• Aucun résultat trouvé

Basic Principles of White Dwarf Asteroseismology

N/A
N/A
Protected

Academic year: 2021

Partager "Basic Principles of White Dwarf Asteroseismology"

Copied!
63
0
0

Texte intégral

(1)

G.Fontaine 1 ,P.Brassard 1 ,S. Charpinet 2 ,P.-O.Quirion 3 ,S.K.Randall 4 ,

andV.VanGrootel 5

1

DepartementdePhysique,UniversitedeMontreal,Montreal,Quebe ,Canada

H3C3J7

2

Laboratoired'AstrophysiquedeToulouse-Tarbes, UniversitedeToulouse,CNRS,

14av.E.Belin,31400 Toulouse, Fran e

3

InstitutforFysikogAstronomi,AarhusUniversitet,Aarhus,DenmarkDK-8000

4

EuropeanSouthernObservatory,Karl-S hwarzs hild-Str.2,85748Gar hingbei

Mun hen,Germany

5

Institutd'AstrophysiqueetdeGeophysique,UniversitedeLiege,Alleedu6ao^ut

17,B4000Liege,Belgium

1 Asteroseismology and White Dwarf Stars

Thete hniqueof asteroseismologyexploits the information ontainedin the

normal modes of vibrationthat maybe ex ited during parti ular phases in

theevolutionofastar.Su hmodesmodulatetheemergent uxofapulsating

star and manifest themselves primarily in terms of multiperiodi

luminos-ity variations. In its simplest form, observational asteroseismology onsists

in gathering light urves, i.e., monitoring the (variable) brightness of

pul-sating starsasafun tion oftime. Standardsignalpro essing methods, su h

asFourierte hniquesforexample, are thenused to extra t the periods (or,

equivalently,frequen ies),theapparentamplitudes,andtherelativephasesof

thedete tedpulsationmodes.

Thenextstep{inessen ethemostbasi omponentofthe

asteroseismo-logi al approa h as awhole { onsists in omparing the observedpulsation

periods with periods omputedfrom stellar modelswith thehopeof nding

an optimalmodel that provides agood physi al des riptionof the real

pul-satingstarunders rutiny.Toinsurethatthesear hfortheoptimalmodelin

parameterspa eis doneobje tivelyand automati allyrequires good

model-building apabilities, eÆ ient period-mat hing algorithms, and onsiderable

omputing power. Otherwise, with simpler trial-and-error sear h methods,

there always remainsadoubt about theuniqueness and validity of thebest

(2)

Theperiods of pulsation modes of stellar models angenerally be

om-putedquitea uratelyandreliablywithintheframeworkofthelineartheory

ofstellarpulsationsinitsadiabati version(seebelow).Thesameframework

(although omplementarynonadiabati al ulationsarethenne essary)may

beused to ompute rst-order orre tionstotheunperturbedemergent ux,

anapproa hthatisfundamentalintheexploitationoftheadditional

informa-tion ontainedintheobservedamplitudesandrelativephasesofthedete ted

pulsationmodes.Andindeed, onstraintsontheangulargeometryofagiven

observed pulsation mode may be obtained by omparing theoreti al

ampli-tuderatiosandphasedi eren eswiththose observedindi erentwavebands

throughmulti olorphotometryand/ortime-resolvedspe tros opy.Thesame

istruewhenexploitingtherelativeamplitudesofmodesin agivenwaveband

in onjun tionwiththoseoftheirharmoni sand ross-frequen y omponents

intheFourierdomain.Whenavailable,su h inferen esontheangular

geom-etry of pulsation modes may provide extremely valuable onstraints in the

sear hfortheoptimalmodelin parameterspa e.Intheend,ifsu essful,an

asteroseismologi alexer iseleadstothedeterminationoftheglobalstru tural

parametersofapulsatingstarandprovidesuniqueinformationonitsinternal

stru tureandevolutionarystate.Anoutstandingexampleofsu hasu essful

exer iseisthatprovidedre entlyby[11℄forthepulsatingsdB omponentof

the losee lipsingbinarysystemPG1336 018.

