• Aucun résultat trouvé

Quantifying and suppressing ranking bias in a large citation network

N/A
N/A
Protected

Academic year: 2021

Partager "Quantifying and suppressing ranking bias in a large citation network"

Copied!
17
0
0

Texte intégral

(1)

Quantifying and suppressing ranking bias in a large citation

network

Giacomo Vaccario

a

, Matúˇs Medo

b,c,d

, Nicolas Wider

a

,

Manuel Sebastian Mariani

d,e,∗

aChair of Systems Design, ETH Zurich, 8092 Zurich, Switzerland

bInstitute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, PR China cDepartment of Radiation Oncology, Inselspital, Bern University Hospital and University of Bern, 3010 Bern, Switzerland

dDepartment of Physics, University of Fribourg, 1700 Fribourg, Switzerland

eGuangdong Province Key Laboratory of Popular High Performance Computers, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen 518060, PR China

Keywords: Impact indicators Ranking Network analysis Field bias Field normalization

It is widely recognized that citation counts for papers from different fields cannot be directly compared because different scientific fields adopt different citation practices. Cita-tion counts are also strongly biased by paper age since older papers had more time to attract citations. Various procedures aim at suppressing these biases and give rise to new normalized indicators, such as the relative citation count. We use a large citation dataset from Microsoft Academic Graph and a new statistical framework based on the Mahalanobis distance to show that the rankings by well known indicators, including the relative citation count and Google’s PageRank score, are significantly biased by paper field and age. Our statistical framework to assess ranking bias allows us to exactly quantify the contributions of each individual field to the overall bias of a given ranking. We propose a general nor-malization procedure motivated by the z-score which produces much less biased rankings when applied to citation count and PageRank score.

1. Introduction

Paper citation count itself and various quantities derived from it are used as influential indicators of research impact (Garfield, 2006; Hirsch, 2005). At the same time, it is well known that the cumulative number of citations received by academic publications strongly depends on paper age and field (Schubert & Braun, 1986; Vinkler, 1986). Old papers have had more time to acquire citations than recent ones, and their advantage is further enhanced by the preferential attachment mechanism (de Solla Price, 1976; Newman, 2009). While heterogeneous paper fitness and paper aging possibly attenuate the advantage of old nodes (Medo, Cimini, & Gualdi, 2011; Wang, Song, & Barabási, 2013), empirical evidence typically shows that citation count is still biased toward old nodes (seeMariani, Medo, & Zhang, 2016;Newman, 2009; Radicchi & Castellano, 2011, among others). In addition, different academic fields adopt very different citation practices (seeBornmann & Daniel, 2008for a review on the topic), which results in a strong dependence of the mean number of citations on academic field, as shown in several works (Bornmann & Daniel, 2009; Lundberg, 2007;Radicchi, Fortunato, & Castellano, 2008, among others).

∗ Corresponding author at: Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland. E-mail address:manuel.mariani@unifr.ch(M.S. Mariani).

http://doc.rero.ch

Published in "Journal of Informetrics 11(3): 766–782, 2017"

which should be cited to refer to this work.

(2)

Anaturalquestionarises:howcanwe“fairly”usecitation-basedindicatorstocomparepapersfromdifferentfieldsandof differentage?Theproblemofcomparingpapersfromdifferentfieldsisusuallyreferredtoasthefield-normalizationproblem. Severalapproachestoaddressthisquestionhavebeenproposedintheliterature(seeWaltman,2016forarecentreview).A particularlysimpleapproachistodivideeachpaper’scitationcountbythemeannumberofcitationsforpapersofthesame fieldpublishedinthesameyear.TheresultsbyRadicchietal.(2008)suggestedthatthisindicator,calledrelativecitation count,producesarankingthatisstatisticallyconsistentwiththehypothesisofarankingthatisnotbiasedbyfieldandage. ThisfindinghasbeenchallengedbysubsequentworksbyAlbarrán,Crespo,Ortuno,andRuiz-Castillo(2011)andWaltman, vanEck,andvanRaan(2012),whichleavesthedebateonage-andfield-normalizationproceduresstillopen.

In thisarticle,weanalyzealargedatasetfromMicrosoftAcademicGraph(Sinhaetal.,2015)toshowthatexisting indicatorsofimpact,includingtherelativecitationcount,failtoproducerankingsthatarenotbiasedbyageandfield.To simultaneouslyassessthesebiases,wepresentanewprocedurebasedontheMahalanobisdistance(Mahalanobis,1936). Thispermitstocomparetherankingbyagivenindicatorwiththoseobtainedwithasimulatedunbiasedsampling,andhence toquantifytheoverallrankingbias.Ananalyticresultderivedinthispaperallowsustoassessthecontributionofeachfield totheoverallrankingbias.Itisworthnoticingthatwhilewefocusonthebiasesbyageandfield,ourbiasassessment procedurecanbeeasilyextendedtodetectanyotherkindofinformationbias.

WealsopresentthefirstsystematicstudyofthepossiblebiasbyfieldofthePageRankscore(Brin&Page,1998)and ofitsage-rescaledversionintroducedbyMarianietal.(2016)atarticle-level.Themotivationtoanalyzethese network-basedindicatorscomesfromthefindingthattheyoutperformothermetricsinidentifyingexpert-selectedmilestonepapers (Marianietal.,2016).However,theapplicationofPageRankanditsvariantstoacademiccitationnetworksfocusedon datasetscomposedofpapersfromasinglefield(Chen,Xie,Maslov,&Redner,2007;Marianietal.,2016;Mariani,Medo, &Zhang,2015;Walker,Xie,Yan,&Maslov,2007;Yao,Wei,Zeng,Fan,&Di,2014;Zhou,Zeng,Fan,&Di,2016).While thepossiblebiasbyscientificfieldofeigenvector-basedalgorithmshasbeenexploredbyWaltmanandvanEck(2010)at journal-level,thePageRankscore’spossiblebiasbyacademicfieldatarticle-levelis(toourbestknowledge)stillunexplored andwearethefirstauthorstoaddressit.

Weintroducetwonovelindicatorsofimpactmotivatedbythez-score:age-andfield-rescaledcitationcountRAF(c)and

age-andfield-rescaledPageRankRAF(p).Wefindthatthenovelindicatorsproducepaperrankingsthataremuchlessbiased

byageandfieldthantherankingsproducedbytheotheranalyzedindicators.Nevertheless,alsotheMahalanobisdistance observedforthenewindicatorsisnotstatisticallyconsistentwithonesobtainedforasimulatedunbiasedprocess.This indicatesthattheproblemofachievinganidealunbiasedrankingofthepublicationsremainsopen.

Therestofourarticleisorganizedasfollows:Section2describestheanalyzeddatasetofpublicationsobtainedfrom theMicrosoftAcademicGraph.Section3presentsexistingpaper-levelimpactindicatorsandreportstheirbiasbyscientific field.InSection4,weintroducearescalingprocedureforcitationcountandPageRankscoresmotivatedbythez-score.In Section5,weintroduceageneralproceduretotestforanykindofrankingbias,andpresentitsapplicationtoassessthefield andagebiasoftherankingsbytheindicatorsstudiedhere.InSection6,weconcludebydiscussingpossiblelimitationsof ouranalysisandfutureresearchdirections.

2. Data

WeanalyzeabibliographicdatasetwhichwasprovidedfortheKDDCup2016.1 ThisdataisadumpoftheMicrosoft

AcademicGraph(MAG)andcontainsmorethan126millionsofpublicationsandmorethan467millionscitations(Sinha etal.,2015).EachpublicationisalsoendowedwithvariouspropertiessuchasuniqueID,publicationdate,titleandjournal ID.Wepre-processedthedata(detailsareprovidedinAppendixA)toremovefromtheanalysispaperswithincomplete information,endingupwithN=18193082uniquepublicationsandE=109719182citations.

TheMAGhasafieldclassificationatpaperlevel(Sinhaetal.,2015).IntheKDDcupdump,thereare19mainfieldsand numeroussubfieldsupto3hierarchicallevelsofsubsubfields.However,allthedifferentsubfieldscanbelongtoseveral mainfields,meaningthateachpublicationcanbelongtomorethanonemainfield.Weuseherethefieldclassificationat thehighesthierarchicallevel,i.e.,weonlyconsiderthe19mainfields.WhencalculatingthecitationcountandPageRank scoreofpapers(seeSection3),weconsiderthepublicationsthatbelongtomorethanonefieldonlyonce.Inthisway,wedo notmodifythenumberofcitationsthateachpaperreceivesandgives,andwedonotchangethetopologyofthenetwork onwhichthePageRankscoresarecalculated.Ontheotherhand,inagreementwithWaltmanetal.(2012),tocompute thefields’size(seeTableA.2inAppendixA)andthefield-rescaledmetrics(seeSections3and4),eachpublicationcanbe consideredmultipletimesintheanalysis,onceforeachfieldthepublicationbelongsto.Inthisway,eachfieldisrepresented byallitspublicationsevenifsomeofthesearesharedwithotherfields.

BeforemovingtothenextSections,wedevoteourattentiontotwomainassumptionsofouranalysis.First,weassume thattheMicrosoftAcademicdataprovidearepresentativesampleofthepopulationofpublicationsandoftheircitations.This assumptionismotivatedbythefindingsofindependentanalysesoftheMicrosoftAcademicdataset(Harzing&Alakangas, 2013;Hug&Braendle,2017)thathaveshownthatitscoverageiscomparabletootherpopularacademicdatabases,suchas ScopusandWebofScience.

