• Aucun résultat trouvé

Codage et traitement de signal avancé pour les systèmes MIMO

N/A
N/A
Protected

Academic year: 2021

Partager "Codage et traitement de signal avancé pour les systèmes MIMO"

Copied!
236
0
0

Texte intégral

(1)

HAL Id: pastel-00000785

https://pastel.archives-ouvertes.fr/pastel-00000785

Submitted on 22 Nov 2010

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Codage et traitement de signal avancé pour les systèmes

MIMO

Abdelkader Medles

To cite this version:

Abdelkader Medles. Codage et traitement de signal avancé pour les systèmes MIMO. domain_other.

Télécom ParisTech, 2004. Français. �pastel-00000785�

(2)

Institut Eure om

TH  ESE

Presentee pour obtenir le grade de do teur

de l'E ole Nationale Superieure

des Tele ommuni ations

Spe ialite: Communi ation et Ele tronique

Abdelkader Medles

Codage et traitement de signal avan e pour

les systemes MIMO

Soutenue le 15 Avril 2004 devant le jury ompose de

Jean-Claude Bel ore President

Phillipe Loubaton Rapporteurs

Emre Telatar

Karim Abed-Meraim Examinateurs

Giuseppe Caire

Meriem Jaidane

(3)
(4)

Institut Eure om

PhD THESIS

Presented in order to obtain the degree of

do teur de l'E ole Nationale Superieure

des Tele ommuni ations

Spe iality: Communi ation and Ele troni

Abdelkader Medles

Coding and advan ed signal pro essing for

MIMO Systems

Defended on April 15, 2004 before the ommittee omposed of

Jean-Claude Bel ore President

Phillipe Loubaton Rapporteurs

Emre Telatar

Karim Abed-Meraim Examinateurs

Giuseppe Caire

Meriem Jaidane

(5)
(6)

First, I would like to thank Prof. Dirk Slo k, my thesis supervisor, for

his guidan e, en ouragements, ontinuous help and availability.

Igrateful toProf. Bel ore, fordoingme the honourofpresiding the jury

of my thesis, as well asProf. Loubaton, Prof. Telatar, Prof. Abed-Meraim,

Prof. Caire and Prof. Jaidanefor a epting tobemembers of the jury.

I alsothank InstitutEure om for givingmethe opportunity of

perform-ing my resear h invery good onditions. I spe iallythank the Mobile

Com-muni ations Department sta , with whom I had a lot of intera tions and

dis ussions.

My gratitudegoestomyparentsand myfamily. To themI dedi ate this

(7)
(8)

The use of multiple transmit and multiple re eive antennas in mobile

ommuni ations o ers a high potential to improve the bit rate and the link

quality. This an be a hieved by using a higher multiplexing rate and by

exploiting the diversity ontained in the hannel, under the onstraint of

a - eptable omplexity. The hannel knowledge availability has an important

impa t on the system design. In fa t, the Channel State Information (CSI)

at the transmitter (Tx) has an impa t on the oding, whereas the quality of

the hannelknowledge atthe re eiver (Rx) side has animpa t mainly onthe

dete tion and the hannel estimation.

The rst part of this thesis onsiders the ase of absen eof CSI atthe Tx

andperfe tattheRx. Wepropose theSpa e-TimeSpreading(STS),whi h is

aspa e-time odings hemebasedonlinearpre odingthatuseaMIMO

onvo-lutive pre lter. STSa hievesfullmultiplexingrateandisoptimizedtoexploit

maximum diversity and oding gains and to save the ergodi apa ity. STS

allows to use various re eiver stru tures of low omplexity. The Stripping

MIMO De ision Feedba k Equalizer (DFE), is a non-iterative re eiver that

dete ts the streamssu essively. Theperforman es of the Stripping are

eval-uatedin termof diversityversus multiplexingtradeo . Anothernon-iterative

re eiveristheConventionalDFEappliedtotheMIMO ase. Itdete tsjointly

symbolsfor di erentstreamsbut pro eed su essivelyin time. The third

pro-posed re eiver is an iterative one. It takes advantage of the presen e of the

binary hannel ode, anditerates between the linear equalizer and the binary

hannel de oder. Simulations are provided to evaluate its performan e.

In the se ond part we onsider hannels with partial CSI at the Tx and

perfe t CSI at RX. The partial knowledge in these ases an ome from the

de ompositionof the hannelin slow varying andfast varying parameters. It

an also be the result of the re ipro ity of the downlink and uplink physi al

(9)

ergodi apa ity.

Inthelastpart,the aseofabsen eofCSIatbothTxandRxis onsidered.

The apa ities of two hannel models, blo k fading and time sele tive, are

studied. Due to the absen e of CSI at Rx in this ase the hannel needs

to be estimated in pra ti al systems. We propose semi-blind estimators that

ombinetrainingandblindinformation. Identi ability onditionsarederived

(10)

L'utilisation d'antennes multiple a la transmission et re eption dans les

ommuni ations mobiles, o re d'importantes perspe tives pour a ro^tre le

debit et ameliorer la qualite du lien. Cela peut ^etre e e tue en utilisant un

plusimportantmultiplexagespatialetenexploitantladiversite ontenuedans

le anal, tout en gardant une omplexite a eptable. L'etat de onnaissan e

sur le anal a un impa t important sur la on eption de la haine de

trans-mission. En e et, l'information sur l'etat du anal (CSI) au transmetteur

(Tx) a un impa tsur le odage alors quelaqualite du CSI au re epteur(Rx)

a prin ipalement un impa t sur ladete tion et l'estimation du anal.

Danslapremierepartiede ettethesenousavons onsiderele asd'absen e

de CSI au Tx et un parfait CSI au Rx. On propose la dispersion

spatio-temporelle (STS), qui est un s hema de odage spatio-temporel base sur le

pre odage lineaire en utilisant un ltre multi-entree multi-sortie (MIMO).

Le STS e e tue un multiplexage de ux maximal, qui est optimise pour

ex-ploiter une diversite maximale, atteindre un bon gain odage et onserver

la apa ite ergodique. Un autre avantage du STS est qu'il permet d'utiliser

une variete de re epteurs de omplexite reduite. Le Stripping MIMO ave

egalisation a retour de de ision,est un re epteur non-iteratif qui dete te les

ux d'une maniere su essive. Les performan es du Stripping sont donnees

en terme du ompromis entre diversite et multiplexage. Un autre re epteur

non-iteratifestl'egaliseuraretourdede isionappliqueau as MIMO.Il

per-metladete tiondessymbolesdesdi erents uxd'unemaniere onjointemais

su essivement dans le temps. Le troisieme re epteur propose est iteratif.

Il pro te de la presen e d'un odage anal binaire et itere entre l'egaliseur

lineaire et le de odeur anal binaire. Des simulations sont presentees pour

evaluerles performan es.

Danslase ondepartieon onsideredes anaux ave un CSIpartiel au Tx

(11)

lade ompositiondu anal enparametreslents etrapides. Ellepeut aussi^etre

le resultat d'une re ipro ite du anal physique entre la liaison montante et

des endante. A es di erents as on presente des modeles de anauxadaptes

et on etudie la apa ite ergodique.

Dans la derniere partie on traite du as d'absen e de CSI aux Tx et Rx.

La apa ite de deux modeles de anaux, evanes ent par blo et sele tif en

temps, est etudiees. A ause de l'absen e de CSI au Rx le anal doit ^etre

estime dans les systemes utilises en pratique. On propose des estimateurs

semi-aveugle qui ombinent l'information de la sequen e d'apprentissage et

ellede lapartieaveugle. Les onditionsd'identi abilite sontobtenuesetdes

(12)

A knowledgments . . . i

Abstra t . . . iii

Resume . . . v

Listof Figures. . . xiii

Listof Tables . . . xvii

A ronyms . . . xix

Notations . . . xxi

1 Introdu tion 1 1.1 General MIMO Channel Model . . . 2

1.1.1 Rayleigh FlatFading MIMO Channel Model . . . 5

1.1.2 Separable Spatial Channel Model (Partial CSIat Tx) 6 1.1.3 Frequen y Sele tive Rayleigh Fading MIMO Channel Model . . . 6

1.2 Capa ity of MIMO Channel . . . 7

1.2.1 Flat Channel with Perfe t CSI . . . 7

1.2.2 Ergodi Capa ity (Imperfe t CSI atTx ) . . . 7

1.2.3 Outage Capa ity (Imperfe t CSI atTx) . . . 9

1.2.4 Asymptoti Behavior inBlo k Transmission . . . 10

1.3 Conventional Multi-Antenna Re eive Diversity . . . 11

1.4 Spa e-Time Coding for MIMO System . . . 12

1.5 Diversity and Multiplexing asDe ned by Zheng& Tse . . . . 16

1.6 Thesis Overview and Outline . . . 17

1.6.1 Part One: Absen e of CSI at Tx (and Perfe t CSI at Rx). . . 18

1.6.2 Part Two: Partial CSIat Tx (and Perfe t CSI atRx) . 20

(13)