Thete hniqueof asteroseismology hasfound parti ularly fertile grounds

at the bottom of the HR diagram where several distin t types of pulsating

stars havebeen dis overed. These are generally referred to as the ompa t

pulsators (i.e., those with surfa e gravities log g >



5). Figure 1 illustrates

that portion of the surfa e gravity-e e tive temperature plane where these

families arefound. Thosein lude theZZCeti stars whi h areH-atmosphere

whitedwarfswithT

e

'12,000K( rstdis overedby[26℄),theV777Herstars

whi h areHe-atmosphere whitedwarfswith T

e

'25,000 K([45℄), andthe

GW Vir pulsators whi h areHe/C/O-atmosphere whitedwarfs with T

e '

120,000K([28℄).Figure1alsoindi atesthelo ationsoftwoother ategoriesof

pulsatorswhi hweredis overedmorere ently.ThesearetheV361Hyastars

whi h areshort-period pulsatinghotBsubdwarf (sdB) stars([24℄), andthe

long-periodV1093Herpulsatorswhi hare oolerandless ompa tsdBstars

([21℄).Inaddition,short-periodpulsationshavealsobeenreportedin the,so

far,uniqueobje tSDSSJ1600+0748([46℄),averyhotsdOsubdwarfwithlog

g5.9andT

e

71,000K([19℄).Thisobje tmayormaynotberelatedtoa

groupoffoursdOsubdwarfsfoundinthe luster!Cen,and lusteredaround

T

e

 50,000K, for whi h pulsationalinstabilities were re entlydis overed

([35℄).Moreover,[30℄havefoundthepresen eofat leastonepulsationmode

in SDSS J1426+5752,a member ofan entirelynewand unexpe ted kindof

veryrare white dwarfs, those of the so- alled Hot DQ spe traltype, whi h

are relatively ool (T

e

' 20,000 K) stars with atmospheres dominated by

(3)

Fig.1. Regionofthelogg logT

e

planewherethe ompa tpulsatorsarefound.

Ea hof vedistin t familiesisidenti edbyitsoÆ ialIAU name,andthe yearof

the report of the dis overy of the prototype of ea h lass is also indi ated. Two

more ategories areidenti edbytheyear oftheir dis overy,2006 2011 and 2008,

respe tively.Typi alevolutionarytra ksareplotted showing 1)the tra k followed

by a0.6 M

post-AGB, H-ri hstar whi h be omes a H-atmosphere white dwarf

(dashed urve),2)thepathfollowedbya0.6M post-AGB,H-de ientstarwhi h

be omesaHe-atmospherewhitedwarf(solid urve),and3)thepathfollowedbya

0.478M post-EHBmodelwhi hleadstotheformationofalow-massH-atmosphere

whitedwarf(dotted urve).

refertoareisolatedstarsor omponentsofnon-intera tingbinaries,andtheir

luminosity variations are aused by internal partial ionization me hanisms.

For ompleteness,wefurtherpointoutthatpulsationalinstabilitieshavealso

been dis overed in several a reting white dwarfs in ata lysmi variables

([43℄;[1℄andreferen estherein).

(4)

Fig.2. Segmentsoftypi alopti allight urvesforea hofthefourknowntypesof

isolatedpulsatingwhitedwarfs.The urvesreferringtoPG0122+200,GD358,and

G207 9wereobtainedwithLAPOUNE,theMontrealportable3- hannel

photome-ter atta hedto the 3.6 mCFHT teles ope.This photometer usesphotomultiplier

tubesas dete tors. No lter was used,so these are integrated\white light" data.

In omparison,the urveforthemu hfainterstarSDSSJ2200 0741wasobtained

byBetsy Green and Patri k Dufour usingthe Mont4K CCD ameramounted on

(5)

oneea hforea hofthedi erentkinds,areshowninFigure2.Theyaretypi al

inthattheyallshowmultiperiodi variationsanda leartenden ytoexhibit

in reasinglynonlinearbehaviorwithin reasingamplitude(asexempli ed by

the ase of the large-amplitude pulsating DB white dwarf GD 358 shown

here). Pulsatingwhitedwarfsgenerallyhavelight urvesthat show

peak-to-peak amplitudes in the range from 0.4 millimag in the lowest amplitude

pulsators known to upward of 0.3 mag in the largest amplitude ones. The

luminosity variations are due to the presen e of low-degree (l=1 and l=2)

and low- to medium-ordergravity modes that are ex itedthrough apartial

ionization me hanism(see below).The observedperiods generally liein the

rangefromabout100stosome1400s,althoughtheupperlimit anextend

to severalthousandse ondsin low-gravityGWVirpulsators.

