• Aucun résultat trouvé

Analytical modeling of steady-state filtration process in an automatic self-cleaning filter

N/A
N/A
Protected

Academic year: 2021

Partager "Analytical modeling of steady-state filtration process in an automatic self-cleaning filter"

Copied!
13
0
0

Texte intégral

(1)

Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 17321

To link to this article : DOI:10.1016/j.cherd.2015.04.030

URL :

http://dx.doi.org/10.1016/j.cherd.2015.04.030

To cite this version : Meireles, Martine and Prat, Marc and Estachy,

Guillaume Analytical modeling of steady-state filtration process in an

automatic self-cleaning filter. (2015) Chemical Engineering Research

and Design, vol. 100. pp. 15-26. ISSN 0263-8762

Any correspondence concerning this service should be sent to the repository

(2)

Analytical

modeling

of

steady-state

filtration

process

in

an

automatic

self-cleaning

filter

M.

Meireles

a,b,∗

,

M.

Prat

c,d

,

G.

Estachy

e

aUniversitédeToulouse,INPT,UPS,LaboratoiredeGénieChimique,118RoutedeNarbonne,F-31062Toulouse,

France

bCNRS,UMR5503,F-31062Toulouse,France

cUniversitédeToulouse,INPT,UPS,InstitutdeMécaniquedesFluidesdeToulouse,AvenueCamilleSoula,

F-31400Toulouse,France

dCNRS,UMR5502,F-31400Toulouse,France

eAlfaLavalMoattiSAS,10RueduMaréchaldeLattredeTassigny,78997ElancourtCedex,France

Keywords: Filtration Hydrodynamic Self-cleaning Multiscalemodeling

a

b

s

t

r

a

c

t

Anautomaticself-cleaningfilterisasemicontinuousmachineoperatedfortheremoval ofparticlesfromafluid.Technically,adistributordrivenbyahydraulicmotorrotatesat regularintervalstofeedtheslurrytotheinletchambersofNsegmentedelements hor-izontallystackedoverthedistributorandback-flushesthelastchamber.Inthisworka practicalcomputationally-affordablemodelhasbeendevelopedtodescribethedistribution offlowrateinthedifferentsectorsofadisc-typeelementandtodemonstratetheeffectof parameters,suchasbackflushingtimeorpollutionconcentration,accountingforparticle cloggingandperiodicoperationconditionsforperfectandimperfectefficiencyofthe clean-ingbyback-flushing.Thekeyresultsarethepredictionofthetimeofclogging,aswellasa numericaltooltooptimizecriticalback-flushingtimeandpollutionconcentration. ©2015TheInstitutionofChemicalEngineers.PublishedbyElsevierB.V.Allrightsreserved.

1.

Introduction

Fully automatic self-cleaning filters have been used for decades in applications wherever suspended solids need tobe removed from a pressurized water stream. They are mainlyusedinclosedloop industrialsystems,ondeep-sea oilplatformsandonlargeshipsforhydraulicsystems.Marine enginesoperateinmostsevereenvironments,runningnearly 24h a day and under extreme loads. It is very important that the engines and hydraulic systems operate efficiently andrequire littleto nodowntime.For automotiveengines, oilchangeisaroutinelytask,butformarineengines, oper-atorshavetofacethepotentialforanoilspill,thedifficulty todisposeoftheusedmotoroilandthecostassociatedwith

Correspondingauthorat:UniversitédeToulouse,INPT,UPS,LaboratoiredeGénieChimique,118,routedeNarbonne,31062Toulouse, France.Tel.:+33561558162.

E-mailaddress:meireles@chimie.ups-tlse.fr(M.Meireles).

thesetypesofchanges.Forthispurpose,compactautomatic self-cleaning filtershave been developedby several world-wide companiestobeoperatedonlargemarineenginesto removeparticlesfromlubeoilindieselengineofships.An interestinganddistinguishingfeatureofanautomaticfilter isthat the backflushingoccurs withoutinterruption ofthe flowdownstreamofthefilter.For thisendaspecificdesign is neededwhich allowsthe periodical rotation offiltration chambersinsidethe filterhousing. Suchadesignallowsto simultaneously feedsomechamberswhileothersare back-flushedtoremovetheaccumulatedparticlesfromthefilter. Thetechnicalschemeofacompactautomaticself-cleaning fil-terispresentedinFig.1.Itiscomposedofhorizontallystacked disc-typeelementsmountedoveradistributor.Eachdisc-type

(3)

Listofsymbols:

As screenareaAs

C concentrationofsolidparticles(gm−3)

dh screenholesize(m)

dp particleequivalentdiameter(m)

dmoy averageparticlesizecalculatedfromthe num-berniofparticlesofsizedipermloffluid(m) e(t) cakeheightattimet(m)

h sectorheight(m)

L sectorlength(m)

M+1 numberofsectionalchambersbydisc-type ele-ments

np total number ofparticles per unit volumeof apparentdiameterlargerthanthescreenhole sizedh

N numberofdisc-typeelements

no initialnumberofmeshholes n(t) numberofholesattimet

Qs volumetricliquidflowratethroughthesector (m3s−1)

Qt volumetricflowrateenteringthefilter(m3s−1) Ri internalradiiofthefiltercolumn(m)

Re externalradiiofthefiltercolumn(m) R filterspecificresistancetoviscousflow(m−1)

Rca cakeresistance(m−1)

S0 averagecross-sectionareaintheinletchamber

(m2)

tb backflushingtime(s) tc cleaningtime(s) u axialvelocity(ms−1)

v transversevelocity(ms−1)

u* adimensionalaxialvelocity

v* adimensionaltransversevelocity

Vw filtrationvelocityinthesector(ms−1) U0 averagevelocityintheinletchannel(ms−1)

x horizontalcoordinateofthesector(m)

y verticalcoordinateofthesector(m)

x* adimensionalhorizontalcoordinateofthe

sec-tor

y* adimensionalverticalcoordinateofthesector

˛b freeopeningfractionrightafterbackflushing  dynamicviscosity(Pas)

 density(kgm−3)

elementismadefromtheassemblyoftwoframes(Fig.2a).A disc-typeelementisdividedinto(M+1)sectionalsectorsby ribs(Fig.2b).ThenumberofsectorsM+1isalwaysevenandof theorderof8to12.AsoutlinedinFig.3,inasectormadefrom theassemblyoftwoframes,thereareaninletchamberand twooutletchambersthatwedenoteanupperchamberanda lowerchamber.Theinletandthetwooutletchambersare sep-aratedbythefiltermedia.Thischamberdesignthusprovides adouble-sidedfiltrationarea.Thefiltrationmediaisusuallya weave-wirescreen:asimpletwo-dimensionalsquare-weave withrectangularopenings.Byconventionreferringtothe tex-tileindustryporesoropeningsofscreenmediaaredescribed bythetermmesh.Thesizeofthe“mesh”alsocalledthe nom-inalfiltrationdegreeisanactualdimensionoftheshortest distanceacrosstheopening.Itmoreorless correspondsto thesmallestparticlesizewhichcanberemovedfromthefluid stream.

