• Aucun résultat trouvé

A stochastic Mean-Field-Homogenization-based micro-mechanical model of unidirectional composites failure

N/A
N/A
Protected

Academic year: 2021

Partager "A stochastic Mean-Field-Homogenization-based micro-mechanical model of unidirectional composites failure"

Copied!
28
0
0

Texte intégral

(1)

Computational & Multiscale

Mechanics of Materials

CM3

www.ltas-cm3.ulg.ac.be

CM3

18-21 December 2019 - APCOM2019 – Taipei, Taiwan

A stochastic Mean-Field-Homogenization-based

micro-mechanical model of unidirectional composites

𝑥 𝑦 SVE 𝑥, 𝑦 SVE 𝑥′, 𝑦 SVE 𝑥′, 𝑦′ t 𝑙SVE

L. Wu, J. M. Calleja, V.-D. Nguyen, L. Noels

The research has been funded by the Walloon Region under the agreement no.7911-VISCOS in the context of the 21st

SKYWIN call and no 1410246-STOMMMAC (CT-INT 2013-03-28) in the context of the M-ERA.NET Joint Call 2014. SEM images by Major Zoltan, Nghia Chnug Chi, JKU, Austria

(2)

Multi-scale modelling

– 2 problems are solved

concurrently

• The macro-scale problem • The meso-scale problem (on a meso-scale Volume Element) – Length-scales separation

Objectives

P,

σ, q, …

F,

Ɛ, T, 𝛁T, …

BVP Macro-scale Material response Extraction of a meso-scale Volume Element

L

macro

>>L

VE

>>L

micro

• Failure of composite materials:

• Statistical representativity is lost

• Main objective: To develop an efficient integrated stochastic multiscale approach

to predict failure of composites

BVP on a meso-scale Volume Element

Direct FE simulation vs. Semi-analytical method

- All the details of SVE - General information e.g.

volume fraction of inclusions,

(3)

Proposed methodology

– To develop a stochastic Mean Field Homogenization method able to predict the probabilistic distribution of material response at an intermediate scale from micro-structural constituents characterization

Methodology

𝜔 =∪𝑖 𝜔𝑖

w

I

w

0 Stochastic Homogenization Stochastic MF-ROM SVE realizations Micro-structure stochastic model strain stress d [mm] PDF 0 1 2 3 4 4 3 2 1 0 rf[mm] PDF 2.4 2.8 3.2 3.6 4 3 2 1 0

(4)

Uncertainty quantification of micro-structure & micro-structure generator

– 2000x and 3000x SEM images, fibers detection

– Basic geometric information – Distributions Random variables:

• 𝑝𝑅 𝑟 , • 𝑝𝑑1st 𝑑 , • 𝑝𝜗1st 𝜃 ,

• 𝑝Δ𝑑 𝑑 with Δ𝑑 = 𝑑2nd− 𝑑1st • 𝑝Δ𝜗 𝜃 with Δ𝜗 = 𝜗2nd− 𝜗1st

* L. Wu, C.N. Chung, Z. Major, L. Adam, L. Noels, From SEM images to elastic responses: A stochastic multiscale analysis of UD fiber reinforced composites, Compos. Struct. (ISSN: 0263-8223) 189 (2018a) 206–227

Experimental measurements

𝑅0 𝑅1 𝜗1st 𝑑1st ∆𝜗 𝜗2nd 𝑑2nd 𝑅2

(5)

Numerical micro-structures are generated by a fiber additive process

– Arbitrary size

– Arbitrary number

– Possibility to generate non-homogenous distributions

(6)

Window technique

– Extraction of Stochastic Volume Elements

• 𝑙SVE = 25 𝜇𝑚 • Correlation

– For each SVE

• Extract apparent homogenized material tensor ℂM

• Consistent boundary conditions:

– Periodic (PBC)

– Minimum kinematics (SUBC) – Kinematic (KUBC)

