanifoldN ×M tangent

to theprojetiononM. IfL issimpleand ofnite dimensionthenthere exists a

maximalfoliationon N alongtheleavesofwhih Lis integrable. In ourontext, the Lie algebra underlying the foliation Fn is in general not of nite dimension.

Moreover,the brationπis nottrivial: themanifold supportingthe foliationan

alsobedeformed.

2. Deformationof foliations andKodaira-Spener map.

2.1. Deformations offoliations. LetXm beananalytimanifoldandΘXm its

tangentsheaf. LetE beaoherentsubsheafofΘXm. Thestakof Eat anypoint pisnitelygeneratedasCω(Xm)p-module-theanalytifuntionsonBp -andwe

denote byrankp(E) theminimal numberof elementsof agenerating family. The

singularlous ofE isdenedby

Sing(E) ={p∈Xm|dimR{v(p)|v∈Ep}<rankp(E).}

Sine E isoherent,thesingularlousis ananalytisubsetof Xm[7℄. Thesheaf

issaidregular ifSing(E) =∅. Theinteger d= max

p∈XmdimR{v(p)|v∈Ep} ≤m.

isalledthedimensionofE andm−ditsodimension.

Denition1. AnanalytifoliationonXmisaoherentsubsheafFofΘXmwhih

isintegrable,i.e,

[Fp,Fp]⊂ Fp foranyp∈Xm\Sing(F).

Denition2. Adeformationoffoliation,denotedby(Xm,Fn)−→π Bp,isthedata

ofapropermap π:Xm→Bp that isananalytideformationofmanifold[5℄and ofaregularfoliationFn tangentto thebersofπ, i.e.,Fn ⊂kerdπ. Theinteger misthedimensionofXm, pthedimensionofBp and nthedimensionofFn.

ThefollowinglemmaisadiretonsequeneoftheFrobéniustheorem[2℄andstates

(4)

Lemma3. Let (Xm,Fn)−→π Bp beadeformation of foliation andx∈Xn.There

existsan isomorphism φof deformations offoliation denedonan open neighbor- hoodU ∋xsuhthat the following diagram ommutes

(U,Fn|U) φ //

π

%%

❑❑

❑❑

❑❑

❑❑

(Rm−p×Bp, Ln)

pr2

ww

♦♦♦♦♦♦♦♦♦♦♦ π(U)

.

Intheseondtermoftheaboveommutativediagram,thefoliationLnofRm−p×Bp

isgiven bythe bers ofthe projetion

Π :

Rm−p×Bp → Rm−p−n×Bp

(x1,· · · , xm−p, τ) → (x1,· · ·, xm−p−n, τ) .

Figure2.1. Loaltrivializationofadeformationoffoliation.

Denition 4. Let (Xm,Fn) −→π Bp be a deformation of foliation. A foliation

H of Bp is said to integrate the deformationif, for any point τ ∈Bp\Sing(H),

there exists aneighborhood U ∋τ andaregularfoliation G in π1(U)suh that dimG=n+ dimHand

Fn|π1(U)⊂ G ⊂π H|U.

Inpartiular,foranyleafLofH,therestriteddeformation

π:

π−1(L),Fn|π1(L)

→L

is ompletely integrable. In Figure (2.1), the deformation is loally ompletely

integrable: the foliation H has one leaf that is H itself and the foliation G of

the denition aboveis given in the oordinates of Lemma 3 by the bers of the

projetion

p:

Rm−p×Bp → Rm−p−n

(x1,· · ·, xm−p, τ) → (x1,· · ·, xm−p−n) .

Ourgoalisto showtheexisteneofauniquemaximalintegratingfoliation.

2.2. The sheafof basi vetor elds.

Denition5. Avetoreldv issaidtobebasiforF ifandonlyif [v,F]⊂ F.

(5)

Denition 6. Avetoreld v issaidto beprojetable ifandonlyifthere exists

aofvetoreld wonBpsuhthat thefollowingdiagram ommutes Xm π //

v

Bp

w

T Xm //T Bp .

Itissaidtobevertialifw= 0,i.e.,dπ(v) = 0.

WedenotebyBπthesheafofbasiandprojetablevetoreldsandB0thesubsheaf

ofbasiandvertialvetorelds. ThesheafB0 isasheafofmodulesoverthering

ofloalrstintegralsofFn.IntheoordinatesgivenbyLemma3,asetionofthe

quotientsheafB0/Fn iswritten

m−p−n

X

i=1

a(x1, . . . , xm−p−n, τ) ∂

∂xi

.