1https://kddcup2016.azurewebsites.net/Data

(3)

Second,toquantifythebiasbyfieldofimpactindicators,weassumethatthefieldsaregivenbytheMicrosoftAcademic’s fieldclassificationschemeatitshighesthierarchicallevel.Intheliterature,thereisnogeneralagreementonwhichfield classificationschemeshouldbeusedtoclassifypapersandthereisanentirestreamofworksinvestigatingissuesrelatedto this(Adams,Gurney,&Jackson,2008;Colliander&Ahlgren,2011;Radicchi&Castellano,2012a;Sirtes,2012;Zitt, Ramanana-Rahary,&Bassecoulard,2005).In particular,thechoiceofa suitableaggregationlevelhasbeenshown tobedelicate: byconsideringthemostaggregatefields,heterogeneitiesinthesubfields’citationpatternsmightbehidden(Radicchi& Castellano,2011;vanLeeuwen&Medina,2012)–thiseffecthasbeenshowntobemagnifiedwheniterativeranking algorithmsareusedinsteadofcitationcount(Waltman,Yan,&vanEck,2011).Ontheotherhand,increasingtheresolution ofthefieldclassificationmayleadtolargely-overlappingfieldsortohardlyinterpretablefields.Forexample,Hug,Ochsner, andBrandle(2017)showthattheMAGfieldsatthesecondhighestlevelaretoodetailedand,forthisreason,theauthors suggestthattheyshouldnotbeusedforfield-normalizationpurposes.Weleavetofutureresearchtheimportantstudyof howdifferentclassificationschemesimpactthebiasesofrankingsandhowourresultsgeneralizetootherdatasets.

3. Shortcomingsofexistingmetrics

Wenowdefinethefourexistingmetricsanalyzedinthiswork:citationcountc,relativecitationcountcf,PageRankscore

p,age-rescaledPageRankscoreRA(p)(Section3.1).Furthermore,weshowthatthesemetricsareseverelybiasedbyscientific

field(Section3.2).

3.1. Definitionofexistingmetrics

Citationcount,c.Thecitationcountciofnodeiissimplythenumberofcitationsreceivedbypaperi.Intermsofthecitation

network’sadjacencymatrixA(inadirectednetwork,Aij=1ifnodejpointstonodei,Aij=0otherwise),wecanexpressthe

citationcountasci=



jAij.

Relativecitationcount,cf.Toovercomecitationcount’sbiasbypaperageandacademicfield,Radicchietal.(2008)defined

therelativecitationcountcifofpaperiascif:=ci/Yi(c),whereYi(c)denotesthemeancitationcountforpaperspublished

inthesamefieldandyearaspaperi.Throughoutthispaper,wealwaysrefertothe19mainfieldsprovidedintheMAG dataset.

PageRank,p.Citationcountandmetricsbuiltonitshareanimportantlimitation:thecitationsapaperreceivesareall countedthesame,regardlessoftheimportanceofthecitingpaper.Apossiblewaytoovercomethislimitation–recognized alreadyinthe70sinthescientometricscommunity(Pinski&Narin,1976)–istotakeintoaccountthewholestructureof thepaper-papercitationnetwork.Inthisspirit,eigenvector-basedmetricstakeasinputthecitationnetwork’sadjacency matrixA.Thisclassofmetricshavebeenappliedinvariousresearchdomainsincludingscientometrics(Bergstrom,West, &Wiseman,2008;Pinski&Narin,1976),Webinformationretrieval(Brin&Page,1998;Kleinberg,1999),socialscience (Bonacich,1987;Katz,1953)–see(Ermann,Frahm,&Shepelyansky,2015;Franceschet,2011;Gleich,2015)forareview. Amongthesemetrics,wefocusonGoogle’sPageRankscore(Brin&Page,1998).Thiswasoriginallydevisedtorankwebpages intheWorldWideWebandhasattractedconsiderableinterestofthescientometricscommunity.Therationalebehindits applicationtocitationnetworksisthatcitationscomingfrominfluentialpapersshouldcountmorethancitationsfrom obscurearticles.

ThePageRankscoresofpapersarecontainedinavectorpdefinedbythefollowingequation

pPp+(1−˛)v, (1)

where˛isaparameterofthealgorithm(calleddampingfactor),Pistherandom-walktransitionmatrixwithelements Pij=Aij/koutj ,koutj =



lAlj isthenumberofreferencesinpaperj,andvisauniformteleportationvectorwithelements

v

i=1/Nforallpapersi.Eq.(1)canbeinterpretedasthestationaryequationofastochasticprocessonthecitationnetwork. Inthisprocess,arandomwalkerisplacedoneachpaperandhe/sheeitherfollowsacitationedgewithprobability˛,or jumpstoarandomlychosenpaperwithprobability1−˛.Whenthenumberofwalkersoneachpaperreachesastationary value,weobtainthePageRankscoreofapaperibycalculatingthefractionofwalkeronthispaper.Thereisnouniversal criteriontochoosethevalueofthedampingfactor˛.InagreementwithChenetal.(2007),weset˛=0.5whichcorresponds toarandomwalkercoveringpathsoflengthtwobeforeteleportingtoarandomnode,asopposedtopathsoflengthcloseto sevenexpectedwiththeoftenusedvalue˛=0.85.Chenetal.(2007)arguethatthechoice˛=0.5betterreflectstheactual surfingbehaviorofresearchersthan˛=0.85.

PageRankisbasedonastatic,time-aggregatedperspectiveoftheconsiderednetwork.Ingeneral,suchperspectivehas beenshowntobelimitingfortheanalysisofevolvingnetworks(Marianietal.,2015;Scholtes,Wider,Pfitzner,Garas,Tessone, &Schweitzer,2014b,Wider,etal.,2014).Whiletheresultingmetric’sbiastowardsoldpapershasalreadybeenstudiedin theliterature(Chenetal.,2007;Marianietal.,2015,2016;Maslov&Redner,2008),itspossiblebiasbyacademicfieldisstill unexploredandweaddressitinSection3.2.

Age-rescaledPageRank,RA(p).TosuppresstheagebiasofPageRank,Marianietal.(2016)proposedtorescalethePageRank

scorebycomparingeachpaper’sscorewiththescoresofpapersofsimilarage.Assumingthatthepapersareorderedby

(4)

Fig.1.Fieldbiasoftheanalyzedcitation-basedmetrics.Toppanelsshowhistogramsofthefractionoftop-1%publicationsforeachfieldintherankingby (lefttoright)citationcountandrelativecitationcount.Theblackhorizontallineisat0.01,i.e.theexpectedvalue.Bottompanelsshowforeachfieldthe complementarycumulativedistributionsforcitationcount(left)andrelativecitationcount(right).

oldertoyounger,onecomputesthemeanvalueA

i(p)andthestandarddeviationiA(p)ofPageRankscoresoverppapers

aroundi,i.e.j∈[i−p/2,i+p/2].Consequently,therescaledPageRankscoreRAi(p)ofpaperiisdefinedas

RA i(p)= pi−Ai(p) A i(p) . (2)

Marianietal.(2016)appliedrescaledPageRank tothenetwork ofphysicspapers publishedbytheAmericanPhysical Societyjournalstoshowthattheresultingrankingisnotbiasedbypaperageand,asaresult,itallowsustoidentifyseminal publicationmuchearlierthanrankingsbymetricsthatarebiasedagainstrecentpapers.Inthefollowing,wesetp=1000

asinMarianietal.(2016).

3.2. Fieldbiasoftheexistingmetrics

Afterhavingdescribedasetofexistingmetrics,wenowapplythemtotheMAGdatasettoshowthattherankingsthat theyproducearebiasedbyscientificfield.Forarankingthatisnotbiasedbyscientificfield,thenumberoftop-ranked publicationsfromeachfieldshouldbeproportionaltothetotalnumberofpublicationsfromthatfield.Inotherwords,for anunbiasedranking,weexpect

f =100z Kf (3)

papersfromfieldfamongthetopz%papersintheranking,whereKfisthetotalnumberofpublicationsfromfieldf(Radicchi

etal.,2008).Inthefollowing,wedenotebyk(m)f thenumberofpublicationsfromfieldfinthetop-1%oftherankingbymetric m.Werestrictouranalysistoz%=1%;resultsforothervaluesofzareavailableuponrequestfromtheauthors.

InthetoppanelsofFig.1,weillustratethefieldbiasofcitationcount,c,andrelativecitationcount,cf.Thepresenceof

strongbiasesisevidentforbothmetricsbecausetherearefieldswhoseratiok(m)f /Kf isfarawayfromtheexpectedvalue 0.01.Inparticular,EnvironmentalScienceisextremelyover-representedinthetopoftherankingbycitationcount.We arguethatthisbiascomesfromthefactthatpublicationsfromthisfieldhaveameancitationcountalmosttwiceasbig comparedtopublicationsbelongingtootherfields(seeTableA.2).Forrelativecitationcount,wefindabetteragreement withwhatwewouldexpectfromanunbiasedindicator.However,relativelylargedeviationsarestillevident,especiallyfor thefieldofPoliticalScience.

InthebottompanelsofFig.1,wereportthedistributionsofcandcfforeachfield.Thesepanelsshowthatthebias

byfieldisnotlimitedtothetop1%papersintheranking,butitarisesfromsystematicdifferencesbetweenthescore distributionsacrossdifferentfields.Forexample,whenlookingatthedistributionofc,papersinthefieldofPoliticalScience haveconsistentlysmallerprobabilitytohavemorethanonecitationcomparedtootherfields.Foradetaileddiscussion aboutthebiasoftherankingbycf,werefertoAppendixC.

Fig.2reportsthesameanalysisforPageRankscores,p,andage-rescaledPageRankscores,RA(p).Thisfigureprovidesthe

firststudyofthedependenceofPageRankscoreonacademicfield.ThetoppanelsofFig.2showthatthetoppositionsofboth rankingsarebiasedbyfield,andbothrankingsoverestimatetheimpactofpublicationsinthefieldofEnvironmentalScience. Again,wearguethatthishappensbecausethemeanindegreeofpublicationsfromEnvironmentalScienceisapproximately twiceasbigcomparedtopublicationsthatbelongtootherfields(seeTableA.2).Fromthebottom-leftpanelofFig.2,wefind thatthefulldistributionofscoresofPageRankhaveasimilarshape,butdifferentbroadness.Thesedifferencesareslightly

(5)

Fig.2. FieldbiasoftheanalyzedmeasuresbasedonPageRank.Toppanelsshowhistogramsofthefractionoftop-1%publicationsforeachfieldinthe rankingby(lefttoright):PageRankandage-rescaledPageRank.Theblackhorizontallineisat0.01,i.e.theexpectedvalue.Bottompanelsshowforeach fieldthecomplementarycumulativedistributionsforPageRank(left)andage-rescaledPageRank(right).

smallerfortheage-rescaledPageRank,withtheexceptionofthefieldofEnvironmentalScience(seebottomrightpanelof Fig.2).