The properties of the pulsating white dwarfs have been extensively

re-viewedre entlyby[17℄andwereferthereadertothat paperfortherelevant

details.Inaddition, [44℄ haveprovided anotherreviewon thesestars. Given

theavailabilityofthosepapers,wefeltthatitwouldbemoreusefultodis uss

thetopi from anotherpoint ofviewratherthan providewhat would

ne es-sarilyamountto ashortened versionofthose manus ripts.Hen e, in a

ped-agogi alspirit,wede idedto useourallo atedspa e topresentadis ussion

oftheprin iples underlying thetheory ofpulsatingstarsasappliedto white

dwarfs. Our target audien eis therefore resear hersnot ne essarilyfamiliar

withpulsationtheoryandthosethatarebutmaynotbewell-a quaintedwith

thepe uliaritiesofwhitedwarfphysi s.

2 Normal Modes of Vibration in a Homogeneous

Continuous Elasti Medium

Itisusefulto rstre allsomeelementaryphysi s on erningnormalmodesof

vibrationinsimpleme hani alsystems.Thus, underthespe i assumption

that thedispla ementsof matterhavesmallamplitudes omparedto the

di-mensionsofthesystem(thisistherealmofthelinearapproa h),thespatial

and temporal behaviors of perturbations in a homogeneous elasti medium

aregovernedbythe lassi alwaveequation,

 2 (r;t) t 2 = (k) 2 k 2 r 2 (r;t); (1)

where ( r;t) is, in general, a ontinuous fun tion of spa e and time. This

wave fun tion ould represent, for example, the (small) displa ement of an

elementof matter withrespe tto its equilibrium position.Inthis equation,

(k)istheangularfrequen yandkisthewavenumber.

Thegeneralsolutiontothisequation orrespondstoana ousti orsound

wave whi h propagates with a speed = =k, a onstant hara teristi of

(6)

thereareboundary onditionstoberespe tedatthefrontiersofthedomain,

where wavesare re e ted.Only thewaveswiththe \ orre t"wavelength or

frequen y (generallythose with a node oran extremum at the boundaries)

will resonate, theothers disappearing through destru tiveinterferen e after

several re e tions. The normal modes of vibration are the solutions of the

lassi alwaveequation inpresen eof boundary onditions(whi h transform

theproblem into aneigenvalueproblem). Only ertain solutionsareallowed

(thenormalmodesoreigenfun tions), orrespondingtoadis retespe trumof

possiblevaluesoftheangularos illationfrequen y(theeigenvalues

0 < 1 <  2

;:::). Ina normal mode, all moving parts os illate at the same frequen y

andgothroughtheirequilibrium positionsat thesametime.

Asaspe i example, onsiderthesimple aseofthetransverseos illations

ofanidealelasti re tangularmembraneofdimensionXY thatisatta hed

at the edges. In that ase, the wave fun tion is a simple s alar, (x;y;t),

and the appropriate boundary onditions are spe i ed by (x = 0;y;t) =

(x = X;y;t) = (x;y = 0;t) = (x;y = Y;t) = 0. The solution of the

lassi alwaveequationforthissimpleproblemiswellknown.Spe i ally,the

eigenfun tionsaregivenby,

(x;y;t)sin(k n x x)sin(k n y y)e i nx;ny t : (2)

Note that the amplitude remains unde ned (as in any linear problem) and

is usually normalized to some onvenient arbitrary onstant. Likewise, the

eigenvaluesaregivenby,

 n x ;n y = q k 2 nx +k 2 ny ; (3)

where isthe( onstant)speedofsound,and

k n x =(n x +1)  X ; n x =0;1;2;:::; and k n y =(n y +1)  Y ; n y =0;1;2;:::: (4)

Hen e, in our 2D system, there are 2 \quantum" numbers, n

x and n

y , to

spe ify a mode. These numbers orrespond, respe tively, to the number of

nodal lines that ut the x and y axis. Note that if there are symmetries

(e.g.,asquaremembrane),thendi erentmodesmayhavethesameos illation

frequen y.Su hmodesare alleddegeneratemodes.Itiseasytoinferthatan

eigenmodein3Dshouldbespe i edbythreequantumnumbersrepresenting

the number of nodal surfa es that ut a ross the system. Furthermore, if

there aresymmetriessu h asthatfound inaspheri almodel ofastar,then

degenerateeigenmodesareautomati allypresent.

