• Aucun résultat trouvé

STRESS-RELATED PHENOMENA AT GROOVING EDGES IN HETEROEPITAXIAL GARNET FILMS

N/A
N/A
Protected

Academic year: 2022

Partager "STRESS-RELATED PHENOMENA AT GROOVING EDGES IN HETEROEPITAXIAL GARNET FILMS"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00224870

https://hal.archives-ouvertes.fr/jpa-00224870

Submitted on 1 Jan 1985

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

STRESS-RELATED PHENOMENA AT GROOVING EDGES IN HETEROEPITAXIAL GARNET FILMS

D. Klein, J. Engemann

To cite this version:

D. Klein, J. Engemann. STRESS-RELATED PHENOMENA AT GROOVING EDGES IN HET-

EROEPITAXIAL GARNET FILMS. Journal de Physique Colloques, 1985, 46 (C6), pp.C6-131-C6-

135. �10.1051/jphyscol:1985623�. �jpa-00224870�

(2)

Colloque C6, suppl6ment au n09, Tome 46, septembre 1985 page C6-131

S T R E S S - R E L A T E D PHENOMENA A T GROOVING EDGES I N H E T E R O E P I T A X I A L GARNET

F

I LMS

D. Klein and J. Engemann

Uiziv. o f WuppertaZ, Dept. EZectricaZ Engineering, 5600 WuppertaZ I , F.R. G.

Rksum6 - La s t r u c t u r e d e s p a r o i s e n t r e domaines dans d e s couches d e g r e n a t o r i e n t k e s s e l o n ( 1 1 1 )

,

avec d e s a n i s o t r o p i e s magnet i q u e s e t d e s champs locaux a s s o c i e s aux changements brusques dans 1 ' Q p a i s s e u r d e l a couche, e s t ktudige thkoriquement en u t i l i s a n t l a mCthode d e RITZ. La s t r u c t u r e i n t e r n e d e s p r o i s e n t r e domaines obtenues d a n s l e v o i s i n a g e immgdiat d e s bords d e s i l - l o n s e s t d6formi.e. S i l e p r o f i l d ' g p a i s s e u r d ' u n e couche d e g r e n a t e s t u t i l i s k pour C t a b l i r un p o t e n t i e l B une dimension en vue d e l a propagation d e s l i g n e s d e Bloch v e r t i c a l e s dans une mkmoire 2 l i g n e s - a e Bloch, l e s f o r c e s n $ c e s s a i r e s au dkplacement d e s p a r o i s y s e r o n t un peu p l u s f o r t e s que pour l e s p a r o i s qui s e t r o u v e n t l o i n d e t e l s changements brutaux d ' k p a i s s e u r .

A b s t r a c t

-

The domain wall s t r u c t u r e s i n ( 1 1 1 ) - o r i e n t e d g a r n e t f i l m s with l o c a l magnetic a n i s o t r o p i e s and f i e l d s a t a b r u p t changes i n f i l m t h i c k n e s s a r e i n v e s t i g a t e d t h e o r e t i c a l l y u s i n g t h e R I T Z s method. I t i s found

t h a t t h e i n t e r n a l s t r u c t u r e of domain w a l l s i n t h e immediate v i c i n i t y of grooving edges i s d i s t o r t e d . S i n c e a topographic shaping of a g a r n e t . f i l m is used f o r s e t t i n g a one-dimensional p o t e n t i a l f o r v e r t i c a l Bloch l i n e propagation i n t h e Bloch l i n e memory, t h e a c t u a l f o r c e s r e q u i r e d t o move t h e w a l l w i l l be somewhat higher a s compared t o w a l l s f a r away of such a b r u p t changes i n f i l m t h i c k n e s s .

I

-

INTRODUCTION

Observations of magnetic domains a t ion-milled s t e p s i n g a r n e t f i l m s /1/ i n d i c a t e d t h a t a b r u p t changes i n f i l m t h i c k n e s s have a s t r o n g i n f l u e n c e on t h e wall i n t h e v i c i n i t y of t h e edge. These phenomena can be used f o r l o c a l l y s t a b i l i z i n g domains and a l s o f o r s e t t i n g a one-dimensional p o t e n t i a l f o r v e r t i c a l Bloch l i n e propagation /2/

i n t h e Bloch l i n e memory / 3 / . I n t h i s paper we r e p o r t on t h e i n t e r a c t i o n of domain w a l l s with l o c a l i z e d s t r e s s f i e l d s and p r e s e n t a model which p r e d i c t s t h e t w i s t a n g l e s and t h e e n e r g i e s of w a l l s a t grooving edges i n h e t e r o e p i t a x i a l /4/ g a r n e t f i l m s .