Hene,

B0/Fnisafree. ItwillbemoreonvenienttoworkwithaCω(Xm)-module,

whihis why, we will onsiderthe produt

B0/Fn⊗ Cω(Xm). Itis also aloally

freesheafoverCω(Xm).

2.3. ThebasiKodaira-Spenermap. LetwbeavetoreldonBpdenedon

asmallopensetW ofBp. AordingtoLemma3,thereexistsaovering{Ui}i∈I of

aneighborhoodinXnofπ−1(W)suhthatthedeformationistrivializedonanyUi

bysomeonjugayφi.ForanyUi,thevetoreldvi=dφi1(0, w)isasetionofBπ

onUi that projetson w.Consideringtheimage of thefamily{vi⊗1−vj⊗1}ij

inH1

π−1(W),B0/Fn⊗ Cω(Xm)

,weobtainaCω(Bp)−morphismofsheaves

∂Fn: ΘBp→R1π

B0/Fn⊗ Cω(Xm)

whih is alled the basi Kodaira-Spener map of the deformation. Notie that

this is not thestandard Kodaira-Spener map asdened in [6℄ sine, it does not

measuretheinnitesimaldiretionsoftriviality,but theinnitesimaldiretionsof

integrability.

Lemma7. ker∂Fn isafoliation of Bp.

Proof. ThesheafB0/Fn⊗ Cω(Xm)isaoherentsheafofCω(Xm)-modules. Sine π is proper, R1πB0/Fn ⊗ Cω(Xm) is a oherent sheaf of Cω(Xm)Bpmodules

, and so is ker∂Fn [3℄ . Suppose w1 and w2 belongs to the kernel of ∂Fn. By

onstrution,thereexisttwofamilies{vǫi}i,ǫ= 1,2ofsetionsofBπ suhthatfor

anyiandǫ,thevetoreldvǫi projetsonwǫ andsuhthatforanyi, j andǫ, viǫ−vjǫ=tǫij∈ Fn.

ThediereneoftheirLiebraketsiswritten

vi1, vi2

− v1j, v2j

=

vj1, t2ij

− v2i, t1ij

+ t1ij, t2ij

Sine[Bπ,Fn]⊂ Fn andsinethemapommuteswiththeLiebraket,onehas

∂Fn([w1, w2]) =

[vi1, vi2]⊗1− vj1, vj2

⊗1 i,j= 0.

(6)

Soker∂Fn isintegrableandthus isafoliation.

3. Integrating foliationsof deformations.

ConsiderthetrivialprojetionRm−p×Rp→Rp wherethesoureisfoliatedbyLn

givenbythebersof

Rm−p×Rp → Rm−p−n×Rp

(x1,· · ·, xm−p, τ) → (x1,· · · , xm−p−n, τ).

Let{Ti}i=1,···,l beaninvolutivefamilyofgermsofvetoreldsinduingagermof

regularfoliationofdimensionl in(Rp, τ). Thefamilyxm−p−n+1,· · ·, ∂xm−p, T1,· · · , Tl

where Ti is seen as vetoreld in Rm−p ×Rp is involutive and denes an inte- gratingdimensionn+l foliationG. Notie thatG isnotuniquebut doesdepend

only on thebasi part of Ti: foranyfamily of vetorelds {Xi}i=1..l tangent toxm−p−n+1,· · ·, ∂xm−p ,thedistribution

xmpn+1,· · · , ∂xmp, T1+X1,· · · , Tl+Xl

induesthesamefoliationG. Thisremarkisthekeyoftheproofofthepropositions below.

Proposition 8. Let (Xm,Fn) −→π Bp be a deformation of foliation and w be a

vetor eldin Bp dened near τ with w(τ)6= 0. Thetwo following properties are

equivalent:

(1) the foliation induedbyw integratesthe deformation.

(2) ∂Fn(w) = 0.

Proof. Suppose that there exists aregular foliation G of dimensionn+ 1 in Xm

suhthat Fn|π1(U)⊂ G ⊂πHwhereHisthefoliationofBp induedbywin a

neighborhoodU ∋τ. ApplyingtheFrobéniusresulttoG yieldsaovering{Ui}i∈I

of π−1(U) and a family of onjugaiesi}i∈I suh that the following diagram

ommutes

Ui,G|Ui φi //

π

%%

❑❑

❑❑

❑❑

❑❑

(Rm−p×Bp,Rm−p× H)

pr2

vv

♠♠♠♠♠♠♠♠♠♠♠♠♠♠

π(Ui)

Byonstrution, thevetoreld vi =dφ−1i (0, w) isbasifor Fn and projetson w. Thus ∂Fn(w) ={vi⊗1−vj⊗1}ij. Moreover,vi−vj isvertialand tangent

toG.Thus,itisalsotangentto Fn.Hene,∂Fn(w) = 0.