Stochastic homogenization on the SVEs

𝑥 𝑦 SVE 𝑥, 𝑦 SVE 𝑥′, 𝑦 SVE 𝑥′, 𝑦′ t 𝑙SVE 𝜺M = 1 𝑉 𝜔 𝜔𝜺m𝑑𝜔 𝝈M = 1 𝑉 𝜔 𝜔𝝈m𝑑𝜔 ℂM = 𝜕𝝈M 𝜕𝒖M ⊗ 𝛁M 𝑅𝐫𝐬 𝝉 = 𝔼 𝑟 𝒙 − 𝔼 𝑟 𝑠 𝒙 + 𝝉 − 𝔼 𝑠 𝔼 𝑟 − 𝔼 𝑟 2 𝔼 𝑠 − 𝔼 𝑠 2

(7)

Mean-Field-Homogenization (MFH)

– Linear composites

– We use Mori-Tanaka assumption for 𝔹𝜀 I, ℂ 0 , ℂI

Stochastic MFH

– How to define randomness?

Stochastic Mean-Field Homogenization

𝛆M = 𝛆 = 𝑣0𝛆0 + 𝑣I𝛆I 𝛆I = 𝔹𝜀 I, ℂ0 , ℂI : 𝛆0 𝛔M = 𝛔 = 𝑣0𝛔0 + 𝑣I𝛔I inclusions composite matrix 𝛆I 𝛔 𝛆 ℂ0 𝛆 = 𝛆M 𝛆0 ℂIM = ℂM I, ℂ0 , ℂI , 𝑣I 𝜔 =∪𝑖 𝜔𝑖 wI w0

(8)

Mean-Field-Homogenization (MFH)

– Linear composites

Consider an equivalent system

– For each SVE realization 𝑖:

M and 𝜈I known – Anisotropy from ℂM𝑖

𝜃 is evaluated – Fiber behavior uniform

I for one SVE

– Remaining optimization problem:

Stochastic Mean-Field Homogenization

𝛆M = 𝛆 = 𝑣0𝛆0 + 𝑣I𝛆I 𝛆I = 𝔹𝜀 I, ℂ0 , ℂI : 𝛆0 𝛔M = 𝛔 = 𝑣0𝛔0 + 𝑣I𝛔I inclusions composite matrix 𝛆I 𝛔 𝛆 ℂ0 𝛆 = 𝛆M 𝛆0 ℂI Defined as random variables ℂM ≃ ℂM( I, ℂ0 , ℂI , 𝑣I, 𝜃) ℂ0I0I 𝜃 𝑎 𝑏 Equivalent inclusion min 𝑎 𝑏, 𝐸0 , 𝜈0 ℂM − ℂM(𝑎 𝑏, 𝐸0 , 𝜈0 ; 𝑣I, 𝜃, ℂI ) ℂM = ℂM I, ℂ0 , ℂI , 𝑣I 𝜔 =∪𝑖 𝜔𝑖 wI w0

(9)

Inverse stochastic identification

– Comparison of homogenized

properties from SVE realizations and stochastic MFH

Stochastic Mean-Field Homogenization

M

M

( I,

0

,

I

, 𝑣

I

, 𝜃)

0

I

0

I

𝜃

𝑎

𝑏

Equivalent inclusion

* L. Wu, C. Nghia Chung, Z. Major, L. Adam, L. Noels, A micro-mechanics-based inverse study for stochastic order reduction of elastic UD-fiber reinforced composites analyzes, Internat. J. Numer. Methods Engrg. (ISSN: 0263-8223) 115 (2018b) 1430–1456

(10)

Non-linear Mean-Field-homogenization

– Linear composites

– Non-linear composites

Non-linear stochastic Mean-Field Homogenization

𝛆M = 𝛆 = 𝑣0𝛆0 + 𝑣I𝛆I 𝛆I = 𝔹𝜀 I, ℂ0 , ℂI : 𝛆0 𝛔M = 𝛔 = 𝑣0𝛔0 + 𝑣I𝛔I inclusions composite matrix 𝛆I 𝛔 𝛆 ℂ0 𝛆 = 𝛆M 𝛆0 ℂI inclusions composite matrix 𝚫𝛆I 𝛔 𝛆 𝚫𝛆M 𝚫𝛆0 𝚫𝛆M = Δ𝛆 = 𝑣0Δ𝛆0 + 𝑣IΔ𝛆I 𝚫𝛆I = 𝔹𝜀 I, ℂ0LCC, ℂ𝐼LCC : 𝚫𝛆0 𝛔M = 𝛔 = 𝑣0𝛔0 + 𝑣I𝛔I Define a linear comparison composite material