I1

-

MAGNETIC ANISOTROPY

The a n a l y s i s of t h e i n t e r a c t i o n of domain w a l l s with etched s t r u c t u r e s

i n g a r n e t f i l m s assumes t h e i d e a l i - .+.

zed s t r u c t u r e a s shown i n f i g . 1, and t t i e r e f o r e s i m p l i f i e s t h e calcu-

l a t i o n t o t h e two-dimensional case. hz

A s f u r t h e r s i m p l i f i c a t i o n s we as- h,

sume, t h a t t h e nonmagnetic s u b s t r a - I I

t e and t h e magnetic f i l m a r e c u b i c

+., - ,--

1 I I

and have t h e e l a s t i c c o n s t a n t s of - -

-

- - - - - ***,_,--- + + + + +

1

+ Y I G /5/. I n s p h e r i c a l p o l a r coordi-

n a t e s t h e a n i s o t r o p y may be w r i t t e n Fig. 1

-

Schematic drawing of a g a r n e t

a s f i l m with t h i c k n e s s e s hl and h2, which

c o n t a i n s a planak domain wall a t x=x W

.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1985623

(3)

JOURNAL

DE

PHYSIQUE

I11

-

WALL ENERGY PER UNIT WALL LENGTH

0.0

E = - K cos 2

8 +

AEa

a U (1 j

where

yl

is the uniaxial anisotropy parameter and A,,E the induced stress anisotropy /6/. The analysis of stress in the magnetic film was carried out with a finite element program /7/

confined to the elastic cross-aniso- CJ tropy of (111)-oriented garnets /8/.

It is straightforward to show that eqn. +

-.'

(1) can be rewritten as a quadratic N form of the direction cosines of the magnetization and a symmetrical tensor with the eigenvalues K 5 K 2 Z K

.

These

eigenvalues may be use& direct?y

,

to obtain the local anisotropy in the vi- cinity of etched microstructures in a strained garnet film. Fig. 2 shows t3e

variation of the normalized (to 2xMS)

-1.0

The wall energy per unit wall length for planar domain walls in garnet films with localized stress and magnetic fields can be expressed as

-

-

-

0

4

4 - [fi

c 0 s 8 - ~ - hn cos (P -h for x < O 2 f i -hl for x > O 2

uniaxial anisotropy q and stress in-

4.5 5.0 5.5 6.0 0 . 5

duced inplane anisotropy q. with z for x =-I. 14 Pm, where the z-a+&raged value

< q > as a function of x has a minimum. W

9 'lip

The increase of q to the film surface Fig.22

-

Dependence of the normalized (to at is accompanied by the increase 2 TIM uniaxial anisotropy q and stress S of q.

.

The local minimum of q . at induced inplane anisotropy q. on position z/h2&P:14 to

chang:.

of the through film thickness r forlg =-1.14 pm.

W direction of the stress induced inplane The parameters, which are used in this

anisotropy. calculation are listed in table I.

where

2

q'. =

-

+ 9 + qscos 2 ( P + q. sin 2

( 9 - 9 .

)

1P =P

hncos (P

8-oo= arc sin

-

9'

(see ref. 9 and 10 for similar expressions of the local wall energy density in orthorhombic bubble materials). The azimuthal angles (P (direction of magnetization in the wall center) and (P. (direction of the local inplane anisotropy in the' (111)-plane) are measured #om the x axis. A, h and q are the exchange stiffness, the normalized (to 4 K M ) m gnetic field due tonmagnet% surface and volume charges, and the normalized (to $TI??) local shape anisotropy, respectively. The local shape anisotropy may be obtained gy calculating the demagnetizing field of the stepped surface of Fig. 1 and h =h (q,x,z) by a modification of the stray field, given by Holz and Hubert /11/.

~8

f?nd the azimuthal angle (P and the wall energy per unit length e eqn. (2) is integrated over the film thickness, using third-order finite-dyfference formulae with error estimates /12/, and minimized with respect to the twist angle (RITZs method).

(4)

Although the choice of trial functions for any variational calculation is to some extent arbitrary, we choose the orthonormalized ansatz

N

(p = cl

+ fl

Ccncos(n-1)~z'

n=2 (5)

which satifies the exchange boundary condition at the film surfaces. The reduced coordinate z' is normalized to h for x < O and to h for x>O. Clearly we cannot

1 .

expect the exact solution with $his ansatz for a flnlte numbgr N of the variational parameters, so our numerical results have an accuracy of 10

,

which can be improved by the increasing of N. However, the significant advantage of the finite series solution according to eqn. (5) is to find the starting values by a real fast Fourier transform of the contour of the minimum magnetostatic energy (A=O). In the second step we calculate the wall structure by a numerical minimization of the wall energy per unit wall length.

V

-

NUMERICAL RESULTS

As an example, fig. 3 shows the structures of the twisted domain walls at

x

=-1.14 pm (solid line, referring to fig. 2) and x = 00 (dashed line). The average vayue of twist angle

<p>

is determined by the bglance between the local demagnetization energy and the local magnetoelastic energy due to the abrupt change of the film thickness at x=O and approaches ll/2 in the limit 1x1 -& 0 0 . In general ew decreases/

increases at positions in the garnet film, where the induced strain produces compression/tension. In the case with neglibible magnetoelastic interactions,<y>

is lower/higher than K/2 for x <O/x> 0.

Fig. 3 - Plot of the azimuthal angle of the magnetization at the center of a domain wall at x =-1.14 pm (solid line) and x =iW (dashed line) as a function of the position in the garnet film with thickness h2. W

The calculated wall energy per unit wall length e versus position x (normalized to Ah=h -h ) in the garnet film plotted in fig. 4 sgows a significant variation in the

2 1

immediate vicinity of the edge and has a local minimum at x/Ahz-2.