I Absen e of CSI at TX 23

2 Linear Convolutive Spa e-Time Pre oding 25

2.1 Introdu tion . . . 26

2.2 Linear Pre ltering Approa h . . . 27

2.3 Capa ity . . . 29

2.4 Mat hed Filter Bound and Diversity . . . 31

2.5 PairwiseError ProbabilityP e . . . 31

2.5.1 Choi eof Q . . . 33

2.5.2 OptimalityforQAMConstellationsinthe CaseN tx =2 k 35 2.5.3 Cir ularConvolution . . . 37

2.5.4 Frequen y Sele tive Channel Case . . . 38

2.6 ML Re eption . . . 40

2.7 Con lusion . . . 40

3 Non-Iterative Rx: Design Alternatives 43 3.1 Introdu tion . . . 44

3.2 Stripping MIMO DFE (Su essive Interferen e Can ellation) Re eiver . . . 45

3.2.1 Stripping MMSEZF DFE Rx Design . . . 47

3.2.2 Stripping MMSEDFE Rx Design . . . 48

3.2.3 MatrixSpe tral Fa torizationConsiderations . . . 49

3.2.4 Stripping DFEand V-BLAST . . . 50

3.2.5 Pra ti alImplementation of SICRe eiver . . . 50

3.3 SIC Re eiverPro essing and Capa ity Issues . . . 51

3.3.1 Stripping MMSEDFE Rx . . . 51

3.3.2 Stripping MMSEZF DFE Rx . . . 53

3.4 Diversity vs. Multiplexing Tradeo . . . 54

3.4.1 Optimal Tradeo Curve for the Frequen y Sele tive Channel . . . 54

3.4.2 Tradeo Curve forthe SICRx . . . 56

3.5 Conventional MIMO DFERe eiver . . . 60

3.5.1 Conventional MMSE MIMO DFERx . . . 60

3.5.2 Conventional MMSE ZF MIMO DFERx . . . 63

3.5.3 De oding Strategy . . . 64

3.6 Stripping vs. Conventional MIMO DFE . . . 65

3.7 Diversityvs. MultiplexingTradeo oftheConventionalMIMO DFE anOpen Problem . . . 65

(14)

3.8 Con lusion . . . 66

3.A OutageCapa ityBehaviorofSIMOFrequen ySele tive Chan-nel . . . 67

3.B Proof of Lemma 1 . . . 71

3.C Proof of Theorem 1 . . . 75

3.D Proof of Theorem 2 . . . 76

3.E Proof of Theorem 3 . . . 78

3.F Proof of Theorem 5 . . . 80

4 Iterative Rx 83 4.1 Introdu tion . . . 84

4.2 CombiningLinear Pre oding and Binary Channel Coding . . . 84

4.2.1 En oding . . . 85

4.2.2 Iterative De oding . . . 87

4.2.3 ComplexityComparison with Threading . . . 89

4.3 Multi-Blo kTime Diversity . . . 89

4.4 Performan e Analysis . . . 92

4.4.1 Comparison of Threading and STS . . . 92

4.4.2 Use of Walsh Hadamard (WH) matrix as Pre oding matrix . . . 93

4.5 Con lusion . . . 93

II Partial CSI at TX 97 5 On MIMO Capa ity with Partial CSI at Tx 99 5.1 Introdu tion . . . 100

5.2 Channel Models and Assumptions . . . 100

5.2.1 Pathwise Channel Model . . . 101

5.2.2 Channel Models for Limited Re ipro ity . . . 101

5.3 Results for Pathwise Channel Model . . . 102

5.3.1 LowSNR . . . 102

5.3.2 High SNR . . . 104

5.3.3 Water llingSolutionfortheChannel Covarian eMatrix105 5.3.4 Optimal Solution . . . 105

5.3.5 Solutionfor Separable Spatial Channel Model . . . 105

5.4 Results for Channel Models with LimitedRe ipro ity . . . 106

(15)

5.5.1 Pathwise Model . . . 109

5.5.2 LimitedRe ipro ity. . . 110

5.6 Con lusion . . . 110

III Absen e of CSI at RX 115 6 Mutual Information without CSI at Rx 117 6.1 Introdu tion . . . 118

6.2 Mutual Information De omposition . . . 119

6.2.1 GeneralFlat Fading Model. . . 119

6.2.2 MI De omposition . . . 119

6.3 Asymptoti Behavior oftheCapa ity forBlo kFadingChannel121 6.3.1 Channel Estimationfor Blo k FadingModel . . . 123

6.4 Capa ity Behaviorand Bounds for Time Sele tive Channel . . 125

6.4.1 Case of Di erentialEn oding . . . 127

6.4.2 GeneralCase . . . 130

6.5 Correlated MIMO Channel Model . . . 132

6.6 Observations. . . 133

6.7 Con lusion . . . 134

6.A Appendix A . . . 135

6.B Appendix B . . . 136

7 Semi-Blind Estimation for MIMO Channels 139 7.1 Introdu tion . . . 140

7.2 MIMO Flat Channel . . . 141

7.2.1 Maximum LikelihoodChannel Estimator . . . 142

7.2.2 InformationMatrix Issues . . . 143

7.2.3 GaussianSemi-BlindApproa h . . . 144

7.2.4 Deterministi Semi-BlindApproa h . . . 146

7.3 MIMO Frequen ySele tive Channel . . . 146

7.3.1 MIMO LinearPredi tion . . . 148

7.3.2 Deterministi Semi-BlindApproa h . . . 150

7.3.3 GaussianSemi-BlindApproa h . . . 152

7.3.4 Augmented Training-Sequen e Part . . . 154

7.4 Performan e Analysis . . . 155

7.4.1 Flat hannel ase . . . 155

(16)

7.5 Con lusion . . . 157

7.A Proof of Theorem 1 . . . 158

7.B Proof of Theorem 2 . . . 159

General Con lusion 167 Resume detaille en fran ais 171 7.3 Introdu tion . . . 172

7.3.1 Modeles des Canaux MIMO . . . 172

7.3.2 Capa itedu Canal . . . 173

7.3.3 Codage Spatio-Temporel pour des Systemes MIMO . . 174

7.3.4 Diversiteet Multiplexage omme De nis par Zheng & Tse . . . 175

7.4 Pre odage Spatio-TemporelLineaire etConvolutif . . . 177

7.4.1 Re epteur ML . . . 178

7.5 Rx Non-iteratif: Alternatifde Con eption . . . 178

7.5.1 Stripping MIMO DFE . . . 179

7.5.2 CompromisDiversite-MultiplexageduStrippingMIMO DFE . . . 180

7.5.3 MIMO DFE Conventionnel . . . 184

7.6 Re epteur Iteratif . . . 185

7.6.1 Codage . . . 185

7.6.2 De odage Iteratif . . . 185

7.6.3 Analyse de Performan e . . . 186

7.7 Modeles de Canal . . . 189

7.7.1 Modele aChemins . . . 189

7.7.2 Modele aRe ipro ite Limitee . . . 189

7.8 Resultats. . . 190

7.8.1 Modele aChemins . . . 190

7.8.2 Modele aRe ipro ite Limitee . . . 191

7.9 Resultats des Simulations . . . 191

7.10 Information Mutuelleen Absen e de CSI auRx . . . 193

7.10.1 De omposition de l'InformationMutuelle . . . 193

7.10.2 ComportementAsymptotiquedesCanauxEvanes ants par Blo . . . 194

7.11 EstimationSemi-Aveugle des Canaux MIMO . . . 194

7.11.1 Canal MIMO plat . . . 194

(17)
(18)

1.1 MIMO hannel model. . . 3

1.2 PEP vs. SNR . . . 15

1.3 Diversity vs. multiplexingoptimal tradeo . . . 17

2.1 General ST oding setup.. . . 27

2.2 Two hannel oding, interleaving, symbol mapping and de-multiplexingalternatives. . . 29

2.3 STS of one stream . . . 34

2.4 STS of all streams . . . 34

3.1 Stripping MIMO DFE re eiver. . . 45

3.2 Diversity vs. multiplexing optimal tradeo for frequen y se-le tive hannel with N tx N rx . . . 56

3.3 Diversityvs. multiplexingtradeo ofdi erents hemes. N tx = N rx =4,L=1. . . 59

3.4 Convetional MIMO DFE re eiver . . . 60

4.1 En oder for spa e-time spreading. . . 86

4.2 Serial-to-parallel onverted spa e-timeblo kbeforepre oding for N s =4.. . . 86

4.3 Iterative de oder with interferen e an ellation. . . 86

4.4 Blo k interleaver for F=2. . . 90

4.5 STS/Threading for (N tx ;N rx )=(2;2),L=1,F=1;2;4. . . 94 4.6 STS/Threading for (N tx ;N rx )=(2;2),L=2,F=1;2;4. . . 94 4.7 STS/Threading for (N tx ;N rx )=(4;4),L=1,F=1;2;4. . . 95 4.8 STS/Threading for (N tx ;N rx )=(8;8),L=1,F=1;2;4. . . 95 4.9 STS (N s =1;2;4)vs. Threading (QPSK, BPSK) and STOD for (N tx ;N rx )=(4;2), L=1 and F =1. . . 96

(19)

4.10 Two hoi e of the pre oding matrix: optimized Q vs. Walsh

Hadamard for L=1 and F =1. . . 96

5.1 Result for N tx =N rx =4, L p =2. . . 111 5.2 Result for N tx =N rx =4, L p =10. . . 112

5.3 Results for limited re ipro ity,N rx =N tx =4, Model1. . . 112

5.4 Results for limited re ipro ity,N rx =N tx =4, Model2. . . 113

5.5 Results for limited re ipro ity,N rx =N tx =4, Model3. . . 113

6.1 E e tive SNR for time sele tive hannel . . . 130

6.2 Capa ity behavior of time sele tive hannel . . . 131

7.1 NormalizedMSEvsN TS : at hannel,N tx =2;N rx =4; N B = 400, SNR= 10dB. . . 161

7.2 NormalizedMSEvsSNR: at hannel,N tx =2;N rx =4; N B = 400, N TS =4. . . 161 7.3 NormalizedMSEvsN TS : at hannel,N tx =4;N rx =4; N B = 400, SNR= 10dB. . . 162

