• Aucun résultat trouvé

Mass Transfer in VOC Adsorption on Zeolite : Experimental and Theoretical Breakthrough Curves

N/A
N/A
Protected

Academic year: 2021

Partager "Mass Transfer in VOC Adsorption on Zeolite : Experimental and Theoretical Breakthrough Curves"

Copied!
6
0
0

Texte intégral

(1)

OATAO is an open access repository that collects the work of Toulouse

researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator:

tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: http://oatao.univ-toulouse.fr/23281

To cite this version:

Brosillon, Stephan and Manero, Marie-Hélène

and Foussard, Jean-Noel Mass Transfer in

VOC Adsorption on Zeolite : Experimental and Theoretical Breakthrough Curves. (2001)

Environmental Science & Technology, 35 (17). 3571-3575. ISSN 0013-936X

Official URL :

https://doi.org/10.1021/es010017x

(2)
(3)
(4)
(5)
(6)

Surface Diffusivity. The calculation of the ratio Dk/De

using the experimental values allows an estimation of the contribution of Knudsen diffusivity in the internal transport. These values are included in Table 4 and show that the Knudsen diffusivity has only a slight importance and that intraparticle transport is mainly concerned by surface diffusion. Indeed the mean pore radius of zeolite is very small, close to the molecule size, and involves transport of compounds in the adsorbate state. Surface diffusivity (Ds)

was calculated by means of eq 9 with the assumption that surface tortuosity and pore tortuosity were the same and equal to 4 (26). The values are of the same order as the surface diffusivity obtained for linear hydrocarbon on activated carbon (9) and NaX zeolite (27).

Nomenclature

b

Langmuir constant

C

gas concentration (mol m

-3

)

C

s

gas concentration at the surface of the pellet (mol

m

-3

)

C

e

gas concentration at equilibrium (mol m

-3

)

C

0

initial concentration (mol m

-3

)

D

fluid flow (m

3

h

-1

)

D

c

micropore diffusivity (m

2

s

-1

)

D

col

column diameter (m)

D

e

effective diffusivity (m

2

s

-1

)

D

e,av

average effective diffusivity (m

2

s

-1

)

D

k

Knudsen diffusivity (m

2

s

-1

)

D

m

molecular diffusivity (m

2

s

-1

)

D

p

porous diffusivity (m

2

s

-1

)

D

s

surface diffusivity (m

2

s

-1

)

H

height of bed (m)

K

equilibrium constant

k

f

interphase mass-transfer coefficient (m s

-1

)

k

p

intrapellet mass-transfer coefficient (s

-1

)

L

characteristic length (m)

M

molecular weight (g mol

-1

)

N

number of increments

q

moles of adsorbate adsorbed per unit mass of

adsorbent (mol kg

-1

)

q

max

maximum adsorbed phase concentration (mol

kg

-1

)

q

s

concentration adsorbed on the surface of adsorbent

(mol kg

-1

)

r

o

mean pore radius (m)

R

ideal gas constant (8.3145 J mol

-1

K

-1

)

R

c

radius of microparticle (m)

R

p

equivalent radius of pellet (m)

S

p

external area (m

2

m

-3

)

S

p

external area of one pellet (m

2

)

t

time (s)

T

temperature (K)

u

superficial velocity (m s

-1

)

V

p

volume of a pellet (m

3

)

z

axial coordinate in the column (m)



porosity of bed



p

porosity of particle

F

p

density of adsorbent (kg m

-3

)

F

l

bed density (kg/m

-3

)

τ

p,s

tortuosity, pore, surface

Dimensionless Numbers

Re

Reynolds number

Sc

Schmidt number

Pe

Peclet number

Literature Cited

(1) Manero, M. H.; Jain, R. K.; Aurelle, Y.; Cabassud, C.; Roustan, M. Environmental Technologies and Trends; Shelton, S. P., Ed.; Springer: New York, 1996; pp 83-97.

(2) Fajula, F.; Plee, D.; Jansen, J. C.; Sto¨cker, M.; Karge, H. G.; Weitkamp, J. Gas and Liquid Separations, Studies in Surface

Science and Catalogs; Elsevier: Amsterdam, 1994; p 633.