(5)

JOURNAL

DE

PHYSIQUE

Fig. 4

-

Wall energy per u n i t w a l l l e n g t h ew a s a f u n c t i o n of t h e p o s i t i o n x (normalized t o Ah=h -h ) f o r t h e para- meters f i s i e d t a b l e I .

V I

-

DISCUSSION AND CONCLUSIONS

According t o f i g . 4 , one e x p e c t s t h a t t h e s p i n arrangement of domain w a l l s i n t h e immediate v i c i n i t y of t h e edge cannot f o l l o w t h e a b r u p t changes i n e i n s i d e t h e wall. Therefore t h e changes of wall e n e r g i e s have t o be averaged o v e r t h e wall width. W

A d e t a i l e d a n a l y s i s of t h e d a t a with d i f f e r e n t changes of f i l m t h i c k n e s s e s , with higher s t r e s s e s i n f i l m s due t o t h e mismatch i n l a t t i c e s p a c i n g , and of wall s t r u c - t u r e s u s i n g t h e s t e a d y s t a t e approximation i s n o t undertaken i n t h e p r e s e n t paper.

More complete d a t a a r e r e q u i r e d before a conclusion should be drawn. However, we o u t l i n e t h e two conclusions from t h e foregoing:

1) I n t h e v i c i n i t y of a b r u p t changes of f i l m t h i c k n e s s l o c a l v a r i a t i o n s of t h e magnetic a n i s o t r o p y and magnetic f-ields d i s t o r t t h e i n t e r n a l s t r u c t u r e of domain w a l l s .

2) Since a topographic shaping of a g a r n e t f i l m i s used f o r s e t t i n g a one-dimensional p o t e n t i a l f o r v e r t i c a l Bloch l i n e propagation i n t h e Bloch l i n e memory, t h e a c t u a l f o r c e s r e q u i r e d t o move t h e w a l l w i l l be somewhat h i g h e r a s compared t o w a l l s f a r away of such a b r u p t changes i n f i l m t h i c k n e s s .

TABLE I. Parameters used in the calculations.

h2= 4.27pm ~TcM, = 195 G

h , = .9xh2 K, = 8230 erglcm3

A,,, = - 3 . 0 4 ~ 1 0 - ~ ~ = 2 . 6 3 ~ 1 0 - ~ e r g l c m A,,, = - 1 . 4 4 ~ 1 0 - ~ u,=-lx10~ dyn/cm2

ACKNOWLEDGMENTS

The a u t h o r s wish t o thank D . Krumbholz f o r h e l p f u l d i s c u s s i o n s and S t i f t u n g Volkswagen- werk f o r t h e f i n a n c i a l s u p p o r t .

REFERENCES

/1/ K l e i n , D. and Engemann, J . , J . Magn. Magn. Mat. 45, (1984) 399.

/2/ K l e i n , D. and Engemann, J . , J . Appl. Phys. 57, (1985) 4071.

/3/ Konishi S , , IEEE Trans. Magn., MAG-19, (1983) 1838.

(6)

/5/ Haussiihl, S., 2 . Naturforsch. 31a (1976) 390.

/6/ Chikazumi, S., Physics of Magnetism (Wiley, New York 1964) Part 3 , Chap. 8 /7/ Bathe, K. J., Applications Using ADINA, Report AVL 82448-6, Dept. Mech. Eng.,

M.I.T. (1977)

/8/ Engemann, J., 2. Res. Rep., Contract No. 83128, (VW-Foundation, 1985).

/9/ Krumbholz, D., Heidmann, J., Engemann, J. and Kosinski, R. A . , IEEE Trans. Magn.

20 (1984) 1138.

/lo/ Engemann J., 6. Res. Rep., Contract No. 423-7291-NT 2576, (German Ministry of Research and Technology BIVIFT, 1984).

/11/ Holz, A. and Hubert, A., 2. angew. Phys. 26 (1969) 145.

/12/ Gill, P. E. and Miller, G. F., Comp. J. 15 (1972) 80.

Références

Documents relatifs

The close relationship between early anorthositic veins and the presence of coarse garnets in the host metagabbros has been observed in other arc roots and is best documented in

This sixfold degenerate term is split up by the local trigonal field, the spin-orbit coupling, and the exchange field, as shown in figure 1.. The exchange interaction

Without measuring the angular dependence of the line intensities one can never be sure that the observed anomaly is really due to a GKE and not to a texture effect.

shown that the optical birefringence 0394n presents important contributions 0394n03C3 and 0394nG arising from stress-induced.. (photoelastic) and

This causes the applied field to enter the expressions for the sublattice magnetization and considerably alters the form of the field for reso- nance near compensation

The calculated changes of the average, reduced wall It may be concluded that a large widths of the do- width A / A0 (t) during the wall motion are showed in main wall

With respect to the local, the two key ideas Pennycook develops in his book are the notion of relocalisation as a broader and more dynamic concept than recontextualisation, and

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des