7.4 NormalizedMSEvsSNR: at hannel,N tx =4;N rx =4; N B = 400, N TS =4. . . 162 7.5 NormalizedMSEvsN TS : at hannel,N tx =4;N rx =2; N B = 400, SNR= 10dB. . . 163

7.6 NormalizedMSEvsSNR: at hannel,N tx =4;N rx =2; N B = 400, N TS =4. . . 163

7.7 Normalized semi-blind hannelestimation MSE, s enario1. . . 164

7.8 Normalized semi-blind hannelestimation MSE, s enario2. . . 164

7.9 Normalized semi-blind hannelestimation MSE, s enario3. . . 165

7.10 Normalized semi-blind hannelestimation MSE, s enario4. . . 165

7.11 Normalized semi-blind hannelestimation MSE, s enario5. . . 166

7.12 Compromis diversite-multiplexage . . . 176

7.13 S hema General de Transmission. . . 177

7.14 Stripping MIMODFE. . . 179

7.15 Compromisdiversite-multiplexaged'un analsele tifenfrequen e182 7.16 Compromis diversite-multiplexage de di erentes te hniques. N tx =N rx =4, L=1. . . 183

7.17 MIMO DFE Conventionnel. . . 184

7.18 Stru ture de l'en odeur. . . 185

(20)

7.20 STS/Threading pour (N tx ;N rx )=(2;2),L=2,F=1;2;4. . . . 187 7.21 STS/Threading pour (N tx ;N rx )=(4;4),L=1,F=1;2;4. . . . 188

7.22 Modele a hemins, N

tx =N rx =4,L p =2. . . 191

7.23 Modele are ipro ite limitee, N

rx =N tx =4. . . 192 7.24 MSE vsN TS : anal plat,N tx =2;N rx =4; N B =400, SNR= 10 dB. . . 197

(21)
(22)

4.1 Blo kdiversityforsomepopularrate1/2binary onvolutional

odes mapped onto BPSK and QPSK(with Gray labeling).. . 90

7.1 Channel lengths, estimated lengths, training and blind data

lengths fordi erent s enarios where N

tx

(23)
(24)

Here are the main a ronyms used in this do ument. The meaning of an

a ronym isusually indi ated on e, when it rst o urs in the text.

AWGN Additive White GaussianNoise

BCJR Bahl, Co ke, Jelinek and Raviv (algorithm)

BER Bit Error Rate

BPSK Binary Phase ShiftKeying

CDMA Code-DivisionMultiple A ess

CRB Cramer-Rao Bound

CSI Channel State Information

DA Data-Aided

DFE De ision Feedba k Equalizer

DFT Dis rete Fourier Transform

DSB Deterministi Semiblind

DSBA Deterministi SemiblindAugmented

FIR FiniteImpulse Response

IC Interferen e Can eler or Interferen e Can ellation

IDFT Inverse Dis rete FourierTransform

ISI Inter-Symbol Interferen e

i if and only if

i.i.d. independent & identi allydistributed

GSB GaussianSemiblind

GSBA GaussianSemiblindAugmented

QPSK Quarternary Phase ShiftKeying

LB Lower Bound

LL LogLikelihood

(25)

MAP Maximum A Posteriori

MFB Mat hed Filter Bound

MI Mutual Information

MIMO Multiple Input Multiple Output

MISO Multiple Input Single Output

ML Maximum Likelihood

MMSE Minimum Mean Square Error

MRC Maximum Ratio Combining

MSE Mean Square Error

PIC ParallelInterferen e Can ellation

PSP Per-Survivor-Pro essing

pdf probability density fun tion

psdf powerspe tral density fun tion

Rx Re eiver

SB Singleton Bound

SIC Su essive Interferen e Can ellation

SIMO Single Input Multiple Output

SINR Signal toNoise Plus Interferen e Ratio

SNR Signal-to-Noise Ratio

ST Spa e-Time

STC Spa e-Time Code/Coding

STOD Spa e Time OrthogonalDesign

STS Spa e Time Spreading

SVD Singular Value De omposition

S/P Serial toParallel onversion

sIsO soft-Input soft-Output

TS Training Sequen e

Tx Transmitter

UB Upper Bound

UDL Upper DiagonalLower

UMTS Universal Mobile Tele ommuni ation System

vs. versus

w.p. with probability

w.r.t. with respe t to

(26)

Here is alist ofthe main notations and symbolsused in this do ument. We

have tried to keep onsistent notations throughout the do ument, but some

symbolshave di erentde nitions dependingonwhen theyo urinthe text.

a S alar variable

a Ve tor variable

A Matrixvariable

a(t); a() Continous-time fun tion of the temporalvariable t or

a(n) Dis rete-timefun tion a(n)=a(nT) fora given T

a n

Dis rete-timefun tion a

n

=a(nT) for agiven T

j =

p

1 The unity imaginarynumber

<(x) Realpart of x

=(x) Imaginary part of x

D Diagonalmatrix

a(z) z-transformof a(n)

()  Complex onjugate () T Transpose () t Blo k transpose () H Hermitiantranspose A y (z)=A H (1=z  ) I m

mm Dimensional Identity matrix

Krone ker produ t

Efg Expe tation operator

detfAg Determinantof the matrix A

trfg Tra e operator

diagfAg Diagonalmatrix of the diagonalelements of the matrix A

:

= Exponentialequality

ve (M ) M writtenin ave tor form

N tx

(27)

N rx

Number of re eive antennas

N s Number of streams P X X(X H X) 1 X H

: Proje tion onthe olumnspa e of X

E b

Energy per informationbit

E b

=N 0

Signal tonoise ratio per informationbit

N 0

Onesided noisepowerspe traldensity ofthe AWGN hannel

I(X;Y) Mutual informationbetween randomvariables X and Y

P(A) Probability of event A.

O(:) Of the order of x.

Æ ij

Krone kerdelta

ln(:) Natural logarithm

h(X) Entropy mesure of the sto hasti variable X

Ntx M i=1 X i blo k-diagfX 1 ;:::;X Ntx g

(28)

Introdu tion

In this hapter we introdu e the prin iple of multiple transmit antennasand

multiple re eiveantennas used in wireless ommuni ation, whi h an be seen

more generally as Multiple Input Multiple Output (MIMO) system. We rst

de ne the general hannel model, and spe ify the apa ity for the di erent

asesof hannel knowledge. We present some basi s on the design of

spa e-time odes in the ase of absen e of hannel knowledge at the transmitter

(Tx). We introdu e then some notions on the diversity vs. multiplexing of

Zheng &Tse and on lude this hapter by an overviewof the di erent parts

(29)

Sin etheintrodu tion,independently,ofspatialmultiplexingbyA.Paulraj

inaStanfordUniversitypatentand by Fos hini[1℄atBellLabs in 1994,the

use of multiple transmit and multiple re eive antennas has be ome the

fo- us of a lot of works. The reason behind this big interest of the s ienti

ommunity is related to the ability of MIMO systems to o era new spatial

dimension,otherthanthe timeand frequen y dimensions,thatin reases the

ergodi (average) apa ity of the hannel by a multiplying fa tor equal to

the minimumbetween the numberof transmitvs. re eiveantennas (N

tx vs.

N rx

) [2℄, and allows to lower the outage probability by the ontribution of

N tx

:N rx

diversity omponents orresponding to all the hannel oeÆ ients.

UnlikeSISO at hannel,MIMO at hannel(with absen e of hannelstate

information at the transmitter) su ers from interferen e between di erent

transmit antennas. The re ent attempts to exploit this high potential for

wireless ommuni ation have to make a ompromise in order to handle an

in reaseinrateandtakeadvantageoftheavailablediversityto ombatfading

and destru tive interferen e whithin a eptable omplexity limits.

This hapter is an introdu tion to the general framework. We present

the general MIMO linear model in wireless ommuni ation, and detail the

underlyingmodels for spe i situations. The apa ities of su h as hannels

are alsointrodu ed. Wepresent the lassi al multi-antennare eive diversity

and the spa e-time oding forMIMO systems. The diversity and

multiplex-ing as de ned by Zheng & Tse are also introdu ed. Finally we provide an

overview of this thesis.

1.1 General MIMO Channel Model

Considerlinear digitalmodulationoveralinear hannelwith additive

Gaus-sian noise. The number of antennas is N

tx

at the transmitter side and N

rx

atthe re eiver as represented in g. 1.1. We assume a linear time invariant

model for the e e t of the hannel on the transmitted signals. The re eived

signal atRx antenna i an be writtenin baseband as

y i (t) = Ntx X n=1 +1 X l = 1 x n (l)h in (t lT p ) + v i (t); (1.1) wherethe x n

(l)arethe transmittedsymbolsfromtheantennasour en,T

p is

the ommon symbol period, h

in

(30)

...

...