Now, suppose that ∂Fn(w) = 0. For a overing {Ui}i∈I of a neighborhood of

π1(U), there exists a family of projetable basi vetor elds {vi}i∈I , vi ∈ ΘXn(Ui) suh that eah vi projets on w and suh that vi −vj is tangent to

Fn. IntheloaloordinatesgivenbyLemma3,thevetoreld vi iswritten

vi=

m−p−n

X

i=1

ai(x1,· · ·, xm−p−n, τ) ∂

∂xi

+

m−p

X

i=m−p−n+1

ai(x, τ) ∂

∂xi

+w.

(7)

Sine

vi

m−p

X

i=m−p−n+1

ai(x, τ) ∂

∂xi

, ∂xk

= 0

fork=m−p−n+1, . . . , m−p,thefamilyofvetorelds

xmpn+1,· · ·, ∂xmp, vi

isinvolutiveanddenesaloal regularintegratingfoliationGi ofdimensionn+ 1.

The foliation Gi depends only on the basi part of vi and vi −vj is tangent to

Fn, thus thefamily {Gi}i∈I anbeglued in aglobal foliationthat integratesthe

deformationoverU.

Now,weanprovethemainresultofthisartile.

Theorem. Let (Xm,Fn)−→π Bp beadeformation of foliation. Then, thereexists a unique singular analyti foliation D on Bp of maximal dimension among those

thatintegrate the deformation.

Proof. Let us onsider the sub-sheaf D of ΘBp dened byv ∈ D ifand only the

foliationdened by v integratesthe deformation. Aording to Proposition 8, D

is a foliation. By onstrution, if D has the property of the theorem, it will be

of maximal dimension for that property. Let d be its dimension and onsider a

pointpinitsregularlous. ThesheafDisloallyaroundpspannedbyafamilyof

exatlyd non-vanishingvetorels D(U) =hw1,· · ·, wdi, U ∋ p. Now, for some

overing{Ui}i∈I ofaneighborhoodofπ1(U),thereexistsafamilyofprojetable

basivetorelds {vi,k}i∈I, k=1...d, vi,k ∈ ΘXn(Ui) suh that vi,k projetson wk

and vi,k−vj,k is tangent to Fn. Inthe loal oordinates givenby Lemma 3,the

familyofvetorelds

xm−p−n+1,· · · , ∂xm−p, vi,1, . . . , vi,d

isinvolutiveanddenesafamilyofloalintegratingfoliations{Gi}i∈I ofdimension n+d that anbe glued. Finally, weobtain aglobal regular integratingfoliation

thatintegratesthedeformationoverU.

Example9. Linear foliationsonomplex tori ofdimension 2.

Aomplextorusofdimension2isgivenbyalattieΛwritten Λ =Ze1⊕Ze2⊕Ze3⊕Ze4

where

ei=

ei1

ei2

i=1···4

isaR−freefamilyoffourvetorsinC2. Theomplex

torusC2isendowedwithalinearfoliationgivenbythelosed1−form ωα=dx+αdy

withα∈P1.Thelinearfoliationsonomplextoriofdimension2forma9−dimensional familyoffoliationswhosespaeofparametersisU ×P1. Here,U istherealZariski

opensetin C8givenbytheequation

det

ℜe1 ℜe2 ℜe3 ℜe4

ℑe1 ℑe2 ℑe3 ℑe4

6= 0.

(8)

Anexpliitomputationshowsthat theShlesingerfoliationofthisdeformationis

givenbythelosedsystem

(3.1) H:







 d

e11+e12α e21+e22α

= 0

de

11+e12α e31+e32α

= 0

de

11+e12α e41+e42α

= 0 .

It is regular on the spae of parameters U ×P1. This result an also be seen as follows: the representation of monodromy of ωα on C2omputed on the

transversallinex= 0iswritten π1 C2

≃Z4Aut CP1

: γi→ y→y+ei1+ei2α

, i= 1,2,3,4

Ahangeofglobaloordinatesy →ay+bonthetransversallinex= 0atsonthe

monodromythefollowingway

y→y+a(ei1+ei2α) , i= 1,2,3,4

Hene,theonjugaylassoftherepresentationofmonodromyisonstantalonga

deformationifandonlyifthequotients

e11+e12α

ei1+ei2α, i= 2,3,4 areonstant,whihis

preiselytheondition3.1. Besidesthat,inthisexample,anyleafoftheShlesinger

foliationparametrizesthemaximallousofintegrabilityforanypointin thespae

ofparameters.