3 Normal Modes of Vibration in Stars

(7)

hemi al omposition.Thespeedofsoundisnotuniform(itdependsondepth)

and, furthermore, the uid elements in a star are subje ted to a variable

gravitationala elerationfrom g =0at the enter to g =g

s

atthe surfa e.

Thewavesthatpropagateinsideastararenolongerpurea ousti (orsound)

waves,buttheyareofthegravito-a ousti type.Su hwavesaresubje tedto

spe i boundary onditionsatthe enterandatthesurfa eofthestar.The

wavesarere e tedthere andoneoftenspeaksofagravito-a ousti avityto

des ribeastarin relationtoitsnormalmodesofvibration.

In its most basi form (see, in this ontext, the ex ellent textbook by

[40℄),thelineartheoryofnonradialstellaros illationsusesasastartingpoint

threewell-knownhydrodynami equationsthatgovernthebehaviorofa uid

in presen e of gravity: the equation of motion, the equation of ontinuity,

andPoisson'sequationthat relatesthegravitationalpotentialwiththe

den-sitydistribution of matter. Inthis version, theex hange of energy between

the thermal bath (the internal energy of the gas/ uid) and the os illations

(thekineti energyofthema ros opi uidmotions)isnegle ted.Thisisthe

adiabati approximation whi h only allows a des ription of the me hani al

behavior of the os illations and does not address the question of the

sta-bility of the modes (whi h involves thermal properties and the question of

energy ex hange). However, it turns out that nonadiabati e e ts generally

onlymarginallyin uen ethevalueoftheos illationfrequen yofapulsation

mode in a stellar model, so the adiabati version an be used with

on -den efor omputingfrequen ies(periods) tosuÆ ienta ura y tobeofuse

in asteroseismologi alexer ises.

Thenextstepisto onsideronlysmall perturbationsin orderto beable

tolinearize thebasi hydrodynami equations.Theunperturbedequilibrium

on guration is usually that of apurely spheri alstellar model. In keeping

with the fundamental properties of a normal vibrationmode, allperturbed

quantities ofinterestare assumedto os illatein phaseand gothrough their

equilibrium positionsat thesametime. Hen e,thedependent variablesthat

appearinthelinearizedequationsareassumedtohaveatemporaldependen e

givenbythestandardos illatorytermin linearphysi s,i.e.,e it

,where  is

thefrequen yandtisthetime.Thete hniqueofseparationofvariablesisthen

used to hara terizethespatial behaviorofamodein termsofaradialpart

andanangularpart.Forunperturbedspheri almodels,theangularbehavior

ofamode omesout,notunexpe tedly, tobegivenbyaspheri alharmoni

fun tionY m

l

(;).Oneendsupwithasystemof4lineardi erentialequations

withrealvariables(dependingnowonlyontheradial oordinate)whi h,

be- auseofboundary onditionstoberespe tedatthe enterandatthesurfa e

of thestar model, permitsonly ertainsolutions(the modes) orresponding

to spe i valuesoftheos illationfrequen y (the eigenvalues).

A stellar pulsation mode is de ned in termsof 3 dis rete numbers,k, l,

and m, the rst one giving the number of nodes in the radial dire tion of

(8)

k is termed the \radial order" and may take on all positive integer values,

i.e., k = 0, 1, 2, et . The index l is alled the \degree" of the mode and

gives the total number of nodal planes that divide the stellar sphere (l =

0, 1, 2,...). The number m is alled the \azimuthal order" and its absolute

value jmj gives the number of nodal planes that divide the stellar sphere

perpendi ulartotheequatorwhilegoingthroughthepoles.There are2l+1

possiblevaluesform( l; l+1;:::0;:::l 1;l).Non-rotating(spheri al)stars

haveeigenfrequen iesthatare(2l+1)-folddegenerateinm.Inthat ase,the

periodofapulsationmodeistriviallyrelatedtoitsangularfrequen ythrough

theexpressionP

k l

=2=

k l

,independentofm.

Itshouldbepointedoutthatthere existtwodistin tbut omplementary

behaviorsof gravito-a ousti wavesin aspheri alstar, onefundamentallyof

a ousti origin (as in a homogeneous sphere), and the other related to the

a tion of gravity. In terms of normal modes of vibration, these behaviors

are respe tively referred to as\pressure modes" (or p-modes) and \gravity

modes"(org-modes). 1

Thesedi erentbehaviorsarerelatedtotwo

fundamen-tal quantities thatappearinthelinearized pulsationequations:theso- alled

Brunt-Vaisalafrequen yN de nedby,

N 2  g  1 1 dlnP dr dln dr  ; (5)

andtheLambfrequen yL

l de ned by, L 2 l  l(l+1) 2 r 2 with 2 = 1 P  ; (6)

where isthe lo aladiabati sound speedandthe othersymbolshavetheir

standardmeaning.