+

environment

Scattering

Linear model

y 1 x 1 x 2 x N tx y 2 y N rx H v x y

(31)

fromtransmitter n tore eiver antenna i. Assumingthe fx n

(l)g and fv

i (t)g

tobe jointly (wide-sense) stationary, the pro esses fy

i

(t)gare jointly

(wide-sense) y lostationary with period T

p

. If fy

i

(t)g is sampled with period T

p ,

thesampledpro essis(wide-sense)stationary. Samplinginthiswayleadsto

anequivalentdis rete-timerepresentation. WeassumetheMIMO hannelto

be ausaland niteimpulseresponse (FIR).In parti ular,aftersamplingwe

assumethe impulseresponse to beof length L. The dis rete-timeRx signal

an be represented inve tor form as

y k = Ntx X n=1 L 1 X l =0 h n (l)x n (k l)+v k = L 1 X l =0 H l x k l +v k ; (1.2) where H l is N rx  N tx with (H l ) in = h in (l) for i = 1;2;:::;N rx ; n = 1;2;:::;N tx and y k = 2 6 6 6 4 y 1 (k) y 2 (k) . . . y N rx (k) 3 7 7 7 5 ;v k = 2 6 6 6 4 v 1 (k) v 2 (k) . . . v N rx (k) 3 7 7 7 5 ;h n (l)= 2 6 6 6 4 h 1n (l) h 2n (l) . . . h N rx n (l) 3 7 7 7 5 : (1.3)

ThenoiseisassumedtofollowawhiteGaussiandistribution,v

k CN (0; 2 v I N rx ),

thetransmittedsignalis hara terizedbyitspowerspe traldensity fun tion

(psdf) S xx (z) with 1 2j H dz z trS xx (z) =N tx  2 x , j = p

1, and the

signal-to-noise ratio is SNR = N tx  2 x  2 v = N tx

. The notation tr(:) denotes the tra e

fun tion.

Letqdenotethetimeshiftoperator: (q

1 x) k =x k 1 ,andH(q)= L 1 X l =0 H l q l .

The re eived signal is then

y k =H(q)x k +v k ; (1.4)

and the psdf of the re eived signal is

S yy (z)=H(z)S x x (z)H y (z)+ 2 v I; (1.5)

(32)

where H(z)is z-transformof the hannel impulseresponse.

We ould alsoobtainmultiple hannelsinthe dis retetimedomainby

over-sampling the ontinuous-time re eived signals w.r.t. the symbol rate (inthe

ase of the presen e of ex ess bandwidth),the antennas ould alsobe

gener-alized sensors (polarization, 4 EM omponents [3, 4, 5℄), and in the ase of

passband transmission of real symbol onstellations we an alsodouble the

numberof hannelsbytaking thein-phaseand in-quadrature omponentsof

the re eived signal.

Weassumeherethe hanneltobe onstantforthe durationof oneframe(or

blo k), however the hannel an varyfrom blo k to blo k, this is the reason

why this modelis alledblo kfading hannelmodel,whi histhe most

om-mon hannelmodel used inpapers dealing with wirelessMIMO systems.

Two lassesof hannelsaretobedistinguished, at hannels(L=1)and

fre-quen y sele tive hannels(L>1). The aseL>1isalso alledInter-Symbol

Interferen e (ISI) hannel. In most of the papers on MIMO the hannel is

assumed tobe at, the impulseresponse being simplythen H=H

0 .

In the di erent parts of this thesis report we willdeal with di erent

on g-uration of the Channel State Information(CSI): presen e at Rx vs. Tx and

absen e vs. perfe t or partial.

In the absen e of CSI at Tx we still assume the knowledge of the average

power ofthe hannel EtrfH

H Hg (by normalization=N rx :N tx ) [2℄, inorder

to be able to onstru t a statisti al model. This model is hosen to be a

maximum entropy modelto re e t the absen e of CSI, itleads to Gaussian

i.i.d. omponents and orresponds hen e to the Rayleigh at fadingMIMO

hannelmodel.

1.1.1 Rayleigh Flat Fading MIMO Channel Model

This model has i.i.d. entered Gaussian omponents (H)

mk  CN (0;1) for 1mN rx and 1k N tx . We denote p =min(N rx ;N tx ) and q =max(N rx ;N tx ). Let USU H = H H H

be the eigenve tor de omposition of H

H H, where S = diagfs 1 ;:::;s p g

where the eigenvalues are organized inin reasing order(s

1 s 2 :::s p ), and U=[u 1 ;:::;u p ℄: N tx

p ontains the eigenve tors.

In[2℄,TelatarhasshownthatUisuniformlydistributedovertheGrassmann

(33)

pdf p(s 1 ;:::;s p )=K 1 q;p p Y i=1 s q p i Y i<j (s i s j ) 2 e P i si ; (1.6) whereK q;p is anormalizing onstant.

1.1.2 Separable Spatial Channel Model (Partial CSI

at Tx)

Inthe ase of partialCSIat the Tx, the MIMO hannelis oftenmodeled as

aspatially separable hannel model. In this model the hannel isgiven by

H= 1=2 1 W 1=2 2 ; (1.7) where W is a N rx N tx

random matrix of i.i.d. omplex ir ular Gaussian

elements withmean 0 and varian e 1.

Thematrix 

1

isthe re eivearray ovarian ematrixand 

2

isthe transmit

array ovarian ematrix: EfH

H Hg=trf 1 g 2 ; EfHH H g=trf 2 g 1 . For 1 =I N rx ; 2 =I N tx

we re over the Rayleigh at fadingMIMO hannel

model. Infa t,theseparable hannelmodelis onstru tedasageneralization

of the Rayleigh MIMO hannel model used in ase of no CSI at the Tx to

the ase when the se ond order statisti s of the hannel are present at the

Tx.

1.1.3 Frequen y Sele tiveRayleigh Fading MIMO

Chan-nel Model

We onstru t this modelas a generalizationof the RayleighMIMO hannel

model to the ase of frequen y sele tivity, it in orporates the power delay

pro leknowledgefor nitedelayspreadL. ForthismodelH

l

; l =0;:::;L

1 are independent, and ea h H

l

has i.i.d Gaussian omponent (H

l ) mk  CN(0; 2 l ) for 1m  N rx and 1 k N tx .  2 l ; 0 l L 1; re e t the

(34)

1.2 Capa ity of MIMO Channel

1.2.1 Flat Channel with Perfe t CSI

Fora at hannelwithperfe tCSIatthe Txandthe Rx, the apa ity isthe

maximum a hievable rate under the power onstraint, and is a hieved by a

frequen y at and zero-mean input

C(H)= max trfS xx gP lndet (I Nrx + 1  2 v HS xx H H ); (1.8)

where P is the power onstraint limit, S

xx

(z) = S

xx

is now simply the

ovarian e and the solution is obtained by water llingon the eigenvalues of

H H

H (spatialwater lling) [2℄. The apa ity is given in nats/se ond/Hz.

In the ase of a MIMO frequen y sele tive hannel the solution is a

water- lling overthe two dimensions spa eand frequen y, the solutioninthis ase

is not trivial.

1.2.2 Ergodi Capa ity (Imperfe t CSI at Tx )

In the aseof imperfe tCSI(noorpartialCSI)atthe Txandperfe t CSIat

Rx the hannel has apriori distribution. The instantaneous apa ity is now

a sto hasti quantity, a ommonmeasure is the average orergodi apa ity

C = max 1 2j H dz z trfS xx gP E H 1 2j I dz z lndet (I N rx + 1  2 v H(z)S x x (z)H y (z)); (1.9)

where the expe tation E

H

is here w.r.t. the hannel, and

1 2j H dz z g(z)= R 1 2 1 2 g(e j2f

)df istheintegralovertheunit ir leforafun tion

g(:).

The ergodi apa ity is hen e the average of the instantaneous apa ity, it

takes its full sense if we are able to en ode the information to transmit

over several hannel realizations (independent blo ks). Finally it be omes

a hievable if the transmitted odewords experien e an in nite number of

hannelrealizations.

Inthe aseofRayleigh atfadingMIMO hannelmodel,Telatarhasshownin

[2℄ that the ergodi apa ity isa hieved by awhite input(S

xx (z)= 2 x I N tx ,  2 x = P N tx ) C= E H lndet (I Nrx +HH H ): (1.10)

(35)

In fa tin this ase the hannel distribution isinvariantby any permutation

oftheTxantennas,theyplay symmetri alrolesandhen ethereisno

prefer-able dire tionof transmission, yieldingto aspatially white input.

High SNR :Asymptoti allyfor high SNRit is shown in[2℄ that

C=O(min(N

tx

;N

rx

)ln),orequivalentlythattheMIMO hannelperforms

asymptoti allyas wellas an equivalent number of parallel AWGN hannels

equaltotherankofH. Theseasymptoti performan esoftheergodi

apa -ity arethe same asthe oneof the apa ity foraMIMO hannelwith perfe t

CSIat Tx.

The ergodi apa ity formula an be generalized to the frequen y sele tive

ase, the following theorem givesthe desiredresult.