The detailed operating principle of an automatic self-cleaning filter is described below. The system is fed with the slurry from the filterhousing tothe inletchambersof

N segmented disc-type elements horizontally stacked over thedistributor.Foreachelement,theMsectorsarefedfrom thegapbetweenthedistributorandtheinternalsideofthe disc-typeelement(seeFig.2a).Theslurryentersthesector through the inlet chamberentrance. Uponfiltration, parti-clesbuilduponthesurfaceofthetwofiltermedialocated attheupper/lowersideoftheinletchamber,and theclean fluidleavesthesectorthroughtheupper/loweroutlet cham-bers.Particleaccumulationcausesanincreasedpressuredrop through the sectors and therefore through each disc-type element.Theliquidflowratethroughthesectorsofa disc-typeelementismaintainedataconstantvaluebymeansof adisplacement pump.Thedistributor whichisdrivenbya hydraulicmotoronthetopofthefilterhousingcontinuously rotatestosimultaneouslyfeedMsectorsandbackflushwith someamountoffiltratethe(M+1)sector,flushingthe accu-mulatedparticlesfromthesurfaceofthemedia(seeFig.2a). Inthisway,allsectorsarebackflushedonceperfullrotationof thedistributorandsolidswhicharecollectedduringthe filtra-tionperiodcanberemovedbybackflushingafterafullrotation iscompleted.Backflushingiscommoninfiltrationsystems, e.g.(Andoetal.,2012;Bacchinetal.,2011;Benmachouetal., 2003;Berman,1953;DuignanandNash,2012)tonameonlya few,toclean-upthefiltersurfaceperiodically.Theinteresting and distinguishingfeatureofanautomaticfilteristhatthe backflushingoccurswithoutinterruptionofthefiltration pro-cess.Backflushingtime(whichcorrespondstoagivenrotating speed)isanoperatingparameteroftheorderof10to60s.It canbespecifiedand optimizedinordertolimit accumula-tioninthefiltrationchamberswhichdependsamongothers onfiltrationmediacharacteristicsandpropertiesoftheslurry suchassizedistributionandshapeoftheparticles.Evenfor agivenapplicationlikelubeoilindieselengineofships,fluid propertiesmayvaryfromoneenginetoanotherandevenwith operatingtimeforagivenengine.Thisisthereasonwhy,when optimizingthedesign(numberandgeometricaldimensionsof elements)ortheoperatingconditions,suchasthe backflush-ingtime,engineeringcompaniesstronglyrelyonstandardized qualificationtestsusuallycarriedoutwithstandardizedfine Arizonasandwithawell-characterizedsizedistribution.Such standardizedqualificationtestsalsoallowcomparing auto-maticfiltersfromdifferentcompanies.Aqualificationtestofa filterprovideswiththevariationofpressuredropasafunction ofthetimeoffiltrationforaknownconcentrationofparticles introducedinthefilteratagivenvolumetricrate.Thisallows qualifyingafilteroraprocedureregardingthetimeneeded toreachamaximumpressuredropwhichisnormallysetto around2×105Pa,alsocalledtimeforclogging.Thesetestsare

extensivelyusedtocomparedifferentdesignsandoptimize operatingparametersbuttheyarequitecostly.Thereforefor mostengineeringcompanies,ageneralobjectiveistodevelop aCPU-friendlyandreliablenumericaltoolinordertoreduce thetimeofdesign,thenumberofexperimentaltrials,aswell astooptimizeoperatingconditions.

Inthisworkapracticalcomputationallyaffordablemodel has been developed to describe the distribution of flow rate in the differentsectors ofadisc-type element and to demonstratetheeffectofparameterssettings,suchas back-flushingtime orpollution concentration.Theaimisrather todemonstratetheeffectofparametersettingsthan repre-sent realcases. Aswillbeseenfurtherinthe paper,some

(4)

Fig.1–Technicalschemeofanautomaticfilterwithdisk-typeelementsstackedoveradistributortoformthefilteringunit.

Fig.2–Left:schemeofthedisk-typechambercomposedoftheassemblyoftwoframes.EachframeisdividedinM+1

sectionalchambersbyribs.Right:schemeoftheoperatingprinciple:Adistributordrivenbyahydraulicmotorrotatesat

regularintervalstofeedtheslurryinMchambersandbackflushthelastchamber.

Fig.3–Left:designofsectorgeometry,right:schematicrepresentationofhalfandinletandhalfandoutletchambers.Lis

thelengthofthesectorandhthehalfwidth,xandyarethecoordinates.Notethatonlyhalfofinletchamber(outlet

chamberrespectively)isshown.Henceeachinletchamber(outletchamberrespectively)inthesystemisborderedbytwo

filtrationscreens.Theplanelimitedbythedashedlineistheplanecorrespondingapproximatelytothe2Dmodel.

geometricaldataaretakenfromthedesignofarealAlfaMoatti filterforthesolepurposeofmodeldevelopment(seeTable1

forinstance).Theseinputscaneasilybereplacedwith alterna-tivedatawithoutaffectingthegeneralityofthemethodology developedhere.Alsoacomparisonbetweenthe calculation oftimeforcloggingandexperimentaltestofanautomatic self-cleaningfilterwillbeprovided.Theproblemrequires a multi-scaleapproachfromthefiltermediamicro-scaleupto themacro-scale oftheautomaticself-cleaning filter,which

impliestheconsiderationoftwointermediatescales (cham-bersofasectoranddisc-typeelement).Itshouldalsoaccount fortheperiodicityoffiltrationandbackflushingintheM+1 sectorsofa disc-typeelement duetothe continuous rota-tionofthefilter,notingthatafteronefillrotation,filtration occursatasteadystate.Theobjectiveisnotadetailed mod-elingbut asimplified CPUfriendlyapproachuseful togain insightsintotheinfluenceofmainparameters.Forthisend, weshalluseasimplifiedmodeloftheflow(intheabsenceof

Table1–GeometricaldataforAlfa-LavalMoattiFilter150andphysicalcharacteristicsofAlla-LavalA03screenmedia.

Classsize(␮m) >6 >8 >10 >14 >17 >4 >20 >22

Numberofparticlesfor20ml 10,4131 46,452 124,845 8424 4058 28,736 2058 1391

Classsize(␮m) >28 >30 >35 >40 >45 >25 >50 >70

(5)

particles)derivedfromcrosssectionalaveragingoftheNavier Stokesequationsinasectorusingsimilaritysolutions(Section

2).CloggingscenariiarestudiedinSection3basedonstandard modelsandexperimentalevolutionofpressuredrop.In Sec-tion4,acompletemodelforstationaryregimeisdeveloped andusedforstudyingtheinfluenceofbackflushingtimeand pollutionconcentrationontheflowdistributioninthe differ-entsectorsandtocalculatethepressuredropincreaseofa filter.

2.

Flow

characteristics

in

the

filtration

chambers

Webegintheanalysisbyassumingthatthemaincontribution tothe pressuredropisduetotheflowwithinthefiltration chambers.Allother contributionssuchaspressuredrop in thedistributororinthefilterhousingareneglected. Consis-tentlywiththisassumption,wefurtherassumethattheflow througheachdisc-typeelementisthesamewhateverthe posi-tionofthe elementinthe stack.Theseassumptionsimply that,

Pf(t)≈Pei(t) 1≤i≤N (1)

whereNisthenumberofdisc-typeelement,Pf(t)andPei(t) arerespectively,thepressuredropsacrossthefiltercomposed ofNelementsandelementi,respectively.

Inthis section, westudy the characteristics of theflow withintheinletandupper(orlower)outletchambersofoneof theM+1sectorsofadisc-element.Essentially,weshowthat thefiltrationvelocityintheinlet/outletchamberscanbe con-sideredasuniformalongthechamberlongitudinalaxisforthe typicalconditionsandgeometricaldimensionsencountered inanautomaticfilter.Theanalysisisbasedona1Dflowmodel, whichhasbeenusedinpreviousfiltrationstudiesforlowto moderatefiltrationvelocities.Themainfeaturesofthemodel arerecalledherebutmoredetailscanbefoundinreferences (GanandAllen,1999;Koltuniewiczetal.,2004).