4. Definingnewage-andfield-normalizedmetrics

Inthissection,weintroducetwonovelindicatorsofpaperimpact:theage-andfield-rescaledcitationcount,RAF(c),

andtheage-andfield-rescaledPageRank,RAF(p).Thetwoindicators,RAF(c)andRAF(p),areobtainedfromcitationcount

candPageRankscorep,respectively,througharescalingprocedure.Thisprocedureisbasedonthez-scoreandisaimed atsuppressingageandfieldbias.Theideaofusingthez-scoreisnotnewinscientometrics(Bornmann&Daniel,2009; Lundberg,2007;Marianietal.,2016;McAllister,Narin,&Corrigan,1983;Newman,2009;Zhang,Cheng,&Liu,2014);our newindicatorscanbeconsideredasvariantsoftheindicatorbasedonthez-scorestudiedbyZhangetal.(2014)andtheir maindifferenceisexplainedbelow.

4.1. Age-andfield-rescaledcitationcount,RAF(c)

Tocalculatetheage-andfield-rescaledcitationcountRAF

i (c)ofapaperibelongingtoafieldf,wefirstcomputethemean

AF

i (c)andthestandarddeviationiAF(c)ofthecitationcountofpapersofthesamefieldandofsimilarageaspaperi.In

particular,AF

i (c)andAFi (c)arecomputedoverthepapersthatbelongtothesamefieldfaspaperiandthatareamongthe

cclosestpaperstoiasmeasuredbythedistance|i−j|betweentheirrankbyage.Then,theage-andfield-rescaledcitation

countscoreRAF i (c)isdefinedas RAF i (c)= ci−AFi (c) AF i (c) . (4)

Theaveragingwindowsizecisaparameterofthemethod,whichwesettoc=1000.

DifferentlyfromZhangetal.(2014),forthecomputationofthez-score,weusetemporalwindowswiththesamenumber ofpublications,whichingeneralcorrespondstoreal-timeintervalsofdifferentduration.Thischoiceissupportedbyrecent findings(Paroloetal.,2015)thatindicatethatincitationnetworks,timeisbetterdefinedbynumberofpublicationsthan byrealtime.Furthermore,rescaledmetricsbasedonthez-scorewithfixedtemporal-windowdurationhavealreadybeen showntounderperformwithrespecttotherelativecitationcountcfinthetaskofproducinganunbiasedranking(Zhang

etal.,2014).Ouranalysis(notshown)confirmsthatwhenthetemporalwindowsareofafixedtemporallength,thebias removalisinferiortothatachievedwithtemporalwindowscontainingafixednumberofpublications.Forthesereasons, wedonotincludemetricsbasedonz-scorewithfixedtemporal-windowdurationinouranalysis.

Differentlyfromtherelativecitationcountcf,RAF(c)isexpectedtohavenotonlyuniformmeanvalueacrossdifferent

publicationdatesandfields,butalsouniformstandarddeviation.Thisshouldleadtoamorebalancedrankingofthepapers. Weshowinthefollowingthatthisisindeedthecase.

(6)

Fig.3. Fieldbalanceoftheanalyzedcitation-countandPageRank-basedmetrics.Toppanelsshowhistogramsofthenumberoftop-1%publicationsfor eachfieldintherankingby(lefttoright):age-andfield-rescaledcitationcount,andage-andfield-rescaledPageRank.Theblackhorizontallineisat0.01, i.e.theexpectedvalue.Bottompanelsshowforeachfieldthecomplementarycumulativedistributionsforage-andfield-rescaledcitationcount(left),and age-andfield-rescaledPageRank(right).

4.2. Age-andfield-rescaledPageRank,RAF(p)

PreviousworkshaveshownthatPageRankisbiasedtowardsoldpapersinscientificcitationnetworks(Chenetal.,2007; Marianietal.,2015;Maslov&Redner,2008).Moreover,wehaveshowninSection3thatPageRankscorepisbiasedby scientificdomain.Tosimultaneouslysuppressthesetwobiases,weproposetheage-andfield-rescaledPageRankscore RAF(p).RAF(p)isdefinedsimilarlyasRAF(c):wecomputethemeanvalueAF

i (p)andthestandarddeviationiAF(p)ofthe

PageRankscoresofthepapersthatbelongtothesamefieldaspaperiandthatareamongthepclosestpaperstoias

measuredbythedistance|i−j|betweentheirrankbyage.Theage-andfield-rescaledPageRankscoreisthendefinedas RAFi (p)=pi−AFi (p)

AF i (p)

. (5)

Inthefollowing,wesetp=1000.

4.3. Fieldbiasofthenewmetrics

In thetoppanelsofFig.3,weshowthatinthetop-1%oftherankingsbyRAF(p)andRAF(c)eachfield appearswell

represented.Infact,thedeviationsfromtheexpectedvalueareverysmallespeciallyifcomparedtothedeviationsofthe otherrankings(seetoppanelsinFigs.1and2).InthebottompanelsofFig.3,wereportthatthefullscoredistributionsfor papersfromdifferentfieldscollapseextremelywelltopofeachotherthankstotherescalingprocedure.

5. Quantifyingrankings’biasesbyfieldandage

WebeginthisSectionbyintroducinganewmethodologytoassessaranking’sbiasbasedontheMahalanobisdistance (Section5.1).Then,weusethistoquantifythebiasbyfield(Section5.2)andthebiasbyageandfield(Section5.3). 5.1. AgeneralframeworktoassessrankingbiasesbasedontheMahalanobisdistance

WhileFigs.1and2illustratethesubstantialfieldbiasoftheexistingmetrics,thebiasismuchweaker(ifany)forthe newage-andfield-rescaledmetricsinFigure3.Nowwequantifythisimprovementbyextendingthestatisticaltestsofbias suppressionpresentedbyMarianietal.(2016),RadicchiandCastellano(2012b),Radicchietal.(2008),Waltmanetal.(2012). Similarlytotheseworks,weassumethatarankingisunbiasedifitspropertiesareconsistentwiththoseofanunbiased selectionprocess.

5.1.1. Assessingthebiasbyfield

Letusfirstanalyzetheproblemofassessingthebiasbyfield.ConsideranurnwhichcontainsNmarbles,eachofthem correspondingtooneofthepublicationspresentinourdataset.Anunbiasedselectionprocessthencorrespondstosampling fromthisurnatrandomwithoutreplacementafixednumbern=N×0.01ofpublications.Fromtheextractedsample,we countthenumberofpublicationsthatbelongtoeachfieldf,kf,andrecordthesenumbersinthevector k=(k1,...,kF)T;here

(7)

Fig.4.Mahalanobisdistances,dM,fortheanalyzedindicatorswhenconsideringthe19mainfields.Fromlefttoright:citationcount,relativecitationcount,

PageRank,age-rescaledPageRank,age-andfield-rescaledcitationcountandage-andfield-rescaledPageRank.Thehorizontalredlinerepresentstheupper boundofthe95%confidenceintervalobtainedfromthesimulations.Intheinsets,wereportthedistributionofdMcomingfrom1000000simulationsof

theunbiasedsamplingprocess.Again,theredlinerepresentstheupperboundofthe95%confidenceinterval.(Forinterpretationofthereferencestocolor inthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

Fdenotesthenumberoffields.Theprobabilitytoobserveacertainvector, k,isgivenbythemultivariatehypergeomentric distribution(MHD) P



k



=



F f



Kf kf





N n

(6)

whereKfisthetotalnumberofpublicationsinfieldf.Followingthisselectionprocess,amongthenextractedpublications,

theexpectednumberofpublicationsforfieldfisf=nKf/N.

Assumethattheactualrankingbyagivenmetricmfeatureskf(m)publicationsfromfieldfinthetop1%ofitsranking.In general,theobservedk(m)f deviatesfromitsexpectedvaluef.Asimpleapproachtoquantifythisdeviationwouldconsist

incomputingthez-score,definedasz(m)f :=(k(m)f −f)/f,wherefistheexpectedstandarddeviationforfieldfaccording

totheMHDspecifiedbyEq.(6).Therearehowevertwoshortcomingsofthez-score.First,thez-scoreonlygivespartial informationforaMHD–howfarfromtheexpectedvaluesweareinunitsofstandarddeviations–butitdoesnotprovide informationonhowstatisticallysignificantthedeviationsare.Second,toquantifytheoverallbiasofagivenindicatorm, wewouldneedtoaggregatethez-scoresfromthedifferentfields.Forexample,wecouldtaketheaveragez-score,butthis wouldneglectthecorrelationbetweenthedifferentfieldscomingfromtheconstraintn=



fk(m)f .

Toovercomethesetwoproblems,wefollowadifferentapproach.Wefirstrunvariousnumericalsimulationsthat repro-ducetheunbiasedselectionprocess.Thesesimulationsproduceasetofrankingvectorswhicharedistributedaccording toEq.(6)aroundthevectorofexpectedvalues,  =(1,...,m).Differentlyfrom(Radicchi&Castellano,2012b),wedo

notestimatetheconfidenceintervalforthedifferentfieldsseparately.WecalculateinsteadtheMahalanobisdistance(dM, Mahalanobis(1936)andAppendixB)foreachsimulatedvectorfrom,andconstructthedistributionofdM’sobtainedby thesimulatedunbiasedselectionprocess.TheinsetoftheleftpanelofFig.4reportsthedistributionofthedMfor1000000 simulations.Thedistributioniscenteredarounditsmeanvalueof4.18andtheupperboundforthe95%confidencelevelis around5.37.2Foranidealunbiasedranking,wewouldexpectitsd

Mtofallintothe95%confidenceintervalofthedistribution ofthedMobtainedfromthesimulatedunbiasedsamplingprocess.

5.1.2. Assessingthebiasbyageandfield

Themethodologypresentedaboveiseasilygeneralizedtosimultaneouslyassessaranking’sbiasbyageandfield. Toaddthetemporaldimensiontothebiasassessmentprocedure,wesplitthepublicationsintoTequally-sizedagegroups, andrepeattheaboveanalysisbyusingF×Tdifferentcategoriesofpublications.InSection5.3,wesetF=19representing thenumberoffieldsandT=40asin(Marianietal.,2016),andthusweobtain760age-fieldgroupsofdifferentsizes.