(11)

Incremental-secant Mean-Field-homogenization

– Virtual elastic unloading from previous state

• Composite material unloaded to reach the stress-free state

• Residual stress in components

Non-linear stochastic Mean-Field Homogenization

inclusions composite matrix 𝚫𝛆Iunload 𝛔 𝛆 𝚫𝛆Munload 𝚫𝛆0unload ℂIel ℂ0el

(12)

Incremental-secant Mean-Field-homogenization

– Virtual elastic unloading from previous state

• Composite material unloaded to reach the stress-free state

• Residual stress in components

– Define Linear Comparison Composite

• From unloaded state

• Incremental-secant loading

• Incremental secant operator

Non-linear stochastic Mean-Field Homogenization

𝚫𝛆M𝐫 = Δ𝛆 = 𝑣0Δ𝛆0𝐫 + 𝑣IΔ𝛆I𝐫 𝚫𝛆I𝐫 = 𝔹𝜀 I, ℂ0S, ℂIS : 𝚫𝛆0𝐫 𝛔M = 𝛔 = 𝑣0𝛔0 + 𝑣I𝛔I inclusions composite matrix 𝚫𝛆Iunload 𝛔 𝛆 𝚫𝛆Munload 𝚫𝛆0unload ℂIel ℂ0el

𝚫𝛆I/0𝐫 = Δ𝛆I/0 + 𝚫𝛆I/0unload

𝚫𝛔

M

= ℂ

MS

I, ℂ

0S

, ℂ

IS

, 𝑣

I

: 𝚫𝛆

M𝐫 ℂ0S inclusions composite matrix 𝚫𝛆I𝐫 𝛔 𝛆 𝚫𝛆M𝐫 𝚫𝛆0𝐫 ℂIS ℂMS

(13)

Non-linear inverse identification

– First step from elastic response

Non-linear stochastic Mean-Field Homogenization

0I0el ℂIel 𝜃 𝑎 𝑏 Equivalent inclusion ℂMel ≃ ℂMel( I, ℂ0el, ℂIel, 𝑣I, 𝜃) inclusions composite matrix 𝚫𝛆Iunload 𝛔 𝛆 𝚫𝛆Munload 𝚫𝛆0unload ℂIel ℂ0el

(14)

Non-linear inverse identification

– First step from elastic response

– Second step from the LCC

• New optimization problem

• Extract the equivalent hardening 𝑅 𝑝0 from the incremental secant tensor

Non-linear stochastic Mean-Field Homogenization

0S ≃ ℂ0S( 𝑅 𝑝0 ; ℂ0el) ℂ0I0S ℂIS 𝜃 𝑎 𝑏 Equivalent inclusion ℂMel ≃ ℂMel( I, ℂ0el, ℂIel, 𝑣I, 𝜃) ℂ0S ≃ ℂ0S( 𝑅 𝑝0 ; ℂ0el) ℂ0S inclusions composite matrix 𝚫𝛆I𝐫 𝛔 𝛆 𝚫𝛆M𝐫 𝚫𝛆0𝐫 ℂIS ℂMS 𝚫𝛔M ≃ ℂMS I, ℂS0, ℂIS, 𝑣I, 𝜃 : 𝚫𝛆M𝐫 𝑝0 𝑅 𝑝 0 in MPa

Extracted from SVEs Identified hardening Input matrix law

(15)

Non-linear inverse identification

– Comparison SVE vs. MFH

Non-linear stochastic Mean-Field Homogenization

0S ≃ ℂ0S( 𝑅 𝑝0 ; ℂ0el) ℂ0I0S ℂIS 𝜃 𝑎 𝑏 Equivalent inclusion ℂMel ≃ ℂMel( I, ℂ0el, ℂIel, 𝑣I, 𝜃)