Duetosymmetry, weconsiderhalf ofasector(in the y plane),comprisinghalfoftheinletchamberand theupper chamber of height h (see Fig. 3). Note that h in Fig. 3

whichcorresponds to thehalf-heightof theinlet chamber isalsotheheightofthe upper/lower outletchambers.The screen thickness of the order of 0.5 micron is considered asnegligible comparedwith h. Typical geometrical dimen-sionsforflowchambersare7mmforh,and65mmforthe lengthL.

Therearethreemainfeaturesoftheinletandoutlet cham-bers:(i)theratiooftheheighttochamberlengthh/Lissmaller than1,(ii)thecross-sectionalareaincreasesinthex-direction,

(iii)constrictioneffectsareexpectedattheentrance(forthe inletchamber)andattheexit(foroutletchambers)sincethe fluidentrance(exitrespectively)isthroughafractionofthe sectionoftheinletchamber(oftheoutletchamber respec-tively). However,due tothe relativesmall aspect ratio h/L,

theazimuthaldeformationofstreamlinescanbeassumed tooccuronlyoverasmallregionofthechambers.Asaresult, ourapproachisbasedontheconsiderationofthesimplified 2Dgeometry consideringthe y-axis symmetrysketched in

Fig.3wherey=0atthecenteroftheinletchannelandy=h

atthesurfaceofthefiltermedia.Theflowisdescribedusing theNavier–Stokesequationsexpressedforthis2Dgeometry

with the mass balance and momentum balance equations expressedindimensionlessformas:

∂u∗ ∂x∗ + ∂v∗ ∂y∗ =0 (2)



u∗∂u∗ ∂x∗+v∗ ∂u∗ ∂y∗



=−∂p∂x+Re1 0



∂2u∗ ∂2x∗+ ∂2u∗ ∂2y



(3)



u∗∂v∗ ∂x∗+v ∗∂v∗ ∂y∗



=−∂p∗ ∂y∗+ 1 Re0



∂2v∗ ∂2x∗+ ∂2v∗ ∂2y



(4) wherex∗=x h,y∗= y h,u∗= Uu0,v ∗= v U0,p ∗= p  U2 0 U0isthe

aver-agevelocityintheinletchannelandRe0=U0h;

andarethefluiddensityanddynamicviscosity, respec-tively.

The above equations haveto besolved in conjunctions withtheboundaryconditionsatthesurfaceofthefiltermedia (y=h),

u∗(x∗,1)=0; v∗(x∗,1)=Vw

U0

(5) Intheaboveequation,Vwistheaveragevelocitythrough thefiltermedia.Duetomassconservationforasteadyflow,

U0isalsotheaveragevelocityattheexitofoutletchanneland

isestimatedas: U0=Qs

S0 (6)

Intheaboveequation,Qsisthevolumetricflowrate enter-ing a sectorandS0 is theaverage cross-sectionarea given

by

S0=

2



Ri+Re−R2 i



M+1 h (7)

RiandRearetheinternalandexternalradiiofthedisc-type element,respectively.

Under the following assumptions: (i) laminar flow, (ii) quasi-uniform filtration velocity along the channel v(x, y)=v(y),and(iii)Vwy <<U0, ananalyticalsolution tothis

systemcanbeproposedprovidedthatRew= Vwh isofthe

orderof1,(Lietal.,1998).

Accordingtothissolutionthelocalvelocityfield(u*,v*)is

givenby: u∗(x∗,y∗) U0 = 3 2 u∗ y∗ U0



1−y∗2

 

1−Rew 420



2−7y∗2−7y∗4



+o



Re2w



(8) v∗(y∗) U0 = 1 2 Rew Re0y ∗(3y∗2)+o



Re2 w



(9) u∗

y∗isthedimensionlessaverageaxialvelocitydefinedby

u∗

y∗= 1 h h

0 u∗(x∗,y∗)dy∗ (10)

BysubstitutingEqs.(8)and(9)intotheconservative equa-tionsandapplyingtheaveragingoperatordefinedbyEq.(10),

(6)

oneobtains,(seeGanandAllen,1999forthedetails),the fol-lowinglocalmassbalanceandmomentumbalanceequations,

du∗y∗ dx∗ + Rew Re0 = 0 (11) 81 70 du∗2 y∗ dx∗ + 3 Re0

u∗

y∗− 1 Re0 du∗2 y∗ dx∗2 + d

p∗

y∗ dx∗ =0 (12) Eqs.(11)and(12)areusedtodescribetheflowinboththe inletand upperoutletchambers.To couplethesystems of Eqs.(11)and(12) relativetoeachchamber, weexpressthe localvelocityVwthroughthefiltermediaintermsofthelocal pressuredifferenceaccordingtoalinearrelation:

Vw=p1−p2

R (13)

wheresubscripts1and2refertoinletandupperoutlet chan-nelseparatedbythefiltermedia;Risthehydraulicresistance ofanytypeoffiltrationmedia.

AccordingtoLinetal.(2009),thepressure dropacrossa meshtypefiltrationmediacanbeexpressedas

10 Resc1.14 = 2P (Vw/ (1−Am))2 1 Am with Resc= (Vw/(1−Am)dh  (14)

whereP=p1−p2anddh isthesizeofthemeshandAm is theopensurfaceofthe screenmediaorthesumofallthe areasoftheopeningsthroughwhichthefluidcanpass.On thegrounds,thatReynoldsnumber,Resc,issmallcompared

withone,onecansimplifyEq.(14)as: 10 Resc ≈ 2P (Vw/ (1−Am))2 1 Am (15)

Now,combiningEqs.(13)and(15),givesusasimplerelation forthehydraulicresistanceofascreenfiltrationmedia: R= 5Am

(1−Am)dh

(16) TogetherwithEq.(13),Eqs.(11)and(12)governingtheflow intheinletandoutletchannelsaretherefore,Inletchannel (subscript1referstoinletchannel)

d

u∗1

y dx∗ +Re0



p∗1−p∗2



hR =0 (17) 81 70 d

u∗1

2 y∗ dx∗ + 3 Re0

u∗1

y− 1 Re0 d

u∗1

2 y∗ dx∗2 + d

p∗1

y dx∗ =0 (18) Outletchannel(subscript2referstooutletchannel) d

u∗2

y dx∗ +Re0



p∗1−p∗2



hR =0 (19) 81 70 d

u∗2

2∗ y dx∗ + 3 Re0

u∗2

y− 1 Re0 d

u∗2

2 y∗ dx∗2 + d

p∗2

y∗ dx∗ =0 (20)

Thesystem ofEqs.(17)–(20)issolvedcombining afinite differencemethodofdiscretizationwithaNewton–Raphson method (to deal with the non-linearities and the coupled

Fig.4–Filtrationvelocityalongthefilterscreen:fromtopto

bottom:filtrationvelocitycalculatedbytheanalyticalmodel

solution,filtrationvelocityfrom3DCFDsimulationinthe

planelimitedbythedashedlineinFig.3.

natureofthesystem).DetailscanbefoundinOxarangoetal. (2004). Asensitivitystudy ofthenumber ofgridpointshas beencarriedout,consideringupto2500equallyspacedgrid points.Thisstudyindicatedthatagridof200upto300points was agood trade-off between accuracyand computational time.Typically,thetimeforcomputingtheflowusingthis2D modelisoftheorderofonetotwosecondsonastandardLinux PC.Thistimeistobecomparedwiththetimeof5minneeded foradirectcomputationusingtheCFDcommercialsoftware onthesameplatform,withoutmentioningthetimeneeded forpreparingtheCFDcomputation(gridconstruction,etc.).