2Acuriosityforthereader.Here,theaverageofthesquareofthed

Mfortheunbiasedsamplingprocessisextremelyclosetothenumberofdegreesof

freedomofourproblem.ThisstemsfromthefactthattheMHDdefinedbyEq.(6)convergestoaMultivariateGaussianDistribution(MGD)asweincrease thenumberofpublicationsNwhilekeepingn/Nfixedandsmall.Ourdatasetislargeenoughforthisapproximationtobeaccurate.Thed2

MofaMGDis

distributedasa2variablewithaverageequaltothenumberofdegreesoffreedom,i.e.18sincewehave19distinctfieldsandoneconstraint.

(8)

Table1

Theindividualcontributionz2

i(1−ki/N)ofeachfielditothedMofthedifferentmetrics.

Field c cf p RA(p) RAF(c) RAF(p) Art 1.15 1.95 3.01 0.31 2.84 0.09 Biology 36.46 15.81 6.74 0.87 0.12 0.16 Business 2.06 2.08 5.95 1.51 14.56 13.50 Chemistry 0.34 8.44 0.85 9.28 4.23 0.00 ComputerScience 0.29 23.86 0.02 3.09 0.12 13.50 Economics 3.34 6.51 4.20 5.77 32.32 7.93 Engineering 8.36 0.09 10.48 0.35 8.36 0.03 EnvironmentalScience 16.82 0.04 35.67 29.89 2.45 2.23 Geography 0.05 1.34 0.15 0.50 0.15 0.51 Geology 1.02 3.04 6.42 0.13 2.10 10.06 History 0.69 2.48 1.67 0.15 3.12 0.52 MaterialsScience 0.39 0.43 0.23 0.01 2.37 0.10 Mathematics 5.17 1.94 0.10 0.14 0.09 25.34 Medicine 4.02 7.66 0.06 1.94 2.16 19.56 Philosophy 1.49 3.23 0.12 0.36 0.15 0.07 Physics 8.30 0.21 6.00 33.67 14.34 0.01 PoliticalScience 1.47 10.22 6.82 0.51 1.47 2.44 Psychology 5.75 1.43 8.56 10.24 2.93 1.65 Sociology 2.83 9.23 2.95 1.30 6.11 2.30

TheboldvaluesmarkthefieldsthatgivethelargestcontributiontothedMofeachmetric.

5.2. Resultsonthebiasbyfield

TherankingsproducedbydifferentmetricsdiffergreatlybytheirdM(seeFig.4).Asexpected,themetricsthatarenot field-rescaled(c,RA(p),andp)arefarfrombeingunbiased.Atthesametime,relativecitationcountthatisrescaledbyfield

performsonlyslightlybetterthanPageRankwhichisignorantofanyfieldinformation.Thebestresultsbyawidemarginare achievedbyourmetrics,RAF(c)andRAF(p),obtainedusingthenewrescaling.Nevertheless,boththesemetricsfailtomeet

the95%upperboundachievedbysimulatedunbiasedrankings.Asdisappointingasitmayseem,thisfindingisnotentirely surprisingastheproposedrescalingproceduresfocusonequalizingthefirsttwomomentsoftherespectivequantities(c andp)whereasthequantities’distributionscandifferalsobyhighermoments.

TounderstandwhichfieldcontributesthemosttotheresultingdMvalues,wederivedanalternativeanalyticexpression forthedM dM(k, )2= F

i z2 i

1−ki N

(7)

whereweomitthemetricsuperscript (m)fromthenotationforziand k forsimplicity.Wehave proventhisformula

analyticallyforF=3,4,5,6,andwehavenumericallytesteditforF=19and760(seeAppendixB);itremainsopentoprove itinarbitrarydimensions.

InTable1,wereporttheindividualfields’contributionstothed2

McalculatedusingEq.(7).WefindthatBiologyand ComputerSciencearethefieldswhichgivethebiggestcontributionstothed2

Mfortherankingsbycitationcountand relativecitationcount,respectively.Thiscouldnothavebeendetectedbylookingatthedeviationsfromtheexpected values.Indeed,inFig.1weonlyseethatEnvironmentalScienceandPoliticalSciencehavethelargestdeviations.Forthe novelindicators,approximatelyonethirdofthed2

MofRAF(c)isexplainedbythefieldofEconomicsandapproximatelyone fourthofthed2

MofRAF(p)isexplainedbythefieldofMathematics.

Inaddition,wealsofindthatthedM’scontributionsacrossdifferentfieldsassumevaluesinarelativelybroadrange.This suggeststhatfindingsonrankings’biasbyfieldmaystronglydependonwhichdisciplinesareincludedornotintheanalysis. Wearguethatarbitrarychoicesonwhichfieldstoincludeshouldbeavoidedinfutureresearchonfield-normalizationof impactindicators.

Tosummarize,ourbiassuppressiontestallowsusnotonlytoestimatethelevelofbias(dM)ofthevariousmetrics,but alsotoquantifywhichpercentageofthetotalbias(d2

M)ofanindicatorisexplainedbyeachsinglefield. 5.3. Resultsonthebiasbyageandfield

Whiletheanalysisoftheprevioussectionfocusedontherankingbiasbyfield,inthissectionweusethedMto simulta-neouslyassessthebiasbyageandfieldofagivenranking.

InFig.5,weshowthedM’sforthedifferentindicatorsandforthe95%confidenceintervalforthesimulatedunbiased selectionprocessusing40×19age-fieldtypesofpublications.Forcitationcount,PageRank,relativecitationcountand age-rescaledPageRankwehavetorejectthehypothesisthattherankingsoftheseindicatorsarenotbiasedbyageandfield.For

(9)

Fig.5.Mahalanobisdistances,dM,fortheanalyzedindicatorswhenconsideringthe760age-fieldgroups.Fromlefttoright:citationcount,relativecitation

count,PageRank,age-rescaledPageRank,age-andfield-rescaledcitationcountandage-andfield-rescaledPageRank.Thehorizontalredlinerepresents theupperboundofthe95%confidenceintervalobtainedfromthesimulations.Intheinsets,wereportthedistributionofdMcomingfrom1000000

simulationsoftheunbiasedsamplingprocess.Again,theredlinerepresentstheupperboundofthe95%confidenceinterval.(Forinterpretationofthe referencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

Fig.6. Heatmapsshowingthebiasbyfieldandageoftherankingsbythedifferentindicators.Eachcellrepresentsanage-fieldgroup:agegroupsare representedhorizontally,whilefieldsarerepresentedvertically.Thecolorofthecellsshowsthebiasoftheindicatorswithrespecttothatage-fieldgroup. Whitemeansthattherespectiveage-fieldgroupisfairlyrepresentedinthetop1%oftherankingbytheindicator.Whileweuseacolorscalefromwhite tointensered(blue)forage-fieldgroupwhichareunderestimated(overestimated).(Forinterpretationofthereferencestocolorinthisfigurelegend,the readerisreferredtothewebversionofthearticle.)

theimprovedindicators,age-andfield-rescaledcitationcountandPageRank,wealsohavetorejectthenullhypothesis, eventhoughtheyaremuchclosertothe95%confidenceinterval.

Itisworthtonoticethatage-rescaledPageRank,anindicatordevelopedtoonlyremovePageRank’sbiasbyage(Mariani etal.,2016),issignificantlylessbiasedcomparedtorelativecitationcount,anindicatorspecificallydesignedto simultane-ouslyremovebiasbyageandfield.

5.4. Simultaneouslyvisualizingthebiasbyageandfield

Tovisualizethefieldandagebiasoftherankingsbytheanalyzedindicators,weuseheatmapsintheage-fieldgroupplane (seeFig.6).Intheseheatmaps,eachcellrepresentsafield-agegroup,anditscolorindicatesthelevelofbias.Awhitecell indicatesthatthenumberofpapersintherespectiveage-fieldgroupfallsintothe95%confidencelevel(C95%)determined

(10)

withthesimulations.Hence,whitemeansthatnobiasisdetectedfor thatage-fieldgroup.Whileforrepresentingthe biastowardsoragainstagroupofpapers,weuseblue(overestimation)andred(underestimation).Toobtainarangeof over/under-estimation,thebrightnessofthecolorsrangesfromwhite(nobias)tointenseblue/red.Themostintensecolors indicatethatthenumberofpapersfromthatage-fieldgroupis5standarddeviationsmaller/biggerthantheexpectedvalue. ThetoppanelofFig.6showsthat,independentlyoffield,citationcountandPageRanksystematicallyover-represent oldpapersandunder-representrecentpapers.Thisisinagreementwiththefindingsofseveralotherworks(Chenetal., 2007;Marianietal.,2015,2016;Newman,2009).TheonlyexceptionisPoliticalSciencewhichisusuallyunderestimated independentlyofpaperage.Wearguethatthishappensbecausethisisthesmallestfieldinthedataset,andithasbecome anacademicdisciplinebyitselfmuchlatercomparedtomostoftheotherfields3.Also,theoldestpapersinmostfieldsare

under-representedbycitationcount,whichreflectsthechangeofcitationpracticesovertime.

ThemiddlepanelsofFig.6showthattherelativecitationcountandage-rescaledPageRanksuppresslargepartofthe biasesoftheoriginalmetrics,yetspecificfieldsareconsistentlyoverestimatedorunderestimated.Forexample,both age-rescaledPageRankandrelativecitationcountunder-representpapersbelongingtothefieldofChemistry.Apeculiarityof relativecitationcountisthatitover-representsboththeoldestaswellasthemostrecentpapersatthecostoftheother papers.

ThebottompanelsofFig.6showtheheatmapsforthenewindicatorsage-andfield-rescaledcitationcountRAF(c)and

PageRankRAF(p).Wefindthattherespectiverankingsaremuchlessbiasedtowardsspecificfieldscomparedtoalltheother

analyzedmeasures.However,therearetwopatterns:forRAF(c)recentpublicationstendtobeunderestimatedforsome

fields,whereasforRAF(p)recentpublicationtendtobeoverestimatedforalmostallfields.Theserathersystematicpatterns

musthavetheirrootsinchangesofthecitationandPageRankscoredistributionswithtime.Sinceourrescalingprocedure wasfixingthefirsttwomomentsofthesedistributions,theobservedpatternscomefromdifferencesinhighermoments. Thus,thedistributionsofRAF(c)andRAF(p)arealignedonlypartiallyforpapersofdifferentage.