(3) Le Cloirec, P.; Dagois, G.; Martin, G. Traitements avec Transfer

Gaz-Solide: l’Adsorption, Odeurs et De´sodorisation dans l’Environnement; Lavoisier Tec & Doc: Paris, 1991.

(4) Cal, M. P.; Larson, S. M.; Rood, M. J. Environ. Prog. 1994, 13, 26-30.

(5) Tien, C. Adsorption Calculations and Modelling; Butterworth-Heinemann: Washington, 1994.

(6) Suzuki, M. Adsorption Engineering; Kodansha, Ed.; Elsevier: Amsterdam, 1990.

(7) Ruthven; D. Principles of Adsorption and Adsorption Processes; John Wiley and Sons: New York, 1984.

(8) Costa, E.; Callega, G.; Domingo, F. AIChE J. 1985, 31 (6), 982. (9) Huang, C. C.; Fair, J. R AIChE J. 1988, 34 (11), 1861-1877. (10) Delage, F.; Pre´, P.; Le Cloirec, P. Environ. Sci. Technol. 2000, 34

(22), 4816-4821.

(11) Chenu, M.; Bouzaza, A.; Wolbert, D.; Laplanche, A. Environ.

Technol. 1998, 19, 1029-1038.

(12) Malek, A.; Farooq, S. AIChE J. 1997, 43, 761-776.

(13) Chandak, M. V.; Lin, Y. S. Environ. Technol. 1998, 19, 941-948. (14) Moon, H.; Lee, W. K. Chem. Eng. Sci. 1986, 41 (8), 1995-2004. (15) Langmuir, I. J. Am. Chem. Soc. 1918, 40, 1361.

(16) Glueckauf, E. Trans. Faraday Soc. 1955, 51, 1540.

(17) Karger, J.; Ruthven, D. M. Diffusion in Zeolites and Other

Microporous Solids; Wiley: New York, 1992.

(18) Meier, W. M.; Olson, D. H. Atlas of Zeolite Structure Types; Butterworth-Heinmann: Boston, 1992.

(19) Brosillon, S.; Manero, M. H.; Foussard, J. N. Environ. Technol. 2000, 21, 457-465.

(20) Petrovic, L. J.; Thodos, G. Ind. Eng. Chem. Fundam. 1968, 7, 274.

(21) Wen, C. Y.; Fan, L. T. Models for Flows Systems and Chemical

Reactors; Marcel Dekker: New York, 1975.

(22) Raghavan, N. S.; Ruthven, D. M. AIChE J. 1983, 29, 922. (23) Villermaux, J. Ge´nie de la Re´action Chimique; Lavoisier Tec &

Doc: Paris, 1993; Chapter 8, pp 297-346.

(24) Bird, R. B.; Stewart, W. E.; Lightfoot, E. N. Transport Phenomena; Wiley: New York, 1960.

(25) Haag, W. O.; Lago, R. M.; Weisz, P. B. Discuss. Faraday Soc. 1982, 72, 317.

(26) Post, M. F. M.; Van Amstel, J.; Kouwenhoven, H. W. Proceedings

of the 6th International Zeolite Conference; Butterworth:

Guild-ford, 1984; p 517.

(27) Satterfield, C. N. Heterogeneous Catalysis in Practice; McGraw-Hill: NewYork, 1980.

(28) Ka¨rger, J.; Ruthven, D. M. J. Chem. Soc. Faraday Trans. 1981,

Références

Documents relatifs

Also use the formulas for det and Trace from the

[r]

.} be the set of positive integers which have the last digit 1 when written in base 10.. Determine all Dirichlet characters modulo 8 and

Is product of two smooth manifolds with boundary a smooth manifold with

Show that a (connected) topological group is generated (as a group) by any neighborhood of its

[r]

.} be the set of positive integers which have the last digit 1 when written in

Combien de points devrait enlever une mauvaise réponse pour qu’une personne répondant au hasard ait un total de point