Toinvestigatetheflowcharacteristicsinthechambersof asectorwehaveusedgeometricalandoperatingdataofan existingautomaticself-cleaningfilterdesignedbyAlfa-Moatti. ThegeometricaldataofAlfa-Moatti150filterarereportedin

Table1.Fortheflowsimulationtheinputsare:anaverageinlet velocityU0 equalto0.2488ms−1,an averagefiltration Vw equalto0.0268ms−1,anhydraulic resistanceofthe screen mediaRequalto47.6×105m−1asgivenfora25␮mabsolute

meshsizeA03filtrationmedia(AlfaLavalA03filter).

Forthesesetofparameters,theReynoldsnumberRe0inthe

filtrationchambersisequalto58.5forlubeoil(=850kgm−3, =2.55×10−2Pasat25◦C)whichcorresponds toalaminar flowwhereastheReynoldsnumberRewoftheflowthroughthe screenisequalto6.Thisdoesnotentirelymeetthe require-mentRewoftheorderof1butissufficientlysmalltoobtain reasonablygoodresults.

Inordertovalidatethe2D-simplifiedmodel,comparisons withthreedimensionalCFDcomputationshavebeencarrying outusingcommercialsoftware(Fluent,ANSYS).Onthewhole theagreementbetweenourmodelandtheCFDdirect simula-tionisverygood.Arepresentativeexampleoftheresults,Fig.4

showsratioofthelocalvelocityVwtotheaverageVwalong thedimensionlesssectorlength.Our2Dmodelpredictsa uni-formvelocity,atrendalsopredictedby3DCFDsimulations. Themostnoticeabledifferenceoccurattheentranceofthe sectorwheretheflowisnotyetfullyestablishedandbottom ofthesectorwhereisthefiltrationvelocityisonly25%ofthe averagevelocity,whereasinthemainpartofthesector,the localvelocitypredictedbythe 3Dsimulations issomewhat lower by20%,which isleftunexplained atthis stage.Note thatthefiltrationvelocityalongthesectorlengthx,isakey elementintheperspectiveofcloggingsimulations.Fromthis

(7)

comparisonwevalidatetheassumptionofauniformfiltration velocitythroughthemediaalongthesectorlength.

Thepressuredropthroughthefiltermediacanalsobe esti-matedwithour2Dmodelaswellasthepressuredropinthe inletandoutletchambers.For thespecifiedconditions,the pressuredrop throughthe filtermediaisnumerically eval-uatedat3372Pa (0.03372bar).For comparison,thepressure dropintheinletand outletchannelsare respectively48Pa and72Pa.Akeyresultisthatthepressuredropthroughthe filtrationchambersisdominatedbythepressuredropthrough thefiltrationmediaandnotbythehydrodynamicthroughthe chambers.

Alsoasdiscussedinpreviousworks,(e.g.GanandAllen, 1999; Koltuniewicz et al., 2004; Oxarango et al., 2004), it isimportanttorealizethat aimingatoptimizingoperating conditions or filter design, this simplified model is much easy to use for a parametric study than 3D CFD simula-tions that are less affordable in terms of computational time.

3.

Clogging

the

filtration

media

The development of a model for the clogging of filtration mediabeginswiththeconsideration oftwoclogging mech-anisms: surface blocking of media openings by particles, building ofacakeon the topofthe media. Because filtra-tionmediahaveameshgeometrycharacterizedbyopenings of constant section in the media thickness direction, we assumethatdepthblockingisnegligible,adifferentcasefrom non-wovenfibrous media.Depthblockingmay occurwhen particleswithsizesmallerthanopeningsizeare caughton theinnerwallsoftheopeningsduetospecificadsorptionor byflowconstrictions.

Experiments including visualizations of particle capture are desirable for a better understanding ofcapture mech-anisms.Suchapproaches are currentlyunder development formodelgridsandmonodisperseparticles,(e.g. Psochand Schiewer,2006;Rebaietal.,2010).Analternativeconsistsin carryingoutfiltrationteststomeasurethedynamicsof pres-sure increase during a filtration and to compare with the prediction ofcloggingmodels representative for the afore-mentionedmechanisms.Wethuscarriedoutfiltrationstests withastandardizeddispersion,referredaswithArizonatest finesand(READEadvancedmaterialsUSA),commonlyused fortestsinhydraulicfluidforinhydraulic,automotive,and aerospaceapplications.

3.1. Surfaceblockingmode

In this model, the fluid issupposed to containsuspended sphericalsolidparticleswithasizedistributionintherange [dpl−dpu].ForArizonatestfinesand,thesizedistributionas

wellasthenumberofparticlesperunitvolumeisestimated for16classesbetween4␮mand70␮masreportedinTable2. Thescreenmediahascharacteristicopeningsizeourmesh sizedh.Weshallassumeamechanisticcriterionforparticle blocking:onlytheparticles withequivalentdiameterlarger thantheopeningsizedh,arecaught.Moreover,weconsider eachparticlecoversandcompletelyclogstheopening. Aggre-gationofparticlesovertimeisnotconsideredinthismodel. Theinitialnumberofopeningsnoiscalculatedfrom geometri-calscreenareaforonesectorAs,openingsizedhandhydraulic porosity␧ofthescreenbyEq.(23),notingthatAmtheopen

1 10 100 1000 10000 6000 5000 4000 3000 2000 1000 0 Pressure drop (Pa) Time ( s)

> 25 microns Experimental data > 28 microns

Fig.5–Variationsofpressuredropversusfiltrationtime:

curvesfromtoptobottom:numericalresultsassuming

cloggingbyparticlesofminimalsize28microns,datafrom

experimentaltests,numericalresultsassumingcloggingby

particlesofminimalsize25microns.

surfaceofthescreenmediaisequaltotheproductofAsand dh:

n0= Asε

dh2

(21)

If np isthe totalnumberofparticles perunitvolumeof fluidofdiameterlargerthanthemeshsizedh,thatcontribute toblockthescreen,thenumbern(t)ofoutstandingopenings attimetisgivenby:

n(t)=no−Qsnpt (22)

whereQsisthevolumetricliquidflowrateinthesector. Theincreaseofthepressuredropduetotheprogressive cloggingofopeningsbyparticlesisthencalculatedfromthe followingequationwhichreferstochangeinthenumberof openingswithtime:

P=Rn0Qs

Asn (t)

(23)

InsertingEq.(22)intoEq.(23)yieldstheevolutionof pres-suredropforasectorasafunctionoftimeforthegridclogging model, P = Rn0Qs As



n0−QAssnpt



(24)

Wehavecomputedtheevolutionofpressuredropversus timeusingEq.(24)assumingcloggingofthemeshbyparticles of(i)sizeequalorlargertothemeshsize(largerthan25␮m) (ii)largerthanthemeshsize(largerthan28␮m).

The volumetric liquid flow rate Qs is equal to 1.09×10−5m3s−1 and the fluid viscosity is 0.015Pas for

atemperatureof40◦C.Fig.6showstheevaluationofpressure drop P acrossasectorasafunctionoftime during stan-dardizedfiltrationexperimentsusingthe Arizonafinesand dispersiontforavolumetricflowrateto1.09×10−5m3s−1.