6. Discussionandconclusion

Tosummarize,inthispaperwehaveanalyzedalargecitationnetworkfromtheMicrosoftAcademicGraphtoshowthat therankingsofpapersbywell-knownindicatorsareextremelybiasedbyageandfield.Thelevelofbiasoftherankingshas beenquantifiedwithanewstatisticalframeworkbasedontheMahalanobisdistance.Thisframeworkhasallowedusto simultaneouslyquantifytheageandfieldbiasesoftheanalyzedrankings,andtodeterminewhichgroupsofpapersgivethe largestcontributionstotheobservedbias.Toallowotherresearchertoeasilyimplementourstatisticaltestforrankingbias, wemaketherespectivecodepubliclyavailable4togetherwithaquicktutorialonhowtouseit.5Inaddition,wehavealso

introducedtwonewindicatorsofpaperimpact,rescaledcitationcountRAF(c)andrescaledPageRankRAF(p)thatproduce

muchlessbiasedrankingsthanexistingindicators.Inparticular,therankingbyRAF(p)isapproximatelythreetimesless

biasedcomparedtotheleastbiasedexistingmetrics,relativecitationcountandage-rescaledPageRank.

Thecontributionofourresultstothedebateonthevalidityoffield-normalizationproceduresisthreefold.First,our findingsareinagreementwiththeconclusionsofAlbarránetal.(2011)andWaltmanetal.(2012)whicharguedthatthe relativecitationcountintroducedbyRadicchietal.(2008)canbeinsufficienttoeffectivelyremovecitationcount’sbiasby ageandfield.Second,weshowtheimportanceoftestingindicatorsusinganaccuratestatisticalprocedure,suchtheone introducedinthispaper.Indeed,fortheleast-biasedindicatorsanalyzed,RAF(c)andRAF(p),noclearindicationofbiasisfound

atfirstglance.However,whenusingthestatisticaltestbasedontheMahalanobisdistance,wefindasignificantdiscrepancy betweentheirrankingsandthosecomingfromunbiasedsamplingprocess.Wearguethatincludinghigher-ordermomenta (suchastheskewness)intherescalingprocedurecanbeanefficientwaytofurtherreducetherankings’levelofbias.Third, byderivinganexplicitformulatocalculatethecontributionofeachfieldtothebiasofaranking,wefindthatthethese contributionsassumeabroadrangeofvalues.Weobtainsimilarfindingsalsoforthecontributionstotheage-fieldbias.This meansthatthelevelofbiasofrankingsdependsheavilyonwhichyearsorfieldsareincludedintheanalysis.Forthisreason, infutureresearchonageandfieldnormalizationofindicators,itisessentialtoclearlymotivatewhichyearsandfieldsare includedintheanalysis,avoidingarbitraryoruncriticaldecisions.

Toaddressthebiasbyageandfieldofrankingofpapers,wehavefirstdividedthepapersingroupswithsimilarageand fromthesamefield.Then,weconsideredonlythesizesofthesegroupstodefineanunbiasedselectionprocessfromwhich weobtainedastatisticalnullmodelforanunbiasedranking.Inprinciple,additionalinformationcanbeincludedintothe nullmodeltocorrectforothereffects.Forexample,includinginformationabouttheco-authorshipnetworkwouldpermit tocorrectfortheeffectofthisnetworkonthegrowthandstructureofthecitationnetwork(Sarigöl,Pfitzner,Scholtes,Garas,

3We notice thatthe classification of PoliticalScience as oneof the highest-levelfields is not obvious. In Scopuscategories, “Political Sci-enceandInternationalRelations”isonlyasubfieldofthehigher-levelfieldSocialScience[http://www.scimagojr.com/journalrank.php?area=3300]. In the Web of Science classification scheme, “Political Science” is only a subfield of the higher-level field “Social Sciences, General” [http://ipscience-help.thomsonreuters.com/inCites2Live/8300-TRS.html].

4https://github.com/giava90/quantifying-ranking-bias.

5https://www.sg.ethz.ch/team/people/gvaccario/quantifying-ranking-bias/.

(11)

&Schweitzer,2014;Sarigol,Garcia,Scholtes,&Schweitzer,2017).Inthisway,wewouldgainabetterunderstandingofhow thesocialdimensionofsciencecontributestothefieldandagebiasesofimpactindicators.

Weemphasizethatremovingthebiasesaddressedinthispaperandthosethatcomefromsocialaspectsisofprimary importancenotonlyforscholarlypublicationdatabases,butalsoforseveralotherinformationsystems,suchastheWWW oronlinesocialnetworks(Scholtes,Pfitzner,&Schweitzer,2014a).Asamatteroffact,everydayscholarsandon-lineusers exploreavailableknowledgeusingrecommendersystemsbasedonrankingalgorithms.Thischallengesustodesignmore sophisticatedfilteringandrankingprocedurestoavoidbiasesthatcansystematicallyhiderelevantcontentsoronlyshow informationtoosimilartowhattheusersalreadyknow.

Whilewe haveanalyzedindetail thepresence ofageandfieldbiasin theranking,it stillremainstoevaluatethe actualrankingperformanceofthenewlyproposedindicatorsinartificialdata(Medo&Cimini,2016)orinrealdatawhere thegroundtruthisprovidedbysomeexternalsource(Dunaiski,Visser,&Geldenhuys,2016;Marianietal.,2016).Another importantissueisthecomparisonbetweenmetricsbasedoncitationcountandmetricsthattakethewholecitationnetwork intoaccounttodeterminepapers’score.Ouranalysis(seeSectionD)showsthattherankingsbytheleast-biasedindicators RAF(c)(citation-based)andRAF(p)(network-based)arepositivelycorrelated,stillsubstantiallydifferent.Canweusethe

extra-informationprovidedbythenetworktoenhanceourabilitytoidentifyhighly-significantpublications?Ourintuition andtheresultspresentedbyChenetal.(2007)andbyMarianietal.(2016)forspecificresearchfieldssuggestthatthisisthe case.Yet,weneedadditionalanalysistovalidatethisconjectureinlargerdatasetssuchastheoneanalyzedinthisarticle.

Toconclude,byreducing theageandfieldbiasesfromindicatorsofscientificimpactandbyextendingtheexisting statisticaltestsforbiases,wecontributetothechallengeofquantifyingandsuppressingbiasesofrankingsininformation systems.

Acknowledgements

WethankIngoScholtes,FrankSchweitzerandYi-ChengZhangforsuggestionswhichimprovedthemanuscript.In addi-tion,wealsothankEmreSarigölforhishelpinpre-processingthedata,andEliasBaumanforhisimportantcontribution totheoptimizationoftheC++codethatweusedforthenetworkanalysis.GVacknowledgessupportfromtheSwissState SecretariatforEducation,ResearchandInnovation(SERI),GrantNo.C14.0036aswellasfromEUCOSTActionTD1210 KNOWeSCAPE.MSMacknowledgessupportfromtheSwissNationalScienceFoundationGrantNo.200020-156188.

AuthorcontributionsConceivedanddesignedtheanalysis:GiacomoVaccario,MatusMedo,NicolasWider,Manuel

Sebas-tianMariani.

Collectedthedata:GiacomoVaccario.

Contributeddataoranalysistools:GiacomoVaccario,ManuelSebastianMariani. Performedtheanalysis:GiacomoVaccario,ManuelSebastianMariani.

Wrotethepaper:GiacomoVaccario,MatusMedo,NicolasWider,ManuelSebastianMariani.

AppendixA. KDDCupdata

A.1Datasource

Inthiswork,weanalyzedthedumpoftheMicrosoftAcademicGraph(MAG)releasedfortheKDDCup2016(Sinhaetal., 2015),acompetitionlinkedtoaprestigiouscomputerscienceconferenceonknowledgediscoveryanddatamining(KDD). AmongtheprimaryinterestsofthecommunityorganizingtheKDDCup,therearethetechnicalchallengesrelatedto web-scaledatacollectionandaggregation.Forthisreason,thereleaseddatafortheKDDCup2016wentthroughonlybasic processing.6Eachpublicationinthedatasetisendowedwithitsuniqueidentifier,paperid,publicationdate,referencesto

otherpublications,anditsfieldofstudy. A.2Datapre-processing

Whenanalyzingthedata,wedonotdistinguishthepublicationsbytheirtype(paper,review,book,etc.).Further,we alsodonotdifferentiatebetweendifferenttypesofjournalsandtakeintoaccountallofthem:forexample,wedonot distinguishbetweenacitationcoming(orgoing)from(orto)aletterorabook.Wearguethatitisimportanttokeepvarious typesofjournalsandpublicationsbecausedifferentfieldsadoptnotonlydifferentcitationnorms,butalsodifferentwaysto communicatetheirresults.Forexample,computerscienceresearcherscommonlypublishresultsinconferenceproceedings, whilephysicsauthorstendtopreferarticlesorletters.Atthesametime,weareawarethatdifferenttypesofpublications mighthavedifferentcitationcharacteristics.However,goodindicatorsshouldideallybeabletoaccountforheterogeneities amongpublicationsandcitationnormsacrossdifferentcommunitiesandproduceunbiasedrankingswithouttheneedfor

6https://kddcup2016.azurewebsites.net/Data

(12)

TableA.2

Mainfields.The19parentmainfieldsidentifiedbyMicrosoftAcademicGraphwiththeirnumberofpublicationsandaveragecitations.Thesecondtolast rowreportsthetotalnumberofpublicationsconsideringmultipletimespublicationsthatbelongtomorethanonefields,whereasthelastrowreportsthe totalnumberofuniquepublicationsandtheaveragecitationcount.

Field Publicationcount Meancitationcount

Art 233251 3.90 Biology 5847554 9.67 Business 613827 4.81 Chemistry 6204531 7.28 ComputerScience 4080636 6.13 Economics 2252921 5.56 Engineering 3011763 5.10 EnvironmentalScience 315465 12.63 Geography 288338 6.92 Geology 1825707 7.88 History 390144 5.53 MaterialsScience 2063474 6.12 Mathematics 4551453 5.87 Medicine 5061990 7.90 Philosophy 787649 5.05 Physics 6976644 5.55 PoliticalScience 144473 2.51 Psychology 2861813 8.23 Sociology 1784695 5.39 Total 49296327 –

Total(nomultiple) 18193082 6.42

arbitrarychoicesaboutwhichtypesofarticlestoincludeintheanalysis.Inaddition,similarlyasWaltmanetal.(2012)and differentlyfromRadicchietal.(2008),wedonotexcludepublicationswhichdonotreceivecitations.