Theorem1: Fora hannelwithafrequen ysele tiveRayleighfadingmodel

(se tion1.1.3) the ergodi apa ity is

C = E H 1 2j I dz z lndet (I Nrx +H(z)H y (z)); (1.11) where= P Ntx 2 v

Proof : Byapplying the resultof the at hannel ase toea h frequen y,we

on ludethat forea hfrequen y the psdfisspatiallywhite, hen eS

xx (z)= s xx (z)I Ntx , with 1 2j H dz z s xx (z)  P N tx

. On the other hand, for every z

1 on

the unit ir le H

l z

l

1

; l = 0;:::;L 1 have the same joint distribution as

H l ; l =0;:::;L 1, and by onsequen e H(zz 1 ) asH(z),then E H lndet (I Nrx + s xx (z)  2 v H(z)H y (z)) = E H lndet(I Nrx + s xx (z)  2 v H(zz 1 )H y (zz 1 )) 8z 1 withjz 1 j =1 = 1 2j H dz 1 z1 E H lndet(I N rx + s xx (z)  2 v H(zz 1 )H y (zz 1 )); (1.12)

and the ergodi apa ity

1 2j H dz z E H lndet (I N rx + s xx (z)  2 v H(z)H y (z)) = 1 2j H dz z 1 2j H dz 1 z 1 E H lndet (I Nrx + s xx (z)  2 v H(zz 1 )H y (zz 1 )) = 1 2j H dz2 z 2 1 2j H dz z E H lndet (I Nrx + s xx (z)  2 v H(z 2 )H y (z 2 ))  1 2j H dz 2 z2 E H lndet(I N rx + 1 2j H dz z s xx (z)  2 v H(z 2 )H y (z 2 ))  1 2j H dz 2 z2 E H lndet(I N rx +H(z 2 )H y (z 2 )); (1.13)

(36)

inthe se ondequalityweoperateavariable hangezz 1

!z

2

,whereas inthe

third inequality we exploit the on avity of the lndet fun tion over the set

of positivede nite matri es. The nal inequality shows that

E H 1 2j H dz z lndet (I Nrx +H(z)H y

(z)) is an upper bound on the apa ity,

however this bound is a hieved for S

xx (z)= 2 x I N tx . 

1.2.3 Outage Capa ity (Imperfe t CSI at Tx)

Fora hannelwithimperfe tCSIattheTx,andinthe asewheretheen oder

sees a limited number of hannel realizations (for instan e we onsider the

ase of one hannel realization) the ergodi apa ity makes no sense, the

outage apa ity is then moreappropriate. In fa t,for agiven SNR and rate

R , it expresses the probability that the transmitted rate is larger then the

instantaneous apa ity (transmissionfailure)

P out (R ) = P(C(H)<R ) = P( 1 2j H dz z lndet(I N rx +H(z)S xx (z)H y (z))<R ); (1.14) where S xx

(z) isnormalized here tohave (

1 2j H dz z trS xx (z)=N tx ).

For agiven level (0 1)of the outage, the outage apa ity is de ned

as C out ( )=(P out ) 1 ( ); (1.15) the hoi eofS x x

(z)istheonethatmaximizesC

out

,paperslike[6,7,8℄

stud-ied this problem. They show that for separable spatial at hannel model

with well onditionned 

2

, and forlowoutage(small )the transmitter

op-timalinput olor tends tobewhite S

xx (z)= 2 x I N tx .

An other importantresult for at hannelis shown in [9℄, where for

asymp-toti ally high SNR, Rayleigh at fading hannel and for any onstant and

nite rate R we have

P out (R )=O  Ntx:Nrx  : (1.16)

TheexponentoftheSNRN

tx :N

rx

is alledthediversitygainandisrelatedto

the diversity gain thatarise inthespa e-time ode design(se tion1.4). The

diversitygain orrespondstotheasymptoti slopeoftheerrorprobability(or

outageprobability),andisequaltothetotalnumberofindependentdiversity

(37)

1.2.4 Asymptoti Behavior in Blo k Transmission

Letusassumethat we transmitoverablo kof lengthT, there eived signal

an then be writtenas Y=A T (H)X+V; (1.17) whereY =[y T 1 ;y T 2 ;:::;y T T+L 1 ℄ T , X=[x T 1 ;x T 2 ;:::;x T T ℄ T and V=[v T 1 ;v T 2 ;:::;v T T+L 1 ℄ T . A T (H)isaN rx (T+L 1)N tx T blo ktoeplitz

matrix with rst blo k olumn [H

T 0 ;H T 1 ;:::;H T L 1 ℄ T . A T (H)= 2 6 6 6 6 6 6 6 6 6 6 6 4 H 0 0 ::: 0 H 1 H 0 . . . . . . . . . H 1 . . . 0 H L 1 . . . . . . H 0 0 H L 1 . . . H 1 . . . . . . . . . . . . 0 ::: 0 H L 1 3 7 7 7 7 7 7 7 7 7 7 7 5 : (1.18)

Theinstantaneous apa ity (perinputsymbol)ofthe blo ktransmissionfor

whiteinput is C T (H)= 1 T lndet (I NrxT +A T (H)(A T (H)) H ): (1.19)

The following lemma gives an important result on the limit of C

T

(H) for

large T.

Lemma 1: The limitof the apa ity C

T (H) is lim T!+1 C T (H)=C(H)= 1 2j I dz z lndet (I+H(z)H y (z)): (1.20)

Proof: This is ageneralization of the SISO ase shown in [10, 11℄, the proof

issimilar.

Corollary 1: C

T

(H) onverges in distributionto C(H).

Proof: The limit in eq.(1.20) implies that C

T

(H) onverges almost surely

toC(H), and hen e C

T

(38)

The prin ipal onsequen e of Corollary 1 is that asymptoti ally for large

blo klengthT >> L,C

T

(H)havethesame distributionasthe oneofC(H),

then all the stated results for the ontinuous apa ity C(H) apply

asymp-toti ally to C

T (H).

1.3 Conventional Multi-Antenna Re eive

Di-versity

The lassi alMulti-antennadiversityte hniqueiswell-knowntoimprovethe

quality of the wireless link [12, 13, 14, 15℄. The hannel in these ases is

SIMO (N

tx

=1),for at hannelthe re eived signal iswritten

y k =hx k +v k ; (1.21) where h= 2 6 6 6 4 h 1 h 2 . . . h N rx 3 7 7 7 5 ; (1.22)

and the transmittedsignal x

k

isa s alar now.

By applying aMaximum Ratio Combining (MRC) re eiver

y k = h H jjhjj y k = jjhjjx k +v k ; (1.23) where jjhjj = q P N rx i=1 jh i j 2 and v k = h H jjhjj v k

follows a zero-mean Gaussian

distribution with varian e 

2

v .

TheresultisaSISO fading hannelwithinstantaneous apa ityC(jjhjj

2

)=

ln(1+jjhjj

2

),a hieved for Gaussianwhite input.

Theinstantaneous apa ityC(jjhjj

2

)isanin reasingandnotbounded

fun -tion of the e e tive SNR:jjhjj

2

. Then for a given R >0 there exists >0

that veri es =C

1

(R ) and su h that

P out (R )=P(C(jjhjj 2 )<R )=P(jjhjj 2 <  ): (1.24)

(39)

The quality of the wireless link is related to the e e tive SNR (jjhjj 2 ) dis-tribution,P(jjhjj 2 < 

)isa measureof thisquality,and the aboveequalities

showthe tight relationbetween the outage apa ity and this measure.

jjhjj 2

has aChi-square pdf with2N

rx

degrees offreedom, we an then

evalu-ate P

out

(R ;) analyti ally. However, we an alsoapply the Cherno bound

to derive an upper bound, this method is simpler and applies for the ase

wherethe omponentsof h are stillGaussianbut not i.i.d.

P(jjhjj 2 <  )= E1 fjjhjj 2 g<0 ; (1.25) and 1 fjjhjj 2 <  g is upperbounded by e (jjhjj 2 )

,for any >0, then

P(jjhjj 2 <  )  min >0 Ee (jjhjj 2 ) = min >0   () = min >0 e  R e jjhjj 2 f(h)dh; (1.26) wheref(H)isthepdf ofh,=jjhjj 2 and  ()= Ee  isthe

har-a teristi fun tion of . The se ond inequality orresponds to the Cherno

upper bound.

The hannel omponentsareassumedtobeGaussianwith ovarian eC

h h =

UDU H

and rank r(= number of diversity sour es). D is an rr positive

de nitediagonalmatrix ontainingthe eigenvalues andU is N

rx

runitary

matrix of the eigenve tors (U

H U =I r ). The integralis 1 det(D) Z e h H UU H h e h H UD 1 U H h dh = det(I r +D 1 ) 1 det (D) ; (1.27)

wherewe use equalityjjhjj

2

=h

H UU

H

h. Bytaking =1the upperbound

is nally P(jjhjj 2 <  )  e det ( D+Ir) = O( r ) : (1.28)

This shows that the MRC exploits all the available sour es of diversity in a

SIMO hannel.

1.4 Spa e-Time Coding for MIMO System

The MIMO hannel apa ity as we have seen in se tion 1.2, shows a high

(40)

wire-less link. The main problem is how to deal with the inter-antennas

inter-feren e, the rst response was given in [1℄. The proposed s heme, alled

V-BLAST, transmitsindependentstreamsonthe di erentantennasand use

Su essive Interferen e Can ellation (SIC) at the re eiver side. Even if this

s heme allows toa hievea highdata rate,itis farfromexploitingallthe

di-versityadvantageoftheMIMO hannel. In[16℄Tarokh etalproposedtouse

new odes, alled later Spa e-Time Codes (STC), that ombine the hannel

ode with the multiple transmitantenna aspe t, and they also introdu eda

new design riteria forthere onstru tion.

Spa e-Time Code Design Criteria

TheSTC designappliesfornon-adaptives heme,non-adaptiveinthe SNR,

the rate isthen onstant and the numberof odewords is nite.

We onsiderthetransmissionofthe odedsymbolsforadurationofT symbol

periods over a at MIMO hannel. The spa e-time ode an be then

rep-resented in N tx T matrix form: C= 1 x [x 1 ;x 2 ;:::;x T ℄. The a umulated re eived signal is Y = x HC+V; (1.29) where Y=[y 1 ;y 2 ;:::;y T ℄ and V=[v 1 ;v 2 ;:::;v T ℄ are N rx T matri es.