ThefoliationHanbeompatiedasanalgebraifoliationHonCP8×CP1 and thebration

CP8×CP1 → CP6 {eij}i,j, α

→ (e11+e12α, e12, e22, e32, e41, e42)

istransversetoHexeptovertheritiallousS={(e11+e12α)e42= 0} ⊂CP6.

This bration hasompat bers. Thus, aording to theEhresmann's theorem,

thefoliationHhasthePainlevé property withrespetto thatbrationasdened

in [8℄. Sine, thePainlevéVIhas alsothe sameproperty, itis naturalto address

thefollowingproblem:

Consideranalgebraideformationofanalgebraifoliation. Hasthe

Shlesingerfoliation the Painlevéproperty foran adaptedbration

?

Referenes

[1℄ Philip Boalh. Brief introdution to Painlevé VI. InGroupes de Galois arithmétiques et

diérentiels,volume13ofSémin.Congr.,pages6977.So.Math.Frane,Paris,2006.

[2℄ Dominique Cerveau. Distributions involutives singulières. Ann. Inst. Fourier (Grenoble),

29(3):xii,261294,1979.

[3℄ H. Grauert and R. Remmert. Coherent analyti sheaves, volume 265 of Grundlehren

der Mathematishen Wissenshaften [Fundamental Priniples of Mathematial Sienes℄.

Springer-Verlag,Berlin,1984.

[4℄ KazuhiroKiso.LoalpropertiesofintransitiveinniteLiealgebrasheaves.Japan.J.Math.

(N.S.),5(1):101155,1979.

[5℄ K.KodairaandD.C.Spener.Ondeformationsofomplexanalytistrutures.I,II.Ann.

(9)

[6℄ KunihikoKodaira.Complexmanifoldsanddeformationofomplexstrutures,volume283of

GrundlehrenderMathematishenWissenshaften[FundamentalPriniplesofMathematial

Sienes℄.Springer-Verlag,New York,1986.Translatedfromthe JapanesebyKazuoAkao,

WithanappendixbyDaisukeFujiwara.

[7℄ YoshikiMitera and Junya Yoshizaki.The loal analytial triviality of a omplexanalyti

singularfoliation.HokkaidoMath.J.,33(2):275297,2004.

[8℄ KazuoOkamoto.Surlesfeuilletagesassoiésauxéquationsduseondordreàpointsritiques

xesdeP.Painlevé.Japan.J.Math.(N.S.),5(1):179,1979.

[9℄ Claude Sabbah. Isomonodromi deformations and Frobenius manifolds. Universitext.

Springer-Verlag London, Ltd., London; EDP Sienes, LesUlis, frenh edition, 2007.An

introdution.

[10℄ L.Shlesinger.Uber eineklassevonordnungdierentialsystemenbeliebigeravefestenkri-

tishenpunkten.J.fürMath.,(141):96145,1912.

Y.Genzmer

InstitutdeMathématiquesdeToulouse

UniversitéPaulSabatier

118routedeNarbonne

31062Toulouseedex9,Frane.

yohann.genzmermath.univ-toulouse.fr

Références

Documents relatifs

We remark that the upper bound in (4.1) is written in terms of algebraic multiplicities and Milnor numbers of the polar curve P F l and it works for any center l ∈ P 2 outside

— We show the existence of a local foliation of a three dimensional Riemannian manifold by critical points of the Willmore functional subject to a small area constraint

Concretely, given a transversely holomorphic foliation ^ (or a holo- morphic foliation) on a compact manifold M, they proved the existence of a family of deformations of y

(It is in agreement to Yau result [8] that the identity component of the isometry group of an open Riemannian manifold X is compact if X is not diffeomorphic to the product of

We also prove that the Pontrjagin ring of the normal bundle can be expressed in terms of the conformal curvature.. This provides an alternative proof for the

Therefore in the case of SRFs there is no direct connection between an SRF being defined by an isometric action of a Lie group, the non-triviality of the top dimensional

In fact fiberwise Calabi-Yau foliation is foliation in fiber direction and it may not be foliation in horizontal direction and that’s why this type of bundle generalize the notion

When it is asked to describe an algorithm, it has to be clearly and carefully done: input, output, initialization, loops, conditions, tests, etc.. Exercise 1 [ Solving