As can be seen from Fig. 5, the pressure drop evolu-tion collapsesreasonablywellontoasinglecurve withthe values predicted by the grid clogging model for a criteria based on size equal or larger to the mesh size. The results show an evolution in two main periods, namely a period ofvery moderate increasewherethe particles are progres-sively trappedatthe surfaceofthe openingsfollowedbya

(8)

Table2–Sizedistributionofsolidparticlesenteringthefilterexpressedintermsofnumberofparticlesper20mloffluid

for16classesbetween4␮mand70␮m.Totalmassconcentrationofparticlesis3mgl−1.

Internal disk-type diameter(m) Externaldisk typediameter (m) Numberof sectorsby element Numberof elementsin thefilter Chamberhalf height(m) Chamber length(m) Hydraulic resistanceof screen(m−1) Absolute meshsize (␮m) 0.078 0.150 8 16 0.007 0.065 47.6×105 25

periodof sharp increase in pressure drop. When the time ofoperationexceedsacritical timeof4500s, experimental datashowthatthepressuredropdivergestowardvaluesof about400Pa.Beforethatcriticaltime,constantlowpressure dropofabout80to90Pahasbeenrecordedinthetest experi-ment.Wecannotethatthemodelfitsquitewelltheclogging timeexperiencedinthe testwhentakinginto accountthe totalnumberparticleswithnominalsizelargerthan25␮m entering the filter. Wehave plottedin Fig. 6, the variation ofpressuredropasafunctionofthefractionofopenholes usingEq.(22)tocomputethefractionofopen holesn(t)/no versustime.Wenotethatthesharpincreaseinpressuredrop iscorrelated toa reduced fraction ofopen holes. Wemay assessthat whenthefractionofthe remainingopen holes islower than a critical fractionof10% then pressure drop diverges.

3.2. Cakefiltrationmode

Inthismodel,weassumethatthefiltermediaisfouledby alayerofparticlesbeforealltheholesarephysicallyclogged. Thepressuredropwillthenbepreferentiallyrelatedtotherate ofcakegrowthdescribedbyawell-establishedcake-filtration model(Tingetal.,2006).

Thepressuredropiscomputedas,

P=Qs(R∗+Rca) (25)

whereisthefluidviscosity,Qsistheflowrateinthesector, R*istheresistanceofthemeshsheetandR

catheresistance

ofthecake,whichisexpressedas,

Rca=e(t)

kca

(26)

wheree(t)isthecakethicknessattimetoffiltration.

0 500 1000 1500 2000 2500 5% 17% 29% 41% 53% 65% 76% 88% 100% Pressure dr op (P a)

Fracon of open holes (%)

10% = critical fraction

Fig.6–Pressuredropthroughthescreen(numerical

results)asafunctionofthefractionoffreeopeningsatthe

screensurface.

kcaisthecakepermeability,whichisexpressedbythe

clas-sicalKozeny–Carmanequation,

kca=

ε3 cad2pmoy

180 (1−εca)2

(27)

whereεcaisthecakeporositytakenasequalto0.36;dpmoyis the averageparticlesizecalculatedfrom thenumbernpi of

particlesofsizedpiperunitvolumeoffluid.

dpmoy=

i npid3pi

i npid2pi (28)

Theevolutionofcakethicknesse(t)asafunctiontimecan bededucedfromthevolumeofparticlescapturedattimet

andisgivenby:

e(t)= Qs

i npid3pit 6(1−εca)As (29)

InsertingEqs.(26)and(29)intoEq.(25)givestheexpression forthepressuredropforcakefiltrationmodel

P=Qs

R∗+

180Qs(1−εca)

i npid3pi 6Asε3cad2pmoy t

(30)

Fig.7presentsthevariationsofpressuredropversustime obtainedwiththecakemodel.Eq.(30)predictsalinear varia-tionofpressuredropwithtime,averydifferentfeaturefrom experimental data curve. Moreover the time necessary for clogging isvery small: afew seconds compared to experi-mentaltime4000s.Thepressuredroppredictedbythecake

0 2000 4000 6000 8000 5500 5000 4500 4000 3500 3000 2500

Pressure Drop (Pa)

Time (s)

Fig.7–Variationsofpressuredropthoughversusfiltration

timeassumingcakegrowthatthesurfaceofthescreen:

curvewithblacksquaresrepresentsnumericalresultsfrom

cakefiltrationmodel,curvewithemptytriangles

(9)

modelafterafiltrationtimeof4500sis42timeslargerthan theexperimentalvalue.

3.3. Choiceofacloggingmodel

Basedonthecomparisonofthepredictionsofthetwo mod-elswithexperimentaldata,theconclusionisclearlythatthe mostrelevantmodelisthegridcloggingmodel.Naturally,this modelisbasedonsimplificationslikeparticlesformfactorand doesnottakeintoaccountthepossibleoccultationofseveral poresbyasingleparticlenottheoccurrenceofparticle aggre-gation.Notethatwearemainlyinterestedinthepredictionof pressuredrop,akeyelementinthemulti-scalemodelingwe aimtodevelop.Inthatrespect,webelievethatthesimplified gridcloggingmodelissufficientforthisissue.

4.

Modeling

of

stationary

regime

for

an

automatic

self-cleaning

filter

This section reports on the model we have developed to computethepressuredropatthescaleoftheautomatic self-cleaningfilter.

Oneimportantparameterwhenoperatingsuchan auto-maticfilteristhebackflushingtimeTheback-flushingtimeis thetimebetweentwoconsecutiveshiftsofthefluid distribu-tor.Atanytime,therearealwaysMsectorsinfiltrationmode and1sectorinback-flushingmode.Weshallassumethatthe timerequiredforashiftofthefluiddistributorisverysmall comparedwiththeback-flushingtime.

Inthismodeltheimpactofcloggingonthepressuredropis describedbythegridcloggingmodelwhereastheefficiencyof theperiodicalbackflushingisdescribedthroughaparameter denoted˛bwhichrepresentsthefractionoffreeopeningsjust afterbackflushingperiod.

4.1. Modeldevelopment

Theprimaryobjectiveofthemodelistocomputetheevolution ofpressure dropP(t)asafunctionofthe totalvolumetric rateenteringthefilterQf,thenumberofstackedelementsN, thenumberofsectorsM+1,theparticlesizedistribution(or pollutionprofile)enteringthefilter,backflushingtimetb,mesh sizedhandscreenareaforonesectorAs.Asmentionedbefore, thebackflushingtimeisthetimebetweentwoconsecutive shiftsofthefluiddistributor.Whenthefilterbeginstooperate orwhenthereisachangeintheoperationconditions,there existsatransientperiodbeforereachingastationnaryregime, wherethepressure dropacrossany particularsectorvaries periodically.Inthisworkwefocusonthestationnaryregime. Onlydimensionalvariablesareusedinthissection.

WerecallthatweassumeM+1sectorswithMthenumber ofsectorsinfiltrationmode.Notethatowingtothedesignof disktypechamber,Mhastobeanoddnumber.Thepressure dropisassumedtobethesamethrougheachelement.Thus P(t)≈Pf(t)≈Pei(t) 1≤i≤N (31)

wherePf(t)andPei(t)arethepressuredropacrossthewhole filterandelementirespectively.Supposewestartacycleat timet=0,justafterashiftofdistributorandwewantto com-putetheevolutionofP(t)fromt=0tot=tb,i.e.justbeforea newshiftofdistributor(werecallthattbisthebackflushing time).Weassumethatsector#1hasjustbeenbackflushedat

t=0.ThussectorMisthedirtiestatt=0.