(16)

Damage-enhanced Mean-Field-homogenization

– Virtual elastic unloading from previous state

• Composite material unloaded to reach the stress-free state

• Residual stress in components

Non-linear stochastic Mean-Field Homogenization

inclusions composite matrix 𝚫𝛆Iunload 𝛔 𝛆 𝚫𝛆Munload𝚫𝛆 0 unload ℂIel (1 − 𝐷0)ℂ0el effective matrix

(17)

Damage-enhanced inverse identification

– Elastic unloading

• Identify damage evolution 𝐷0

– Reloading with the LCC

• Extract the equivalent hardening 𝑅 𝑝0 & damage evolution D0 𝑝0 from incremental secant tensor:

Non-linear stochastic Mean-Field Homogenization

1 − 𝐷00el ℂIel 1 − 𝐷00el ℂIel 𝜃 𝑎 𝑏 Equivalent inclusion 1 − D00𝑆 ≃ 1 − D0 𝑝00𝑆( 𝑅 𝑝0 ; ℂ0el) inclusions composite matrix 𝚫𝛆Ir 𝛔 𝛆 𝚫𝛆Mr 𝚫𝛆 0 r ℂIS (1 − 𝐷0)ℂ0S effective matrix ℂMS 𝚫𝛔M = ℂMS I, 1 − 𝐷0 ℂS0, ℂIS, 𝑣I : 𝚫𝛆M𝐫 ℂMel(𝐷) ≃ ℂMel( I, 1 − 𝐷00el, ℂIel, 𝑣I, 𝜃) inclusions composite matrix 𝚫𝛆Iunload 𝛔 𝛆 𝚫𝛆Munload𝚫𝛆 0 unload ℂIel (1 − 𝐷0)ℂ0el effective matrix ℂMel(𝐷)

(18)

Damage-enhanced inverse identification

– Similar process as for elasto-plasticity

Non-linear stochastic Mean-Field Homogenization

1 − 𝐷00Iel 1 − 𝐷00S ℂIel 𝜃 𝑎 𝑏 Equivalent inclusion 1 − D00𝑆 ≃ 1 − D0 𝑝00𝑆( 𝑅 𝑝0 ; ℂ0el)

* L. Wu, V.-D. Nguyen, L. Adam, L. Noels, An inverse micro-mechanical analysis toward the stochastic homogenization of nonlinear random composites, Comp. Meth. in App. Mech. and Engineering (ISSN: 0045-7825) 348, (2019) 97-138

(19)

Generation of random field

– Inverse identification vs. diffusion map –based generator [Soize, Ghanem 2016]

Damage model Parameters

(20)

Use of stochastic Mean-Field Homogenization

One single ply loading realization

– Random field and finite elements discretization – Non-uniform homogenized stress distributions – Creates damage localization

(21)

Use of stochastic Mean-Field Homogenization

Ply loading realizations

(22)

Micro-structural model of fiber-reinforced highly crosslinked epoxy

UD Composites with RTM6 epoxy matrix

– Identified matrix material behaviour

• Hyperelastic viscoelastic-viscoplastic constitutive model enhanced by a multi-mechanism nonlocal damage model

• Hardening: • Softening:

• Failure: &

– 2D simulations of 25 x 25 μm 40% volume fraction composite SVEs 𝑅 𝑝 = σ𝑦+ ℎ (1 − 𝑒−ℎ𝑒𝑥𝑝𝑝) 𝐷𝑠 = (𝐻𝑠 𝑝 − 𝑝𝑖𝑛𝑖𝑡 α) Φ𝑓 = γ − 𝑎 exp −𝑏𝑇 − 𝑐 = 0 𝐷𝑓 = 𝐻𝑓𝑓)ζ𝑓(1 − 𝐷 𝑓)ζ𝑑 χ𝑓

0

0.5 1

𝐷

𝑓

(23)

Apparent response

– Independent Stochastic Volume Elements

• 𝑙SVE = 25 𝜇𝑚

– Stochastic homogenization

• Extract apparent responses

– 3 stages

• Linear response

• (Damage-enhanced) elasto-plasticity • Failure (loss of size objectivity)