We onsider a Rayleigh at fading i.i.d. MIMO hannel, and a Maximum

Likelihood(ML)re eiver. The hannelisunknownattheTx(no CSIatTx)

and perfe tly known at the Rx (perfe t CSI at Rx). For a transmitted C,

the unionbound gives usan upper bound onthe errorprobability

P(error=C) X C 0 2fC fCgg P(C !C 0 ); (1.30) whereP(C!C 0

)isthePairwiseErrorProbability(PEP) ortheprobability

of de iding erroneously C

0

fortransmitted C. C is the ode book.

The STC design tries to minimize the error probability by minimizing the

PEP.

The ML de isionrule is given by

^ C=argmin C2C jjY  x HCjj F ; (1.31) where jjMjj 2 F = trfM H

M g is the Frobenius norm of M. Then the

ondi-tional PEP of Cand C

0

is given by

P(C!C

0

(41)

whereÆ isthe de isionmetri di eren e Æ = jjY  x HC 0 jj 2 F jjY  x HCjj 2 F = jj x H(C C 0 )+Vjj 2 F jjVjj 2 F =  2 x jjH(C C 0 )jj 2 F 2 x <trfV H H(C C 0 )g: (1.33) Letd=jjH(C C 0 )jj 2 F and a=2 x <trfV H H(C C 0 )gN (0;2 2 x  2 v d). <

denotes thereal partand =willdenotetheimaginarypart. Byapplyingthe

Cherno bound weget

P(C !C 0 =H)min s>0 E(e sÆ =H): (1.34) E (e sÆ

=H) is the hara teristi fun tion of Æ and equals e

(s s 2  2 v ) 2 x d , the

minimum of whi h is a hieved for s =

1

2 2

v

. The Cherno upper bound is

then P(C!C 0 =H)e  d 4 : (1.35)

ThePEP isthe average of P(C !C

0

=H) overthe hannel distribution. Let

UU be the eigenve tor de omposition of the hermitianof C C

0 , then d = trfH(C C 0 )(C C 0 ) H H H g = trfHUU H H g = trfH 0  H 0 H g; (1.36) whereH 0

=HU has the same distributionas H. We an write then

P(C! C 0 ) = EP(C!C 0 =H)  E exp   4 P Ntx l =1 P Nrx k=1  l jh 0 kl j 2  = Q N tx l =1 Q N rx k=1 E exp  4  l jh 0 kl j 2  = Q Ntx l =1 1+  4  l  Nrx : (1.37)

Whi h onstitutes the desired Cherno bound onthe PEP.

The eigenvalues 

l

;l = 1;:::;N

tx

are sorted in de reasing order. Let r be

the number of the non-zero values (= rank of C C

0

). Less-tight upper

bound is thengiven by

P(C !C 0 )   4  r:N rx r Y l =1  l ! Nrx : (1.38)

(42)

Diversity Gain Coding Gain SNR(dB) Error Probability (logarithmi s ale) Figure 1.2: PEPvs. SNR

For high SNR this bound be omes tight

P(C!C 0 )   4  r:Nrx r Y l =1  l ! Nrx : (1.39)

Diversity Gain : Thetotal diversity orderisthe exponentof the SNRand

is given by r:N

rx

. Over the all odebook the diversity is given by r

min :N rx , where r min

isthe minimumrankof overallthe possible ode words

di er-en es in C. r

min :N

rx

is alledthe diversity gain.

Coding Gain : Moreover the PEP is a de reasing fun tion of the produ t

Q r

l =1 

l

,this lastone shouldbemadeaslarge aspossibleforthe errorevents

with rankr min . min Q rmin l =1  l

is alled the oding gain. Forr

min

=N

tx

,  is

full rank and

Q N tx l =1  l =det  (C C 0 )(C C 0 ) H  .

In a plot that represents the PEP as fun tion of the SNR in a logarithmi

(43)

orresponds to the diversity gain, where the oding gain orresponds to the

position of the line(see g. 1.2).

1.5 Diversity and Multiplexing as De ned by

Zheng & Tse

In [9℄ Zheng and Tse give a new de nition of the diversity and spatial

mul-tiplexing that onsiders adaptive SNR s hemes. In fa t, a s heme C() is a

family of odes of blo k length T(one for ea h SNR level), that supports a

bitrate R ().

This s heme is to a hieve spatial multiplexing r and diversity gain d if the

data rate veri es

lim

!1 R ()

ln()

=r; (1.40)

and the average error probability veri es

lim !1 lnP e () ln() = d: (1.41)

Forblo klengthT !+1theerrorprobabilitybe omestheoutage apa ity.

For ea h r, d



(r) is de ned to be the supremum of the diversity advantage

a hievedovers hemes. Themaximaldiversitygainisde nedbyd



max

=d

 (0)

and the maximal spatialmultiplexinggain is r



max

=supfr:d



(r)>0g.

Wewilluse the spe ial symbol

:

=todenote theexponentialequality,i.e.,we

write f() : = b to denote lim !1 lnf() ln() =b: (1.42)

Zheng & Tse onsidered a Rayleigh at MIMO hannel model, and using

resultsonthe distribution ofthe eigenvalues (se tion1.1.1) they showed the

following results.

Optimal Tradeo Curve : Assume T  N

rx +N tx 1. The optimal tradeo urve d 

(r)is given by the pie ewise-linear fun tion onne ting the

points(k;d  (k)),k =0;1;:::;p, where d  (k)=(p k)(q k): (1.43)

(44)

(2;(N rx 2)(N tx 2)) (0;N rx N tx ) (1;(N rx 1)(N tx 1)) (r;(N rx r)(N tx r)) (min(N rx ;N tx );0) Div ersit y Gain: d  ( r )

Spatial Multiplexing Gain: r

Figure 1.3: Diversity vs. multiplexingoptimaltradeo

Re all that p = minfN

rx ;N tx g; q = maxfN rx ;N tx g. In parti ular d  max = N tx :N rx and r  max =min(N rx ;N tx ).

1.6 Thesis Overview and Outline

This thesis is omposed of three parts. The rst one deals with absen e of

hannelstateinformationatthetransmitter(andperfe tCSIatthere eiver),

the se ond with partial CSI at the Tx (perfe t CSI at the Rx) and the last

one onsiders the absen e of CSI at both Tx and Rx. A brief overview of

the generalframeworkof this thesisand of ea hpart isgiven inthis se tion.

Anabstra tandanintrodu tionisprovidedatthebeginningofea h hapter.

TheCSIavailabilityisafundamentallinkbetweentheseveral haptersofthis

(45)

some ases, pra ti al solutions are proposed and analyzed; in other ases,

theoreti alperforman es and fundamentallimitsare investigated. Ourwork

deals with di erent \hot" topi s in MIMO: Spa e-Time Coding (STC) and

de oding, MIMO hannelmodeling, apa itystudies and MIMO hannel

es-timation. Other works that were done during the thesis period in lude the

use of multipleantennas inthe UMTS standard [17, 18,19,20℄, the hannel

inthese asesiseitherSIMOorMISO(withN

tx

=2). Beingoutofthefo us

of this thesis, these works are not reported here.

1.6.1 Part One: Absen e of CSI at Tx (and Perfe t

CSI at Rx)

This aseisthemostpopularintheliteratureandhasbeenthe rstonetobe

onsiderede.g. [1,16,21,2℄. TheTxhas noknowledgeofthe hannel,whi h

is modeled as Rayleigh fading MIMO hannel, either at (subse tion 1.1.1)

or frequen y sele tive (subse tion 1.1.3). At the Rx side, the hannel is

as-sumed to be perfe tly known; in pra ti e this means that there is enough

trainingtoprovide a good hannelestimate.

In hapter 2,we propose a new STC s heme that is based on linear

pre od-ing using a MIMO pre lter to exploit diversity. The inputs of the pre lter

are alledstreams, and ea h symbol fromany streamgets spread overspa e

(antennas) and time by the a tion of the pre lter. This s heme is

onse-quently named Spa e-Time Spreading (STS). STS is shown to preserve the

ergodi apa ity and to a hieve full rate and full diversity. The

optimiza-tion of the MIMO pre lter isdone inorder to maximizethe Mat hed Filter

Bound (MFB) and the oding gain. This s heme was the rst to show su h

good properties

1

. In addition we show that this s heme an easily be

gen-eralized to the ase of a frequen y sele tive hannel, preserving the above

properties, and being therefore is highly attra tive. The optimal de oder

of the STS s heme is the ML de oder. However, this dete tor has a high

numeri al omplexity and o ers no possibility for ombination with binary

hannel de oding. This problemis handled in hapter 3and 4.

In hapter 3, we propose two low omplexity non-iterative re eiver

strate-gies. Non-MLre eivers haveingeneralanimpa tonthediversityand oding

1

(46)

gains, and even onthe hannel oding setup. The Stripping MIMODe ision

Feedba k Equalizer (DFE) is a Su essive Interferen e Can ellation (SIC)

re eiver for the di erent streams. In fa t, the streams are pro essed

su - essively, ea h stream is equalized, de oded, and then its ontribution gets

subtra ted from the re eived signal before pro essing the next stream. The

Stripping DFE re eiver is shown to be a very performant re eiver for SNR

adaptive s hemes, espe ially for the diversity vs. multiplexing tradeo . In

fa t, we generalize in this hapter the diversity vs. multiplexing tradeo of

Zheng &Tse tothe frequen y sele tive hannelwith nitedelayspread. We

show also that the Stripping DFE allows to rea h an important portion of

thistradeo . Toa hievetheoptimaldiversityvs. multiplexingtradeo ofthe

Stripping DFE,the study suggests touse stream-dependent rates andhen e

di erent onstellation sizes. However, for the non-adaptive SNR ase, the

streamsexperien edi erentdiversity and odinggains,andthe binary

han-nel oding is stream dependent and should ompensate this non-symmetry.