AsmentionedinSection2,theMAGhasafieldclassificationschemewith4hierarchicallevels.Thefieldassignmentis basedonaninternalalgorithmthatusesamachinelearningapproach(Sinhaetal.,2015).Inourwork,similarlytoRadicchi etal.(2008),weareonlyinterestedinimpactmetricnormalizationatthemostcoarse-grainedlevel.Tothisaim,inour analysis,wefocusonlyonthe19mainfieldsaslistedinTableA.2.Discussingthepossiblelimitationsoftheclassification approachbyMASandthedependenceofourresultsontheadoptedclassificationschemeisarelevantsubjectforfuture researchbutgoesbeyondthescopeofthismanuscript.Weonlyincludedintheanalysispapersforwhichthefollowing informationareavailable:(1)uniqueidentifier(ID);(2)completepublicationdate(yyyy/mm/dd)crucialforthetemporal rescalingprocedurethatisexplainedinthefollowing;(3)DOIorjournal-id,inordertobeabletoretrievethepublication; (4)assignmenttoatleastoneofthemain19fields.Wediscardfromouranalysispublicationsforwhichoneormoreof thesefourpropertiesaremissing.

Withthisfilteringprocedure,weobtainN=18193082uniquepublicationsandE=109719182citations. A.3Databasicstatistics

Wefirstobservethatthedistributionsofbothincomingandoutgoingedgesarebroad(seeFig.A.7).Boththesedistribution infacthavelongandheavytails.Inaddition,wealsoobservestrongvariationsofthemeancitationcountacrossfields(see TableA.2fordetails).Forexample,publicationsbelongingtothefieldofEnvironmentalScienceandofPoliticalSciencehave

Fig.A.7.In-andout-degreedistributionforthepublicationspresentinourdatasetafterpreprocessingthedata.

(13)

Fig.A.8.ScatterplotofthecitationcountsreportedinthedatareleasedfortheKDDCup2016andfromtheonlineversionoftheMAG(02/2017).

meancitationcounttwotimesbiggerandsmaller,respectively,comparedtotheaveragecitationcountacrossallfields.In agreementwiththefindingsbyRadicchietal.(2008),SchubertandBraun(1986),Vinkler(1986),thestrongvarietyinmean citationcountperpublicationforthevariousfieldsconfirmsthatthecorrespondingcommunitiesexhibitdifferentcitation behavior,whichcallsforfieldnormalizationprocedures.

A.4Dataquality

Here,weaddressthefollowingquestion:towhichextentistheKDDdumpoftheMAGinaccordancewiththemost updatedonlineversionoftheMAG?7Forthiscomparison,wedividedthe49296327analyzedpaper-fieldpairs(one

paper-fieldpairiscomposedofapaperandthefieldsthatpaperbelongsto)into760ageandfieldgroups,asdescribedinSection5. Fromeachgroup,werandomlychoose0.1%ofpapers.Followingthisprocedure,weobtainedarepresentativesamplewith respecttofieldandagecomposedofapproximately50000papers.

First,wehavematchedthepaperIDinhexadecimalformatpresentinthedatareleasedfortheKDDCuptothepaper IDinint64formatpresentintheon-lineversionoftheMAG.For50papers,wemanuallyverifiedthatthepaperIDswere exactlythesameinthetwodatasets,albeitrepresentedindifferentformats.Then,usingtheAcademicKnowledgeApi,8we

havedownloadedthenumberofcitationsforeachsampledpaper.

Forthe2.3%ofthesampledpapers,wewerenotabletofindtheircorrespondingpaperintheonlineMAG. For50 unmatchedpapers,wefoundoutthatthesewerepaperswithduplicatesintheKDDCupdata,i.e.thesepapersarepresent intheKDDdatawithtwodistinctIDs,andonlyoneofthetwoIDsispresentintheMAG.

Forthematchedpapers(97.7%ofthesample),wecomparedthenumberofcitationsreportedintheKDDdumpofthe MAGwiththenumberofcitationsreportedontheonlineversionoftheMAG.SincetheonlineMAGhasalongertimespan thantheKDDdata,intheabsenceofnoise,wewouldexpectthenumberofcitationsintheKDDdatatobesmallerthan orequaltothenumberofcitationsreportedintheonlineMAG.Wefindthatthetwocitationcountsarehighlycorrelated (Fig.A.8),andonlythe2.2%ofthesampledpapershavemorecitationsintheKDDdatacomparedtotheonlineversionof theMAG.Thissetsalowerboundaryfortheerrorinthepercentageofpaperswithwrongnumberofcitationstoabout2.2%. Tosummarize,afterourfilteringprocedure,wefindthatthedatareleasedforKDDCup2016hasabout2.3%ofpapers withduplicates.Inaddition,about2.2%ofthematchedpapershaveerrorsintheircitationcount.Thismeansthatwehave correctcitationinformationforabout95.6%oftheanalyzedpapers.

AppendixB. EvaluatingindividualcontributionstotheMahalanobisdistance

TheMahalanobisdistance(dM)isanestablishedmeasureinstatisticswhichgeneralizestheconceptofz-scoreto multi-variatedistributionsbytakingintoaccountalsopossiblecorrelationsbetweentherandomvariables(Mahalanobis,1936). Itsdefinitionreads

dM(x, y)=

(x − y)TS−1(x − y) (B.1)

7WehaveperformedthisanalysisduringFebruary2017.

8https://www.microsoft.com/cognitive-services/en-us/academic-knowledge-api

(14)

whereS−1 istheinverseofthecovariancematrix,x and y aretwovectorscontainingtherandomvariables.Whenthe

covariancematrixisdiagonal,i.e.therandomvariablesarenotcorrelated,thanthedMisequivalenttothesquarerootof thesumofthesquaresofthez-scores.

InSection5.2,wehaveusedEq.(7),anexpressionforthedMvalidwhenthecovariancematrixcomesfromaMultivariate HypergeometricDistribution(MHD),i.e.,whentheelementsofthematrixare

Sij=



ıij(Ki(N−Ki))−



1−ıij



KiKj





i,j=1,...,F−1 (B.2)

whereıijistheKroneckerdelta,Kiisthenumberofpapersofcategoryi,N=



F

iKiisthetotalnumberofpapers,Fisthe

numberofpapercategories,=n(N−n)/N2(N1)andnisthenumberofsampledpapers.Itisworthytorememberthat

eventhoughwehaveFdifferentcategories,weonlyhaveF−1degreesoffreedom.Here,wederiveEq.(7)forthecaseofa MHDinthreedimensions,i.e.,forF=3.Inthiscase,thecovariancematrixis2×2:

S=



K1(N−K1) −K1K2 −K1K2 K2(N−K2)



(B.3) andtheinverseofthecovariancematrixis

S−1= 1 det(S)



K2(N−K2) K1K2 K1K2 K1(N−K1)



(B.4)

wheredet(S)=K1(N−K1)K2(N−K2)−(K1K2)2denotesthedeterminantofthecovariancematrix,S.Then,letusconsidertwo

randomcolumnvectorsextractedfroma3-dimensionalMHD,x=(x1,x2,x3)Tandy=(y1,y2,y3)Tsuchthatn=



3i=1xi=



3

i=1yiwherenisthenumberofsampledpapers.SubstitutingEq.(B.4)inEq.(B.1),wewritethesquareofthedMbetween xandyas dM(x, y)2= 1  det(S)



x1−y1 x2−y2

 

K2(NK2) +K1K2 +K1K2 K1(N−K1)



x1−y1 x2−y2

= 1  det(S)



(x1−y1)2K2(N−K2)+(x2−y2)2K1(N−K1) +2(x1−y1)(x2−y2)(K1K2))



=  det(S)1



(x1−y1)2K2(K1+K3)+(x2−y2)2K1(K2+K3) +2(x1−y1)(x2−y2)(K1K2)



= 1  det(S)



(x1−y1)2K2K3+(x2−y2)2K1K3 + [(x1−y1)+(x2−y2)]2K1K2



wherewehaveusedN=



3i=1Ki.Recallingthatn=



3

i=1xi=



3

i=1yi,weknowthat(x1−y1)+(x2−y2)=(x3−y3),sowe

write

dM(x, y)2= det(S)1



(x1−y1)2K2K3+(x2−y2)2K1K3+(x3−y3)2K1K2



(B.5) Then,byusingtherelationdet(S)=N



3i=1Ki,wehave:

dM(x, y)2=1 3

i=1 (xi−yi)2 NKi ; (B.6)

noticingfromEq.(B.2)that=Si,i/(Ki(N−Ki)),weobtain

dM(x, y)2= 3

i=1 (xi−yi)2 Sii Ki(N−Ki) NKi = 3

i=1 (xi−yi)2 Sii

1−Ki N

(B.7)

Finally,ifwechooseoneofthetwovectorstocontaintheexpectedvalues,i,were-obtainEq.(7)since(xi−i)2/Sii=zi2.

Tobeprecise,thecovariancematrixisnotdefinedfori=3,howevertherelation=2

3/(K3(N−K3))holdsandtherefore

alsothefinalresult.

UsingMathematicaorsimilarsoftwares,itiseasytoproveanalyticallythateq.(7)holdsforsmalldimensions.Wehave verifiedituntil6dimensions.Moreover,wehavenumericallytestedthisformulabycalculatingthedM’sbetweentheranking vectorsoftheindicatorsandthevectorofexpectedvalues, ,withtwodifferentalternativemethods:(1)byusingEq.(B.1),

(15)

Fig.C.9.Distributionof2obtainedbycalculatingtheempiricalratio,r=(e2

−1),betweenthevarianceandthesquareofthemeancitationcountof eachfieldandyear.

i.e.,byinvertingthecovariancematrix,and(2)byusingtheeigenvaluedecompositionofthecovariancematrix.9Theresults

ofthethreemethodswereallcompatiblewitheachotherupto10decimaldigits.TheadvantageofusingEq.(7)isthatwe cancalculatethedMbetweentwoarbitraryvectorswithoutdealingwithany(computationallyslow)matrixinversionor diagonalization,andthenumberofneededcalculationsscaleslinearlywiththenumberofdimensions.Importantly,Eq.(7) allowsalsotoassesstheindividualcontributionofeachdimension(i.e.ofeachcategory)tothed2

M.Toourbestknowledge, wearethefirstonestohavederivedsuchexplicitformulafordMwhenthecovariancematrixandtherandomvectorscome fromaMHD.