Let˛j0bethefractionoffreeopeningsinthescreenofsector jatt=0(1≤jM).

Webegintheanalysisbyexpressingthatthesumofflow ratesthrougheachsectorinfiltrationmodeshouldbeequal toQfthetotalvolumetricflowrateenteringthefilter.

Qf = M

j=1

Qsj (32)

whereQsjistheflowrateinsectorj.

Letno bethenumberofopeningsofthemesh,and sup-posethattherearenowonlyntopeningsleft,theothersbeing blockedbyparticles.Theaveragefiltrationvelocityseenbythe freeopeningisthengivensimplyby

Vw(t)=Vw0/˛ (33)

whereVw0istheaveragefiltrationvelocitywhenthemeshis

cleanand˛=nt/no(˛isthefractionoffreeopeningsattimet). Asaresult,thepressuredropthroughthesectorbecomes P=˛−1RVw0=˛−1R2AQs

s (34)

Thefactor2inEq.(34)comesfromthefactthattherearean upperandalowerfiltermedia,eachofareaAs,ineachsector.

Fromthis,Eq.(32)gives

Qf = P(t)As R M

j=1 ˛j= P(t)As R∗ ˝(t) (35) ˝(t)= M

j=1 ˛j (36)

Weexpresstheevolutionof˛jforeachscreenofeachsector as d˛j dt =− np n0 Qsj 2 =− npAs n0R˛j P with ˛j=˛j0 at t=0(37)

where we recall that np is the number ofparticles ofsize greater thanthe screenopeningsizedh perunit volumeof fluid.SumminguptheMEq.(37)andusingEq.(36)leadto

d˝(t) dt =−

np

2n0Qf

(38) whichcanbereadilyintegratedtogive

˝(t)=˝0− npQf 2n0 t (39) with˝0= M

j=1 ˛j0.

ThenwededucefromEq.(34)anexpressionforthe varia-tionofpressuredropwithtimeofoperation

P(t)= RQ2Af s 1



˝0− npQf 2n0 t



(40)

(10)

Inthefollowingsection,anexpressionforthecalculation of˝0isestablished

FirstwecombineEqs.(37)and(40)toyield,Eq.(41)

1 ˛j d˛j dt =− npQf 2n0 1



˝0− npQf 2n0 t



(41)

whichcanbeintegratedtogive:

˛j=˛j0



1−npQf 0n0t



(42)

Finally,weexpressthattheinitialfreeopeningfraction˛j0 ofsectorjisequaltothefreeopeningfractionineachscreen ofsectorj−1attimetb(stationnaryregime),

˛j0=˛j−1(tb) j=2,M (43)

withtheadditionalconditionthat

˛10=˛b (44)

whereasmentionedbefore,˛b isthe freeopeningfraction rightafterbackflushing.

CombiningEqs(42)and(43):

˛j0=˛b



1− npQf 2˝0n0tb



j−1 j=1,M (45)

fromwhichweget

˝0=˛b M

j=1



1− npQf 2˝0n0tb



j−1 (46)

Solvingfor˝0yields

˝0= npQftb 2n0 1



1−



1−npQftb 2˛bn0



1/M



(47)

whichcanbeusedtogetherwithEq.(40)tocalculatethe pres-suredropwheretheuniqueparameteris˛bthefreeopening fractionrightafterbackflushing.

Fortheparameter˛b,wecandistinguishtwosituations: - perfectcleaning,whichcorrespondsto˛b=1.Inthiscaseat

theendofbackflushingperiod,alltheparticleshavebeen removedandthenumberofaperturesleftopenisequalto theinitialone.

- imperfect(partial)cleaning.Inthiscase,weshallassume thatthebackflushingtimetbislessthanthetimeneeded toremovealltheparticlesfromthemeshopenings.Inthis casewedevelopedanapproach(seeAnnexI)toestimate ˛b(tb)thefractionofopeningattheendofthebackflushing period.

4.2. Capabilitiesofthemodel

4.2.1. Influenceofbackflushingtimeandpollution concentrationparameters

Toillustrateitscapabilities,themodelhasbeenusedtostudy theinfluenceofbackflushingtimeon Qsj, theflowrate for

Fig.8–Specificloaddistributionrate(m3s−1)bysector

versusbackflushingperiod(s).Thenumberof

particlescm−3greaterthan25␮mindiameteris

60particlescm−3.Thereferenceflowrateis

Qsref=1.1×10−5m3s−1.

each sectorofanelement.For thesecalculations, weused thesamepollutionprofiledataasusedbefore,aswellasthe samegeometricalandoperatingdata.Accordingtotheabove considerations,thereducedflowrateineachsectorisgiven by, Qsj Qf = ˛b ˝0



1− npQf 2˝0n0tb



j−1 (48)

Wecalculatedthevaluesofthereducedflowratesinthe

M+1=8sectorsofanelementwiththeassumptionofaperfect cleaning.

ResultsarereportedinFig.8forincreasingbackflushing time.Thetopcurveshowstheflowrateinsector#1,nextcurve belowtheflowrateinsector#2andsoon.Asanexample,we seethatfortboftheorderorlargerthan10s,because sec-tor#7clogsduringthebackflushingperiod,theflowrateis reducedcomparedwithaverageentranceflowrate,whereas theflowrateonsector#1(justaftertheshiftofdistributor) islarger.Forabackflushingtimeof20swecanestimatethat theflowrateinsector#1is10%morethaninsector#7.Of coursethedistributionoftheflowoverthedifferentsectors oftheelementisadirectconsequenceofthedistributionof thepressuredropinthedifferentsectors:insector#1, clog-ginghasbeenremovedsothepressuredropislow,whereas insector#7,pressuredropprogressivelyincreasesduringthe fullrotationofthedistributor.

Wealsocalculated the valuesofthe reducedflow rates in the M+1sectorsas afunction ofthe pollution concen-tration.Theconcentrationofsolidparticlesperunitvolume is expected togreatly influencethe pressure drop ineach sector.ResultsarereportedinFig.9forincreasingpollution concentration. The influence of particle concentration is pretty much the same as for increasing the backflushing time. Again the distribution of the flow over the different sectorsisrelatedtothepressuredropineachsectoradirect consequenceofthenumberofparticlesperunitofvolumetric

(11)

Fig.9–Specificloaddistribution(flowrate)foreachsector

asafunctionoftheparticleconcentration(numberof

particlescm−3greaterthan25␮mindiameter;thepollution

profileissimilarforeachconcentration).Thebackflushing

periodis15s.Thereferenceflowrateis

Qsref=1.1×10−5m3s−1.

flowrate(concentration)caughtatthesurfaceofthescreen media. More simulation would be needed to determine critical backflushing time or critical particle concentration correspondingtoaseverecloggingofsector#7,sector#6,and sector#5,thatwouldcause adrasticreductionofflowrate intheseparticularsectors.Thesecriticalparametersmustbe avoidedbecausetheycorrespondtosituationsforwhichonly a fractionof the filteractually deliver a downstreamflow. Sincethepurposeofthisworkisnotarealisticoptimization

4000 3000 2000 5000 6000 t (s) 0 2 4 6 8 10 12 Δ P / Experimental data dp >28 μm dp >25 μm 10 2 (Pa)