Another re eiver strategy is the Conventional MIMO DFE. In this ase the

streamsare de oded jointly andina ausalmanner. Thepast dete ted

sym-bols ontribution are subtra ted using feedba k. To avoid performan e loss

due to error propagation, Per Survivor Pro essing (PSP) an be used. The

onventional MIMO DFE re eiver a hieves the same diversity and oding

gain for all streams.

In hapter 4, we propose an iterative turbo re eiver strategy. This re eiver

is a turbo dete tor as it iterates between a Parallel Interferen e

Can ella-tion (PIC) linearestimatorofthe streams(pre lter- hannel as ade, seen as

an inner ode), and a binary hannel de oder (binary hannel oder, seen

as an outer ode). This te hnique has the same omplexity as the turbo

re eiver for the bit interleaved te hnique applied to MIMO systems or its

variant (Threading), and shows an important gain in performan e over this

last te hnique. This re eiver is also very adapted to exploit multi-blo k

di-versity ifpresent and isvery exible, inparti ularforthe ase of less re eive

antennas than transmit antennas(N

rx

<N

tx ).

(47)

1.6.2 Part Two: Partial CSI at Tx (and Perfe t CSI

at Rx)

Inthis part the hannel knowledgeat the Txside is basedonfeedba k from

the Rx, orisdue tore ipro ity ofthe uplink and the downlink if both share

thesame arrierfrequen y. However, this knowledgeisoftenpartialbe ause

of the delay in the feedba k and the limited (or absen e of) alibration of

antennas. To study these ases, an adapted hannel model will be

formu-lated in hapter 5. In the rst ase, we will use the pathwise hannel model

a ounting forthe de omposition of the hannelintoalong term part (path

array responses, knownfromthefeedba k) andtheunknownshorttermpart

( omplex path gains). In the se ond ase, the limited re ipro ity will be

re e ted in the hannel model by introdu inga random s alar per antenna.

For ea h of these partial CSI hannel models, we will analyze the MIMO

ergodi apa ity, and show that our results present important onsequen es

for the Txdesign.

1.6.3 Part Three: Absen e of CSI at Rx (and none at

Tx)

Inthis asebothTxandRxhavenoCSI.Wewilltaketheapproa hinwhi h

the hannel will be estimated at the Rx. To this end, we will assume that

some training/pilotsymbols are present, but not ne essarilyenough tohave

ahigh quality estimate.

In hapter 6, will be onsidered two popular fading hannel models. The

rstoneistheblo k-fadingmodelandthese ondisthetimesele tivemodel.

We willshow thatthe average MutualInformation (MI)overa transmission

burst anbede omposedintosymbolpositiondependent ontributions. The

MI omponent at a ertain symbol position optimally ombines semi-blind

informationatthatsymbolposition(exploitingperfe t ausalinputre overy

up to that position ombined with blind information from the rest (future)

of the burst). We will alsoanalyze the asymptoti regimefor whi h we will

beabletoformulateoptimal hannelestimates, and toevaluatethe apa ity

loss with respe t to the ase of perfe t CSI at the Rx. Asymptoti ally, the

de reaseinMIinvolvesFisherinformationmatri es orrespondingto ertain

(48)

The mutual information de omposition suggests to ombine the training

and blind parts to estimate the hannel. Chapter 7 proposes semi-blind

approa hes whi h exploit the information from the two parts. These

te h-niques havea omplexitynot (immensely)mu hhigherthanthatof training

basedte hniques. Forthe at hannel ase, thepresented te hniquea hieves

the Cramer-RaoBound. In the frequen y sele tive hannel ase, we willuse

aquadrati semi-blind riterionthat ombinesatrainingbasedleast-squares

(49)
(50)
(51)
(52)

Linear Convolutive Spa e-Time

Pre oding

Theuseofmultipletransmitandre eiveantennasallowstotransmitmultiple

signal streams in parallel and hen e to in rease apa ity. In this hapter we

introdu e a simple onvolutive linear pre oding s heme that we all

Spa e-TimeSpreading (STS). This s hemespreads thetransmitted symbols in time

and spa e, involving spatial spreading and delay diversity. Su h linear

pre- oding allows to attain full diversity without loss in ergodi apa ity. We

show thatthegeneralizationof STS tothefrequen ysele tive MIMO hannel

(53)

2.1 Introdu tion

The use of MIMO systems o ersa new spatial dimension, and in reases the

ergodi apa ity of the hannel by amultipli ativefa tor equals to the rank

ofthe hannel(subse tion1.2.2). Itlowerstheoutageprobabilitybythe

on-tribution of N

tx :N

rx

diversity omponents orresponding to all the hannel

oeÆ ients in at hannel ase. However, the MIMO hannel (with

imper-fe tCSIatTx)su ersfrominterferen ebetweendi erenttransmitantennas.

The re ent attempts that tryto exploitthis highpotentialfor wireless

om-muni ationhavetomakea ompromiseinordertohandleanin reaseinrate.

They needtotakeadvantage ofthe availablediversity to ombatfadingand

destru tiveinterferen e whilekeepingana eptable omplexity. Trellis ode

introdu ed by Tarokh et al [16℄ takes a SISO-like solution using a binary

hannel oding designed tomap dire tly ontransmit antennas and adapted

tothe use of the ML de oder (Viterbi de oder). The binary hannel ode in

this te hnique has to be very powerful to be able to exploit multi antenna

diversity,timediversityand tohandlehighbitrateleadingtoafundamental

limit on performan e under the onstraint of omplexity. New approa hes

then appeared aiming to exploit diversity of the hannel by linear

transfor-mationofsymbols. In this ategoryspa e-time blo k odes fromOrthogonal

Design [21℄ transform the MIMO hannel in one SISO oeÆ ient that

ap-tures all the diversity and by then use the binary hannel odes designed

for Gaussian hannel. This te hnique, even if it su eeds to exploit all the

available diversity, isfar froma hieving the potentialmultiplexingrate.

More re ent s hemes [22, 23, 24℄ based on onstellation rotating, su eeds

toexploit all the diversity without a lossof rate but need to perform a ML

de oding leading to an exponential (in N

tx

and the onstellation size)

om-plexity that limitsits use. The present hapter presents the STS te hnique

that wehaveintrodu ed rst in[25℄, this s hemeis basedon Linear

Pre od-ing with a MIMO paraunitary lter, and allows to exploit all the available

diversity. As we will see in hapter 3 this s heme an be ombined with

onventionaland non- onventionallow omplexityre eivers. In hapter4we

showhow STS an be ombined with the binary Channel Code (CC) touse

a turbo dete tor and to exploit the multi-blo k diversity if present. These

properties allowtoavoid the ML dete tor omplexity and make the s heme

very attra tive.

Approa hes proposed so far deal with at hannel, however this is far tobe

(54)

environments leads to frequen y sele tive hannel with nite delay spread.

The STS approa h applies as well for frequen y sele tive hannel as for at

hannel. It leads to fulldiversity [26℄, and is then the rst te hnique that it

isshown toexploitfulldiversity inthefrequen y sele tive ase(withinTime

Division Multiple A ess ontext).

In mostof this hapterwe assumethe hanneltobe at, however thestated

results are validfor sele tive hannels aswellunless denoted.

We begin this hapterbypresenting the linearpre lteringapproa h. We

then introdu e the design riteria: apa ity, mat hed lter bound and

pair-wise error probability, in order to spe ify our STS s heme. We study the

in uen e of the ir ular onvolution and the frequen y sele tivity of the

hannel. We end the hapter by a dis ussion on the ML dete tor for the

STS s heme.

Results presented in this hapter were published in [25, 26,27, 28℄.

2.2 Linear Pre ltering Approa h

coding

& mapping

channel

+

demapper

& channel

decoder

T(z) H R (z) RX v k x k a k b k MIMO hannel TX N s N tx b x k N rx y k

Figure2.1: General ST oding setup.

A general Spa e-Time (ST) oding setup is sket hed in g. 2.1. The

in oming stream of bits gets transformed to N

s

symbol streams through a

ombinationofbinary hannel oding,interleaving,symbolmappingand

de-multiplexing. The result is a ve tor stream of symbols b

k

ontaining N

s

symbols per symbol period. The N

s

streams then get mapped linearly to

the N

tx

transmit antennas and this part of the transmission is alled linear

ST pre oding. The output is a ve tor stream of symbols a

k

ontaining N

(55)

symbols per symbol period. The linear pre oding is spatiotemporal sin e a

linearfun tionofb

k

mayappearinmultiple omponents(spa e)andmultiple

timeinstan es (time)of a

k

. The ve tor sequen e a

k

gets transmittedover a

MIMO hannelHwithN

rx

re eiveantennas,leadingtothe symbolrate

ve -torre eivedsignaly

k

aftersampling. The linearpre oding an be onsidered

tobean inner ode, while the binary hannel oding et . an be onsidered

to be an outer ode. As the number of streams is a fa tor in the overall

ode-rate,weshall allthe aseN

s

=N

tx

thefullrate ase,whileN

s

=1

or-responds tothe single rate ase. Instead of multipleantennas, more general

multiple hannels an be onsidered by oversampling, by using polarization

diversity or other EM omponent variations, by working in beam-spa e, or

by onsideringin-phaseandin-quadrature(orequivalentlyrealand omplex)

omponents. In the ase of oversampling, some ex ess bandwidth shouldbe

introdu edatthetransmitter,possiblyinvolvingspreadingwhi hwouldthen

be part of the linear pre oding.