AppendixC. Firstmomentrescaling

AccordingtoRadicchietal.(2008),thedistributionofthecfindicatorislog-normal:

F(cf)dcf = 1

cf√2e

−[log(cf)−]2/22

dcf (C.1)

where=−2/2andisfittedfromthedata.WhenEq.(C.1)isverified,thenalsothedistributionsofcitationcount,c i,for

alltheindividualfields,i,arelognormal: F(ci)dci=

1 ci√2e

−[log(ci)−log(c0)−]2/22dc

i (C.2)

wherec0isthemeanofci.Forlognormaldistributionsthevarianceisproportionaltothesquareofthemeanandthe

constantofproportionalityis(e2

−1).FromEq.(C.2),weseethatthecitationcountsciaredistributedlognormallywith

meane+log(c0)+2/2 andvariance(e2−1)e2+2log(c0)+2.Recallingthat=−2/2,wehavethatthemeanisc0,asitis expected,whilethevariancebecomes(e2

−1)c2

0.Thus,wheneq.(C.1)isverified,thevarianceoftheempiricaldistribution

ofthecitationsforeachfieldhastobeproportionaltothesquareofthemeancitationcount.Moreover,theconstantof proportionalityhastobe(e2

−1)foreveryfieldandyear.

TheanalyticresultjustpresentedisinlinewithEq.(C.1)giveninAppendixCofMarianietal.(2016).Thereitisshown thatarescalingprocedurebasedondivingtheoriginalscorebytheirfirstmomentworksiftheratiobetweenstandard deviationandmeanisconstant.Inthecaseoftherelativecitationratio,wecancalculateanalyticallysuchconstantusing thelognormaldistributionandobtainthefittingparameter2.

InFig.C.9,wereportthedistributionof2obtainedbycalculatingtheempiricalratiobetweenthevarianceandthe

squareofthemean,r,andbyinvertingtherelationr=(e2

−1)foreveryfieldandyear.Iftheuniversalityclaimwascorrect, wewouldexpectanarrowdistributionof2.Bycontrast,wefindthat2rangesbetween0and8acrossdifferentfieldsand

years.Wearguethatthebroadrangeof2isthereasonwhythefirstmomentrescalingintroducedin(Radicchietal.,2008)

doesnotworkintheanalyzeddataset.

9ThematrixSissymmetricandithasmaximalrankbecauseitisthecovariancematrixofamultivariatedistribution.Therefore,wecandiagonalizeit, S=B−1DBwherethecolumnsofBformanorthonormalbasis;wecanalsowriteS−1=B−1D−1B.Withthis,wehaved2

M(x, y)=



F−1

i ci/i,where{i}are theeigenvaluesofSand{ci}arethecoordinatesofx − y inthebasiswhichdiagonalizesS,i.e.ci=



F−1 k (xk−yk)B

−1 ki =



F−1

k (xk−yk)Bikwherethelast equalitycomesfromtheorthonormalityofBwhichimpliesB−1=BT.

(16)

TableD.3

Correlationsbetweenthemetrics.Thefourcolumnsrepresent(fromlefttoright):Pearson’scorrelationcoefficientr,rrestrictedtopapersthatreceivedat leasttencitations,Spearman’srankcorrelationcoefficient ,and restrictedtopapersthatreceivedatleasttencitations.

Metrics r r(onlyc>10) (onlyc>10)

c,p 0.82 0.82 0.79 0.59

RAF(c),RAF(p) 0.80 0.81 0.82 0.74

AppendixD. Comparingtherankingsbythemetrics

InSection5,wehaveshownthattherankingsbycitationcountandPageRankcanbesubstantiallyleveledoffacross differentfieldsandagegroupsthrougharescalingprocedurebasedonthez-score.Thetworesultingindicators,RAF(p)

andRAF(c),aretheleastbiasedamongtheindicatorsconsideredinthispaper.Itisimportanttonoticethatwhilecitation

counthasadirectinterpretationanditiswidelyusedinresearchevaluation(Waltman,2016),PageRankscoreisamore sophisticatedquantitywhichhasnotyetbeturnedintoastandardtoolforresearchassessment.Iftherankingsbyrescaled PageRankandrescaledcitationcountbroughtsimilarinformation,rescaledcitationcountmightbepreferredduetoits simplerinterpretationandeasiercomputation.

Differentlyfromthecitationcount,PageRankscoreusesinformationonthewholenetworktopologytocomputeeach paper’sscore.WhilethereexistsnouniversalcriteriontodecidewhetherPageRankscoreleadstoabetterrankingthanthe citationcount,theresultsbyChenetal.(2007)andMarianietal.(2016)suggestthatincitationnetworks,PageRankscore improvesourabilitytofindgroundbreakingpublicationsinthedata.Ontheotherhand,anodethatreceivedmanycitations ismorelikelytoachievelargerPageRankscore–Fortunato,Boguná,Flammini,andMenczer(2006)showedthatPageRank scoreisonaverageproportionaltocitationcountforuncorrelatednetworks.

Weaddressnowthequestion:Towhatextenttherankingsby(rescaled)PageRankand(rescaled)citationcountdiffer?We focusontwocorrelations:(1)thecorrelationbetweencitationcountandPageRank,whichhasbeenofinterestforprevious studies(Chen,Gan,andSuel(2004),Fortunatoetal.(2006),Pandurangan,Raghavan,andUpfal(2002))duetotheessential roleplayedbyPageRankalgorithmindeterminingthesuccessofGoogle’sWebsearchengine;(2)thecorrelationbetween thetworescaledindicatorsRAF(c)andRAF(p).Themeasuredcorrelationsareallpositive,significantlylargerthanzero,yet

significantlysmallerthanone(seeTableD.3).Thisisinterestingasitmaypointoutthat,inanalogywiththefindingsby Chenetal.(2007),Marianietal.(2016),Ren,Mariani,Zhang,andMedo(2017),networktopologybringsusefulinformation thatisneglectedbycitationcount.WhethertheadditionalinformationusedbyPageRankmetriccanbeusedtoidentify groupsofsignificantpaperswillbethesubjectoffutureresearch.

DifferentlythantherankingsbycitationcountandPageRankscore(notshownhere),thetoppapersidentifiedbyRAF(c)

andRAF(p)comefromdiversehistoricalperiodanddiversefields.Duetothelackoftimebias,alsoveryrecentpaperscan

reachthetopoftherankingsbyRAF(c)andRAF(p).Itwouldbeinstructivetolookatthetoppapersasrankedbyrescaled

citationcountandrescaledPageRank.However,theoriginalMAGdatasetspresentsnoisyentries,asreportedbytheKDD cup2016(seeAppendixAformoredetails),anditcausesthescoresofsomerecentpaperstobeover-estimated,which makessomeoftheentriesinthetop-20oftherankingsbytherescaledscoresunreliable.Forthisreason,wedonotshow therankingshere.Atthesame,thisproblemdoesnotaffectthestatisticalresultspresentedinthepreviousSections.

References

Adams,J.,Gurney,K.,&Jackson,L.(2008).Calibratingthezoomatestofzittshypothesis.Scientometrics,75(1),81–95.

Albarrán,P.,Crespo,J.A.,Ortuno,I.,&Ruiz-Castillo,J.(2011).Theskewnessofsciencein219sub-fieldsandanumberofaggregates.Scientometrics,88(2), 385–397.

Bergstrom,C.T.,West,J.D.,&Wiseman,M.A.(2008).Theeigenfactormetrics.JournalofNeuroscience,28(45),11433–11434. Bonacich,P.(1987).Powerandcentrality:Afamilyofmeasures.AmericanJournalofSociology,92(5),1170–1182.

Bornmann,L.,&Daniel,H.-D.(2008).Whatdocitationcountsmeasure?Areviewofstudiesoncitingbehavior.JournalofDocumentation,64(1),45–80. Bornmann,L.,&Daniel,H.-D.(2009).Universalityofcitationdistributions–Avalidationofradicchietal.’srelativeindicatorcf=c/c0atthemicrolevel

usingdatafromchemistry.JournaloftheAmericanSocietyforInformationScienceandTechnology,60(8),1664–1670.

Brin,S.,&Page,L.(1998).Theanatomyofalarge-scalehypertextualwebsearchengine.ComputerNetworksandISDNSystems,30(1),107–117. Chen,Y.-Y.,Gan,Q.,&Suel,T.(2004).Localmethodsforestimatingpagerankvalues.ProceedingsofthethirteenthACMinternationalconferenceon

informationandknowledgemanagement,ACM,381–389.

Chen,P.,Xie,H.,Maslov,S.,&Redner,S.(2007).FindingscientificgemswithGoogle’sPageRankalgorithm.JournalofInformetrics,1(1),8–15.

Colliander,C.,&Ahlgren,P.(2011).Theeffectsandtheirstabilityoffieldnormalizationbaselineonrelativeperformancewithrespecttocitationimpact: Acasestudyof20naturalsciencedepartments.JournalofInformetrics,5(1),101–113.

deSollaPrice,D.(1976).Ageneraltheoryofbibliometricandothercumulativeadvantageprocesses.JournaloftheAmericanSocietyforInformationScience, 27(5),292–306.

Dunaiski,M.,Visser,W.,&Geldenhuys,J.(2016).Evaluatingpaperandauthorrankingalgorithmsusingimpactandcontributionawards.Journalof Informetrics,10(2),392–407.

Ermann,L.,Frahm,K.M.,&Shepelyansky,D.L.(2015).Googlematrixanalysisofdirectednetworks.ReviewsofModernPhysics,87(4),1261. Fortunato,S.,Boguná,M.,Flammini,A.,&Menczer,F.(2006).ApproximatingPageRankfromin-degree.InInternationalworkshoponalgorithmsand

modelsfortheweb-graph.pp.59–71.Springer.