Fig.10–Pressuredropinthefilterasafunctionof

operationtime:experimentaldata(blacksolidcircles),

numericalresultsassumingparticlesgreaterthanorequal

to25␮marecaught(emptysquares),numericalresults

assumingparticlesgreaterthanorequalto28␮mare

caught(emptytriangles).

ofaparticularfilterbutanassessmentofmodelcapabilities, wedidnotinvestigatelargerangeofparametersettings. 4.2.2. Pressuredropthroughthecompletefilter

Onecapabilityofthemodelistocalculatethepressuredrop atthescaleofone-disctypeelement.Thenusingina sim-ple analytical up scaling procedure andassuming that the flowthrougheachdisc-typeelementisthesamewhateverthe positionoftheelementinthestack,onecanestimatethe evo-lutionofpressuredropatthescaleofthefiltercomposedof Ndisc-typeelements.Fig.10comparesthecalculationsusing geometricaldatafromTable1aswellasdatefortheparticle sizedistributionandoperatingconditionsusedinthe previ-oussectionexceptforback-flushingtime.Thenumericaland experimentaldataarecomparedforaback-flushingtimeof3s correspondingtoanimperfectcleaning(˛bisalmostequalto zero).Thissettingwaschoseninordertobeabletomeasurean increasedpressuredropinanhourrange.Realisticconditions withbackflushingtimeoftheorderof20swouldgivean oper-atingrangeoftheorderofseveralweeks.Twocaseshavebeen consideredasfarasparticlefiltrationdegreeisconcerned.The solidlinewithemptysquarescorrespondstoresultsobtained assumingthanparticlesofsizegreaterthanorequalto25␮m arecaughtbythescreen.Thesolidlinewithemptytriangles correspondstotheresultsobtainedassumingthatthe parti-clesofsizegreaterthanorequalto28␮marecaughtbythe screen.

Ascanbeseen,thedifferenceintimeofclogginghighlights theimportanceofthemodelingofparticlecapture(specifically forparticles closetothecritical size).Thegoodqualitative agreementwiththeexperimentaldatahoweverindicatesthat themainfeaturesofcloggingatelementscalearecorrectly takenintoaccountinthemodelatthefilterscale.

5.

Conclusions

Inthispaperwepresentedananalyticalmodelforstationnary (periodic)operatingconditionsoffiltrationandbackflushing inanautomaticfilter.Thismodelaccountsformulti-scaleand multi-physicsconsiderations.Weshowedthat thefiltration velocityinasectionofdiscelement,hereindefinedasa sec-tor,canbeconsideredasuniformforthetypicalconditions encounteredinliquidfiltrationandthatthe1Dmodeling cor-rectlypredictsthefiltrationvelocity.Wealsoconcludedthat themostrelevantmodelisascreencloggingmodelforwhich the increaseinpressuredrop isrelated tothe reductionof meshfreeopenings.Wealsodevelopedamodeltoestimate thetimeneededforasectortobecorrectlybackflushedand definedaskeyparameterthefreeopeningfractionofasector afteragivenbackflushingtime.

Themodelwasthenusedinasimpleanalyticalupscaling procedureallowingtoestimatetheevolutionofpressuredrop atthescaleofafilterelementanddeducethetimeof clog-ging.Cloggingscenarioasafunctionofparticleconcentration andbackflushingtimewerealsoinvestigated.Akeyresultis thatthelongerthebackflushingtime,thelargerthedifference betweentheflowratesineachsectorinthefilter.

The modelisbased on several simplifyingassumptions allowing onetodevelopquasi-analyticalsolutions. For this reasonitgreatlyfacilitatesparametricstudiesasillustratedin thiswork.Inadditiontopermithighlightingthemainfeatures of the automaticfilter under normaloperation conditions, themodelcanalsoserveasabasisforthedevelopmentof moresophisticatedmodels.Henceitopensuptheroutefor

(12)

modelsaimingatoptimizingtheoperationoftheautomatic filterand/oroptimizingitsdesign.

Acknowledgements

The authors are grateful to P. Schmitz forinteresting dis-cussionsand to A. Ramadane forcarrying out preliminary simulations.

Appendix

A.

Annex

I:

Modeling

for

the

efficiency

of

the

backflushing

Theprimaryobjectiveofthesimplisticmodelistocalculate thefractionofaperturesleftopenafterabackflushingperiod ˛b(tb) depending on specified backflushing time and flow rate.

Thebackflushingmodelisbasedontheassumptionthat only a discrete number of particles block the filter media openings.This isofcourse consistentwith the conclusion onthecloggingmodeloftheprevioussection.Herewe sup-posethat np blocking particlesare evenlydistributed along the filtermedia. Weconsider again a 2Ddomain identical totheoneconsideredinSection2.Theobjectiveisto com-putetheexittimeforeachparticle.Theexittimeisthetime neededforaparticletotravelfromitsinitialpositiononthe filtermediatotheentranceoftheinletchamber.Thecleaning timetccorrespondsthereforetotheexittimeoftheparticle locatedinitiallythefarthestfromtheentranceofthe cham-bersection.Whenthebackflushingtimetbisgreaterthanor equaltothecleaningtime,thebackflushingoperationmay beconsidered as perfectsince the filtermediais perfectly cleanattheendofbackflushing.Onthecontrary,ifthe back-flushingtimeissmallerthanthecleaningtime,afractionof particles does notexit the inletchannel beforethe end of backflushing.

InaccordancewiththesimulationpresentedinSection2, theparticlesare supposedtofollow thestreamlines.If we knowthevelocityfield(u,v)intheinletchamberduring back-flushing,thenthetrajectoryofaparticleisgivenbysolvingthe equationsstatingthatStokesnumberismuchsmallerthan1 (St1,noslipcondition)

dxp

dt =u; dyp

dt =v (A-1)

where(xp,yp)arethedimensionlesscoordinatesoftheinitial positionofparticle.

WecheckedthenoslipconditionsSt1,assumingan aver-ageparticlesizeof4␮m,aparticledensityof2500kgm−3,a fluidviscosityof0.0255Pas,anaveragefluidvelocityuinthe chamberof0.25ms−1andacharacteristiclength correspond-ingtoL,thelengthofachamber.ThevalueofStokesnumber definedaspd

2 pU

L isequalto5.10−6.

Eq. (A-1) are solved using a fourth order Runge Kutta method. This gives the position of particle (xp(t), yp(t)) in the inlet chamber asa function of time. The particle exit timeisobtainedwhenxp=0(entranceoftheinletchamber). Since the results reported in Section 2 indicate that the localvelocity is quasi-uniform along the filtermedia (this also holds during backflushing), the velocity field can be

0,4 0,2 0 0,6 0,8 1 xp0 / L 0 0,5 1 1,5 2

Particle exit time (s)

Fig.A.1–(a)Examplesofparticletrajectoriesintheinlet

channelduringback-flushing.Notethaty=0corresponds

tothescreenandy=1toinletchannelcenterinthefigure.

Thearrowindicatesthemaindirectionoftheflowin

directionofchannelentrance,(b)particleexittimeasa

functionofparticleinitialpositionxp0onfiltercloth.

determinedanalyticallyasbeforeusingthesolutionproposed inKoltuniewiczetal.(2004).Thissolutionreads,

u(x,y) Uo = 3 2 uy Uo



1−y2

 

1Rew 420



2−7y27y4



+O



Re2 w



v(x,y) Uo = 1 2 Rew Re0y (3−y2)+Re2w Re0



1 280



−2y+3y3−y7



+O



Re3 w



(A-2) Werecallthattheoriginofthecoordinatesystemisatthe centerofthechannelhere(hencethefiltermediaisaty=1 andthecenterofchamberisaty=0).