Asweshallsee below, hannel apa ity anbeattainedby afullrate

sys-tem without pre oding (T(z)= I). In that ase, the binary hannel oding

has to be fairly intense sin e it has to spread the information ontained in

ea h transmitted bit over spa e (a ross Tx antennas) and time, as pi tured

on the left part in g. 2.2 and [29℄. The goal of introdu ing the linear

pre- odingistosimplify(possibly goingasfaraseliminating)thebinary hannel

odingpart [16℄. Inthe aseof lineardispersion odes [30℄,[31℄, transmission

is not ontinuous but pa ket-wise (blo k-wise). In that ase, a pa ket of T

ve torsymbolsa

k

(hen eaN

tx

T matrix)gets onstru tedasalinear

om-binationof xed matri es inwhi h the ombination oeÆ ients are symbols

b k

. A parti ular aseisthe Alamouti ode [32℄whi hisafulldiversity single

rate ode orresponding toblo k lengthT =N

tx

=2,N

s

=1.

The STSs heme fo uses on ontinuoustransmission,large blo ks (T >>

1),in whi h linear pre oding orresponds toMIMO pre ltering. This linear

onvolutive pre oding an be onsidered as a spe ial ase of linear

disper-sion odes (making abstra tion of the pa ket boundaries) in whi h the xed

matri es are time-shifted versions of the impulse responses of the olumns

of T(z) (see g. 2.1). Whereas in the absen e of linear pre oding, the last

operation of the en oding part is spatial demultiplexing (Serial-to-Parallel

(S/P) onversion) (see left part of g. 2.2), this S/P onversion is the rst

operationinthe aseoflinearpre oding(see therightpartof g. 2.2). After

the S/P onversion, we have a mixture of binary hannel oding,

(56)

coding &

mapping

S/P

DEMUX

S/P

DEMUX

coding &

mapping

mapping

coding &

symbol stream 1

x k b 1;k b N s ;k . . . x k b 1;k . . . b N s ;k symbolstreamN s

Figure2.2: Two hannel oding, interleaving,symbol mappingand

demulti-plexing alternatives.

systems are spe ial ases of this approa h. V-BLAST is a full rate

sys-tem with T(z) = I

Ntx

whi h leads to quite limited diversity. The delay

transmit diversity used in the UMTS standard is a single rate system with

T(z) = [1 z 1 ; :::; z (N tx 1) ℄ T

whi h leads to full diversity. We would like

to introdu e a pre ltering matrix T(z) withouttaking a hit in terms of

a-pa ity,while a hievingfull diversity. The MIMOpre ltering willallowus to

apture alldiversity (spatial,and frequentialfor hannelswithdelay spread)

and willprovide some oding gain. The optionalbinary hannel oding per

stream then serves to provide additional oding gain and possibly (with

in-terleaving)to apture thetemporaldiversity(Dopplerspread)ifthereisany.

Finally, though time-invariant ltering may evoke ontinuous transmission,

thepre lteringapproa hisalsoimmediatelyappli abletoblo ktransmission

by repla ing onvolution by ir ulant onvolution.

2.3 Capa ity

Consider the MIMO at AWGN hannel

y k =Ha k +v k =HT(q)b k +v k ; (2.1)

where the noise powerspe traldensity matrix isS

vv (z)= 2 v I N rx ,q 1 b k = b k 1

. The ergodi apa itywithabsen e of CSIatthe Txand perfe tCSI

at the Rx is given by C(S aa ) = E H 1 2j H dz z lndet(I + 1  2 v HS aa (z)H H ) = E H 1 2j H dz z lndet(I + 1  2 v HT(z)S b b (z)T y (z)H H ) = E H 1 2j H dz z lndet(I +HT(z)T y (z)H H ); (2.2)

(57)

wherewe assumethat the hannel oding and interleaving per streamleads

tospatially and temporallywhite symbols: S

bb (z)= 2 b I Ntx , and  =  2 b  2 v = SNR N tx

. The hannel is modeled as Rayleigh at fading, see subse tion 1.1.1.

As we have shown in se tion 1.2for su h a hannelmodel, the optimization

of the apa ity subje t to the Tx power onstraint

1 2j H dz z tr(S aa (z)) N tx  2 b

leads to the requirement of a white (and

Gaus-sian) ve tor transmission signal S

aa

(z) = 

2

b

I. Combined with the

white-ness of the ve tor stream b

k

resulting fromthe hannel en oding, this leads

to the requirement for the pre lter to be paraunitary: T(z)T

y

(z) = I in

orderto avoid apa ity loss.

Motivated by the onsideration of diversity also(see below), we propose

touse the following paraunitary pre lter

T(z) = D(z)Q D(z) = diagf1; z 1 ;:::;z (Ntx 1) g; Q H Q =I; jQ ik j= 1 p N tx ; (2.3)

whereQ isa ( onstant)unitary matrix with equalmagnitude elements

(ex-ampleofthosein lude: WalshHadamardandtheDis reteFourierTransform

matri es). Note that for a hannel with delay spread, the pre lter an be

immediately adapted by repla ing the elementary delay z

1

by z

L

for a

hanneloflength(delayspread)L. Forthe atpropagation hannelH

om-binedwith the pre lterT(z) in(2.3), symbolstreamn (b

n;k

)passes through

the equivalentSIMO hannel

N tx X i=1 z (i 1) H :;i Q i;n ; (2.4)

whi h now has memory due to the delay diversity introdu edby D(z). It is

important that the di erent olumns H

:;i

of the hannel matrix get spread

out in time to get full diversity; otherwise the streams just pass through

a linear ombination of the olumns, as in V-BLAST, whi h o ers limited

diversity. The delay diversity only be omes e e tive by the introdu tion

of the mixing/rotation matrix Q, whi h has equal magnitude elements for

uniform diversity spreading. The pre lter introdu ed in [33℄ is essentially

the same as the one in eq.(2.3). However, the symbol stream b

k

in [33℄ is a

sub-sampled stream, sub-sampled by a fa tor N

tx

. As a result, the system

is single rate. The advantage in that ase though is that no interferen e

(58)

2.4 Mat hed Filter Bound and Diversity

The Mat hed Filter Bound (MFB) is the maximum attainable SNR for

symbol-wisedete tion,whentheinterferen efromallothersymbolshasbeen

removed. Hen e the multi-stream MFB equals the MFB for a given stream.

For V-BLAST (T(z)=I), the MFB for streamn is

MFB n =jjH :;n jj 2 2 ; (2.5)

hen e, diversity is limited to N

rx

. For the proposed T(z) = D(z)Q on the

other hand, stream n has MFB

MFB n = 1 N tx jjHjj 2 F ; (2.6)

hen ethisT(z)providesthesamefulldiversityN

tx N

rx

forallstreams. Larger

diversity order leadsto larger outage apa ity.

2.5 Pairwise Error Probability P

e

This se tion studies the pairwise error probability of the STS s heme. The

study will allow us to omplete the spe i ation of the pre oding matrix

T(z) and derive some interesting optimalityresults. We willalso study the

in uen e of the introdu tion of the ir ular onvolution and the e e t of

frequen y sele tive hannels onthe error probability.

The re eived signal is

y k =HT(q)b k +v k =HD(q)Qb k +v k =HD(q) k +v k ; (2.7) where k =Qb k =[ 1 (k); 2 (k); :::; N tx (k)℄ T

. We onsider now the

trans-mission of the oded symbols over a duration of T symbol periods. The

a umulatedre eived signalis then

Y=

b

HC+V; (2.8)

where Y and V are N

rx T matri esand C isN tx T. The stru ture of C is detailedbelow C= 1  b 2 6 6 6 4 1 (1) ::: ::: ::: ::: 1 (T N tx +1) 0 ::: 0 0 . . . ::: ::: ::: ::: . . . . . . . . . . . . . . . . . . ::: ::: ::: ::: . . . 0 0 ::: 0 N tx (1) ::: ::: ::: ::: N tx (T N tx +1) 3 7 7 7 5 (2.9)

Figure

Figure 1.1: MIMO 
hannel model.
Figure 1.3: Diversity vs. multiplexing optimal tradeo
Figure 2.1: General ST 
oding setup.
Figure 2.2: Two 
hannel 
oding, interleaving, symbol mapping and demulti-
+7

Références

Documents relatifs

Il faut donc choisir −1 ou 3 pour que les deux programmes donnent le

It provides buffer storage, asseITIbles into characters all bits received froITI a line via the Type 285 COITIITIunication Adapter Unit, serializes characters

Seven rows of lights indicate: assembly register, command counter, address counter, word counter, con- trol counter, assembly ring, character ring, operation register,

Whereas we have considered block fading so far in this paper, we conjecture that these results extend to the continu- ous transmission (CT) case: in steady-state, channel estima-

puts, most of the blindmultichannelidenticationtech- niques are not very robust and only allow to estimate the channel up to a number of ambiguities, especially in the MIMO case. On

We studied the ergodic capacity of two models for partial channel knowledge: the pathwise channel model with knowledge of the slow varying parameters at the transmitter and the

We studied the ergodic capacity of two models for partial channel knowledge: the pathwise channel model with knowl- edge of the slow varying parameters at the transmitter and

In Figure 2, we have plotted respectively the measured mu- tual information for the scenarios of interest, namely the urban open place, the urban regular low antenna position, the