Stochastic homogenization on the SVEs

𝜺M = 1 𝑉 𝜔 𝜔𝜺m𝑑𝜔 𝝈M = 1 𝑉 𝜔 𝜔𝝈m𝑑𝜔 ℂM = 𝜕𝝈M 𝜕𝒖M ⊗ 𝛁M Stochastic Homogenization SVE realizations

(24)

Non-linear SVE simulations

Mean-Field Homogenization with failure

0.0408

0.0780

0.0654

0.1019

(25)

Extracted failure characteristics

(26)

Stochastic micro-structures

– Geometrical features from statistical measurements – Micro-structure geometry generator

– Experimentally calibrated/validated epoxy model with length scale effect

Inverse MFH identification

– MFH is used as a micro-mechanics based model – Parameters identified from SVE simulations

– Localization behaviour identified using objective fields

Stochastic Finite elements

– Stochastic MFH is used as material law

– Random fields (MFH parameters) generated using data-driven approach – First ply simulations

(27)

Thank you for your attention!

Special thanks to:

(28)

• T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall. 21 (5) (1973) 571–574

• L. Wu, L. Noels, L. Adam, I. Doghri, A combined incremental–secant mean–field homogenization scheme with per–phase residual strains for elasto–plastic composites, Int. J. Plast. 51 (2013a) 80–102,

http://dx.doi.org/10.1016/j.ijplas.2013.06.006

• L. Wu, L. Noels, L. Adam, I. Doghri, An implicit-gradient-enhanced incremental-secant mean-field homogenization scheme for elasto-plastic composites with damage, Int. J. Solids Struct. (ISSN: 0020-7683) 50 (24) (2013b) 3843–3860,

http://dx.doi.org/10.1016/j.ijsolstr.2013.07.022.

• L. Wu, L. Adam, I. Doghri, L. Noels, An incremental-secant mean-field homogenization method with second statistical moments for elasto-visco-plastic composite materials, Mech. Mater. (ISSN: 0167-6636) 114 (2017) 180–200,

http://dx.doi.org/10.1016/j.mechmat.2017.08.006.

• V.-D.Nguyen F.Lani T.Pardoen X.P.Morelle L.Noels, A large strain hyperelastic viscoelastic-viscoplastic-damage

constitutive model based on a multi-mechanism non-local damage continuum for amorphous glassy polymers. Int. Journal of Sol. and Struct., (ISSN: 0020-7683) 96 (2016) 192-216, https://doi.org/10.1016/j.ijsolstr.2016.06.008

• V.-D. Nguyen, L. Wu, L. Noels, A micro-mechanical model of reinforced polymer failure with length scale effects and predictive capabilities. Validation on carbon fiber reinforced high-crosslinked RTM6 epoxy resin , Mech. Mater. (ISSN: 0167-6636) 133 (2019) 193-213, https://dx.doi.org/10.1016/j.mechmat.2019.02.017

Références

Documents relatifs

Les mesures de pseudo-distance et de phase servent à déterminer la distance entre le satellite et le récepteur, avec une précision accrue pour la mesure de phase. Plusieurs

Over the past 10 years, reports of HAdV-55 have been increasing in Asia during outbreaks of respiratory diseases that in some cases led to severe pneumonia and deaths in

L'auteur propose des moyens spécifiques auxquels doivent recourir les enseignants pour débarrasser leur programme des conceptions populaires erronées au sujet du

We aim to investigate the effectiveness of an intensive 3-week home-based preoperative exercise training programme on hospital discharge ability, postoperative complications and

The research showed that flanking transmission can be controlled, and sound isolation (both airborne and impact) maintained, through the proper design of

Choroid plexus NKCC1 mediates cerebrospinal fluid clearance during mouse early

De plus, dans la mesure où c’est la législation commune à tous les produits de santé qui diffère entre les pays, notre étude nous a permis de cibler les raisons des

conditions resulted in little decrease of elastic properties, it was observed that mechanical loading of the materials combined with water immersion resulted in a strong