Theaveragevelocityu asafunctionofxisdeducedfroma simplemassbalance,whichgivesalinearvariationsincethe localfiltrationvelocityisassumedtobeuniform:

u =U0



1−hx L



(A-3) Here as before U0 is the average velocity in the inlet

chambersection(U0isnegativeduringback-flushing).Foran

illustrationofthemethodology,wechoosetheaverage veloc-ityequalto0.2488ms−1andtheaveragefiltrationvelocityVw isequalto0.0268ms−1.Theseinputscaneasilybereplaced withalternativedata.

Fig.A.1ashowsexamplesofparticletrajectoriesintheinlet chamberforthe2Dgeometry,flowconditionsandmesh char-acteristics detailed inSection 2. Thechannel being 65mm long,it gives2600possibleparticle positionalong thefilter cloth(L/dh=2600fordh=25␮m).Fig.A.1balsoshowsthe par-ticleexittimeasafunctionofparticleinitialpositiononthe filtercloth.Theexittimeofthefarthestparticleisfoundto be1.6sfortheseconditions.However,mostofparticlesexit the channelin lessthan 0.7s.This isfurtherillustratedin

Fig. A.2which showstheevolutionofthenumber of parti-clesmp presentwithinthechannelduringback-flushingas a functionoftime. Wehave assumedhere that one parti-clewaspresentoneachmeshopeningwhenback-flushing starts(thusleadingtomp0=2600particlesinitially).Onecan

(13)

Fig.A.2–Evolutionofthenumberofparticlespresent

withinthechannelduringbackflushingasafunctionof

time.

distinguishtwophases:afirstphaseduringwhichabout75% oftheparticlesexitthedomain,thistakesabout0.3sanda significantlylongertailduringwhichtheremainingparticles exit.

Asillustrated inFig.A.2,wecandeducefromthis back-flushingmodelafunctionalrelationshipoftheform:

1−˛b(tb)

1−˛b(0) =f(tb/tc

)=a4(tb/tc)4+a3(tb/tc)3+a2(tb/tc)2

+a1(tb/tc)+a0 (A-4)

wheretbisthetimeofbackflushandtcthetimeneeded toremoveallthe particles blockedonthe opening(perfect cleaning)isequalfortheflowconditionsconsideredhereto 1.6sasshownonFig.A.1b.Theterm1−˛b(0)inrelation

(A-4)representsthefractionofopeningsoccupiedbyparticlesat thebeginningofbackflushingwhereas 1−˛b(tb)

1−˛b(0) isthefraction ofparticlesstillpresentattheendofback-flushing.

Foragivenflowrateenteringthesectorduringtheback flushingperiod,thebackflushingefficiencycanbeestimated dependingontwosituations:

- fullcleaning,whichcanbeexpectedwhentc<tb.Therefore ˛b= 1 is this case (mesh completely clean after back-flushing)

- imperfect(partial)cleaningwhentc>tb.Inthiscase,˛bcan beestimatedfromthefunctionalformofrelation(A-4).

References

Ando,T.,Akamatsu,K.,Nakao,S.,Fujita,M.,2012.Simulationof foulingandbackwashdynamicsindead-endmicrofiltration: effectofporesize.J.Membr.Sci.392,48–57.

Bacchin,P.,Marty,A.,Duru,P.,Meireles,M.,Aimar,P.,2011.

Colloidalsurfaceinteractionsandmembranefouling: investigationsatporescale.Adv.ColloidInterfaceSci.164(1), 2–11.

Benmachou,K.,Schmitz,P.,Meireles,M.,2003.Dynamicclogging ofapleatedfilterexperimentalandtheoreticalapproachesfor simulation.In:Anlauf,H.,Schmidt,E.(Eds.),Proceedingsof FiltechEuropaConference.Dusseldorf,Germany,pp.51–57, vol.2.

Berman,A.S.,1953.Laminarflowinchannelswithporouswalls. J.Appl.Phys.32,1232.

Duignan,M.R.,Nash,C.A.,2012.Experimentsoncake

developmentincrossflowfiltrationforhighlevelwaste.ASME J.FluidsEng.134(8),081302.

Gan,Q.,Allen,S.J.,1999.Crossflowmicrofiltrationofaprimary sewageeffluent–solidretentionefficiencyandflux enhancement.J.Chem.Technol.Biotechnol.74,693–699.

Koltuniewicz,A.B.,Witek,A.,Bezak,K.,2004.Efficiencyof membrane-sorptionintegrateprocesses.J.Membr.Sci.239, 129–141.

Li,H.,Bertram,C.D.,Wiley,D.E.,1998.Mechanismsbywhich pulsatileflowaffectscross-flowmicrofiltration.AIChEJ.44(9), 1950–1961.

Lin,J.,Bourrier,D.,Dilhan,M.,Duru,P.,2009.Particledeposition ontoamicrosieve.Phys.Fluids21,073301–73311.

Oxarango,L.,Schmitz,P.,Quintard,M.,2004.Laminarflowin channelswithwallsuctionorinjection:anewmodeltostudy multi-channelfiltrationsystem.Chem.Eng.Sci.59,1039–1105.

Psoch,C.,Schiewer,S.,2006.Resistanceanalysisforenhanced wastewatermembranefiltration.J.Membr.Sci.280,284–297.

Rebai,M.,Prat,M.,Meireles,M.,Schmitz,P.,Baclet,R.,2010.A semi-analyticalmodelforgasflowinpleatedfilters.Chem. Eng.Sci.65,2835–3284.

Ting,K.C.,Wakeman,R.J.,Nassehi,V.,2006.Modelingflowin monofilamentfiltercloths:Part1—Predictionofpressure losse.Filtration6(2),150–215.

Figure

Fig. 1 – Technical scheme of an automatic filter with disk-type elements stacked over a distributor to form the filtering unit.
Fig. 4 – Filtration velocity along the filter screen: from top to bottom: filtration velocity calculated by the analytical model solution, filtration velocity from 3D CFD simulation in the plane limited by the dashed line in Fig
Fig. 5 – Variations of pressure drop versus filtration time: curves from top to bottom: numerical results assuming clogging by particles of minimal size 28 microns, data from experimental tests, numerical results assuming clogging by particles of minimal si
Table 2 – Size distribution of solid particles entering the filter expressed in terms of number of particles per 20 ml of fluid for 16 classes between 4 ␮m and 70 ␮m
+5

Références

Documents relatifs

Intense dissipation is envisioned here as a by- product of self-sustained positive feedbacks, whereas it is considered as a driving force in the currently debated theory of maximum

In the last 15 years, the performance of GaAs HEMT (high-electron mobility transistors) devices and silicon CMOS (complementary metal-oxide-semiconductors) have had

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Zaki Sabit Fawzi Philippe, Stéphane Robert, Bernard Bayard, “Automatic inspection of a residual resist layer by means of self-organizing map, ” Opt... Automatic inspection of a

To cite this version : Kamel, Mouna and Aussenac-Gilles, Nathalie and Buscaldi, Davide and Comparot, Catherine A semi-automatic approach for building.. ontologies from a collection

While stochastic colored Petri nets are a powerful means of timed behavior specification, they are too fined grained to be used directly by designers of component based systems..

The reported experiments have demonstrated that spatial nonlinear self-cleaning effects, previously observed at high beam powers in GRIN MMFs, can also be obtained in a quasi