Franceschet,M.(2011).Pagerank:Standingontheshouldersofgiants.CommunicationsoftheACM,54(6),92–101. Garfield,E.(2006).Thehistoryandmeaningofthejournalimpactfactor.JAMA,295(1),90–93.

Gleich,D.F.(2015).Pagerankbeyondtheweb.SIAMReview,57(3),321–363.

Harzing,A.-W.,&Alakangas,S.(2013).Microsoftacademic:Isthephoenixgettingwings?Scientometrics,1–13.

(17)

Hirsch,J.E.(2005).Anindextoquantifyanindividual’sscientificresearchoutput.ProceedingsoftheNationalacademyofSciences,1656,9–16572. Hug,S.E.,&Braendle,M.P.(2017).ThecoverageofMicrosoftacademic:Analyzingthepublicationoutputofauniversity.,arXivpreprintarXiv:1703.05539 Hug,S.,Ochsner,M.,&Brandle,M.P.(2017).CitationanalysiswithMicrosoftacademic.Scientometrics,111(1),371–378.

Katz,L.(1953).Anewstatusindexderivedfromsociometricanalysis.Psychometrika,18(1),39–43.

Kleinberg,J.M.(1999).Authoritativesourcesinahyperlinkedenvironment.JournaloftheACM(JACM),46(5),604–632. Lundberg,J.(2007).Liftingthecrowncitationz-score.JournalofInformetrics,1(2),145–154.

Mahalanobis,P.C.(1936).Onthegeneraliseddistanceinstatistics.ProceedingsoftheNationalInstituteofScienceofIndia,4,9–55. Mariani,M.S.,Medo,M.,&Zhang,Y.-C.(2015).Rankingnodesingrowingnetworks:WhenPageRankfails.ScientificReports,5.

Mariani,M.S.,Medo,M.,&Zhang,Y.-C.(2016).Identificationofmilestonepapersthroughtime-balancednetworkcentrality.JournalofInformetrics,10(4), 1207–1223.

Maslov,S.,&Redner,S.(2008).PromiseandpitfallsofextendingGoogle’sPageRankalgorithmtocitationnetworks.JournalofNeuroscience,28(44), 11103–11105.

McAllister,P.R.,Narin,F.,&Corrigan,J.G.(1983).Programmaticevaluationandcomparisonbasedonstandardizedcitationscores.IEEETransactionson EngineeringManagement,4,205–211.

Medo,M.,&Cimini,G.(2016).Model-basedevaluationofscientificimpactindicators.PhysicalReviewE,94(3),032312. Medo,M.,Cimini,G.,&Gualdi,S.(2011).Temporaleffectsinthegrowthofnetworks.PhysicalReviewLetters,107,238701. Newman,M.E.J.(2009).Thefirst-moveradvantageinscientificpublication.EPL(EurophysicsLetters),86(6),68001.

Pandurangan,G.,Raghavan,P.,&Upfal,E.(2002).UsingPageRanktocharacterizewebstructure.InInternationalcomputingandcombinatoricsconference. pp.330–339.Springer.

Parolo,P.D.B.,Pan,R.K.,Ghosh,R.,Huberman,B.A.,Kaski,K.,&Fortunato,S.(2015).Attentiondecayinscience.JournalofInformetrics,9(4),734–745. Pinski,G.,&Narin,F.(1976).Citationinfluenceforjournalaggregatesofscientificpublications:Theory,withapplicationtotheliteratureofphysics.

InformationProcessing&Management,12(5),297–312.

Radicchi,F.,&Castellano,C.(2011).Rescalingcitationsofpublicationsinphysics.PhysicalReviewE,83(4),046116.

Radicchi,F.,&Castellano,C.(2012a).WhySirtes’sclaims(Sirtes,2012)donotsquarewithreality.JournalofInformetrics,6(4),615–618.

Radicchi,F.,&Castellano,C.(2012b).Testingthefairnessofcitationindicatorsforcomparisonacrossscientificdomains:Thecaseoffractionalcitation counts.JournalofInformetrics,6(1),121–130.

Radicchi,F.,Fortunato,S.,&Castellano,C.(2008).Universalityofcitationdistributions:Towardanobjectivemeasureofscientificimpact.Proceedingsof theNationalAcademyofSciences,105(45),17268–17272.

Ren,Z.-M.,Mariani,M.S.,Zhang,Y.-C.,&Medo,M.(2017).Atime-respectingnullmodeltoexplorethestructureofgrowingnetworks.,arXivpreprint arXiv:1703.07656.

Sarigöl,E.,Pfitzner,R.,Scholtes,I.,Garas,A.,&Schweitzer,F.(2014).Predictingscientificsuccessbasedoncoauthorshipnetworks.EPJDataScience,3(1),1. Sarigol,E.,Garcia,D.,Scholtes,I.,&Schweitzer,F.(2017).Quantifyingtheeffectofeditor-authorrelationsonmanuscripthandlingtimes.Scientometrics,

1–25(inpress).

Scholtes,I.,Pfitzner,R.,&Schweitzer,F.(2014).Thesocialdimensionofinformationranking:Adiscussionofresearchchallengesandapproaches.In Socioinformatics–ThesocialimpactofinteractionsbetweenhumansandIT.pp.45–61.Springer.

Scholtes,I.,Wider,N.,Pfitzner,R.,Garas,A.,Tessone,C.J.,&Schweitzer,F.(2014).Causality-drivenslow-downandspeed-upofdiffusionin non-Markoviantemporalnetworks.NatureCommunications,5.

Schubert,A.,&Braun,T.(1986).Relativeindicatorsandrelationalchartsforcomparativeassessmentofpublicationoutputandcitationimpact. Scientometrics,9(5-6),281–291.

Sinha,A.,Shen,Z.,Song,Y.,Ma,H.,Eide,D.,Hsu,B.-J.P.,etal.(2015).AnoverviewofMicrosoftacademicservice(MAS)andapplications.Proceedingsofthe 24thinternationalconferenceonworldwideweb,ACM,243–246.

Sirtes,D.(2012).FindingtheEastereggshiddenbyoneself:WhyRadicchiandCastellano’s(2012)fairnesstestforcitationindicatorsisnotfair.Journalof Informetrics,6(3),448–450.

vanLeeuwen,T.N.,&Medina,C.C.(2012).Redefiningthefieldofeconomics:Improvingfieldnormalizationfortheapplicationofbibliometrictechniques inthefieldofeconomics.ResearchEvaluation,21(1),61–70.

Vinkler,P.(1986).Evaluationofsomemethodsfortherelativeassessmentofscientificpublications.Scientometrics,10(3-4),157–177.

Walker,D.,Xie,H.,Yan,K.-K.,&Maslov,S.(2007).Rankingscientificpublicationsusingamodelofnetworktraffic.JournalofStatisticalMechanics:Theory andExperiment,2007(06),P06010.

Waltman,L.,&vanEck,N.J.(2010).Therelationbetweeneigenfactor,audiencefactor,andinfluenceweight.JournaloftheAmericanSocietyforInformation ScienceandTechnology,61(7),1476–1486.

Waltman,L.,Yan,E.,&vanEck,N.J.(2011).Arecursivefield-normalizedbibliometricperformanceindicator:Anapplicationtothefieldoflibraryand informationscience.Scientometrics,89(1),301–314.

Waltman,L.,vanEck,N.J.,&vanRaan,A.F.J.(2012).Universalityofcitationdistributionsrevisited.JournaloftheAmericanSocietyforInformationScience andTechnology,63(1),72–77.

Waltman,L.(2016).Areviewoftheliteratureoncitationimpactindicators.JournalofInformetrics,10(2),365–391.

Yao,L.,Wei,T.,Zeng,A.,Fan,Y.,&Di,Z.(2014).Rankingscientificpublications:Theeffectofnonlinearity.ScientificReports,4,6663.

Zhang,Z.,Cheng,Y.,&Liu,N.C.(2014).Comparisonoftheeffectofmean-basedmethodandz-scoreforfieldnormalizationofcitationsatthelevelofweb ofsciencesubjectcategories.Scientometrics,101(3),1679–1693.

Zhou,J.,Zeng,A.,Fan,Y.,&Di,Z.(2016).Rankingscientificpublicationswithsimilarity-preferentialmechanism.Scientometrics,106(2),805–816. Zitt,M.,Ramanana-Rahary,S.,&Bassecoulard,E.(2005).Relativityofcitationperformanceandexcellencemeasures:Fromcross-fieldtocross-scale

effectsoffield-normalisation.Scientometrics,63(2),373–401.

Figure

Fig. 1. Field bias of the analyzed citation-based metrics. Top panels show histograms of the fraction of top-1% publications for each field in the ranking by (left to right) citation count and relative citation count
Fig. 2. Field bias of the analyzed measures based on PageRank. Top panels show histograms of the fraction of top-1% publications for each field in the ranking by (left to right): PageRank and age-rescaled PageRank
Fig. 3. Field balance of the analyzed citation-count and PageRank-based metrics. Top panels show histograms of the number of top-1% publications for each field in the ranking by (left to right): age- and field-rescaled citation count, and age- and field-resca
Fig. 4. Mahalanobis distances, d M , for the analyzed indicators when considering the 19 main fields
+5

Références

Documents relatifs

This paper aims to remember some definitions and fonctions of the citations taking into account the specificities of ancient greek and latin literature (methods of transmission

We use WebIsAGraph to study the problem of de- tecting polysemous terms in a noisy termi- nological knowledge graph, thus quantify- ing the degree of polysemy of terms found in

In particular we note the following journals: (i) Journal of the Associa- tion for Information Science and Technology by Wiley, (ii) Scientometrics by Springer, (iii)

The problem of deciding the existence of a SEPI from G to G’ is NP-complete, but show that when G is fixed, this problem can be decided in constant-time (hint: this

Le déplacement de cette question au quatrième livre, voulu par le copiste de Münich, détermine, entre les deux manuscrits, un décalage dans la numérotation des

This new dataset outperforms other previously published metazoan phylogenomic supermatrices both in terms of size (total number of amino acid residues) and quality (internal

(See Section 3.2 for details) We used three kinds of data to estimate document priors: (1) Paper’s citation count, (2) Paper’s PageRank induced from citation relationships, and

To give an example of result of lexical summary, the algorithm applied to this paper provides in the 20 best words the terms : lexicon, dictionary, semantic network,