Considerin this ontext an elementof uid in equilibrium withits

envi-ronmentatsomearbitrarydepthinastar.Ifaperturbationisappliedtothis

elementsu h that it is ompressed without hanging position in the star, a

restoringfor eproportionaltothe ontrastindensity(or,equivalently,tothe

pressure gradient) betweenthe perturbed element and its environment will

establish itself. Freedof the initial onstraint, the element will rea tto the

restoringfor e byos illating in volume (density, pressure) aboutits

equilib-rium on guration.Theseos illationswillo urata hara teristi frequen y,

the Lambfrequen y, whi h is intimately related to thelo al speedof sound

at the equilibrium point in the star. These os illations are then essentially

a ousti in nature,andonespeaksofa ousti wavesor,equivalentlybe ause

the restoring for e is due to apressure gradient, pressurewaves. In normal

situations(e.g., instablestars),theos illationsareultimatelydamped.

Consider again an element of uid in equilibrium with its environment

at some arbitrary depth in a star. This time, the perturbation onsists in

1

(9)

displa ing the uid element in the verti al dire tion, say above its

equilib-rium position. The element is then heavierthan it should be (its density is

higherthanthatofitsnewsurroundings),and,freed ofitsinitial onstraint,

will return toward its equilibrium position, and will os illate up and down

aboutit. Normally, theos illationsgeneratedbythe initialperturbationare

damped over a hara teristi times ale that depends on the lo al vis osity.

These os illationswill o urat a hara teristi frequen ywhi h depends on

the lo al physi al onditions at the point of equilibrium, the Brunt-Vaisala

frequen y.In that ase,it is buoyan y that provides therestoringfor e and

sin ebuoyan yisdire tlyrelatedtothemagnitudeofthelo algravitational

a eleration,onespeaksof gravitywaves.

Itshould be learthatone annotseparate ompletelythee e tsof

pres-surefrom those ofgravity.Forinstan e, in thelast example,the ontrastin

density(pressure)betwenthe displa edelementandits surroundingsshould

also play a role. Hen e, even though it is ustomary to divide the

gravito-a ousti wavesintwoseparatebran hes(onespeaksofpressuremodesandof

gravitymodesin stellarpulsationtheory),theeigenfrequen iesofthenormal

pulsation modes ofa stardepend at thesame timeon boththe variationof

theLambfrequen ywithdepthandonthat oftheBrunt-Vaisalafrequen y.

It is possible to derive a useful dispersion relation for gravito-a ousti

wavesby makingtwosimplifying assumptions. The rst oneisthe so- alled

Cowling approximationwhi h onsists in negle tingthe perturbation ofthe

gravitationalpotential.Inthatapproximation,theadiabati pulsation

equa-tionsredu etoasystemof2lineardi erentialequations.Althoughthe

Cowl-ingapproximationisnotverygoodformodeswithlowvaluesofkandland,

moregenerally,forp-modes(itisnotusedindetailednumeri al al ulations),

itissuÆ ientinthe ontextofthepresentdis ussion.

These ond approximation, termedthe lo al approximation, fo usses on

anarbitraryshellinastellarmodelinwhi hmostofthequantitiesappearing

in the tworemaining pulsation equations (speed of sound, Lamb frequen y,

Brunt-Vaisalafrequen y, lo al gravitationala eleration) anbeseenasnot

varying verymu hin theradialdire tion overthe shellregionwhi h, atthe

sametime, oversalargenumberofradialwavelengths.This ispossibleonly

formodeswithlargevaluesoftheradialorder k.Ifthe radialvariationsare

ompletelynegle ted,thenone ndsthattheeigenfun tionshaveabehaviorof

thetypeexp(ik

r

r),wherek

r

isaradialwavenumberthatobeysthefollowing

dispersionrelation, k 2 r = 1 2  2  2 L 2 l   2 N 2  : (7)

This indi ates that theos illations propagate radially(os illatorybehavior)

if k

r

is a real quantity orare evanes ent (exponential behavior) if k

r is an

imaginaryquantity.

(10)

Spe i ally, k 2

r

is positive (and k

r

is thus real) when  2 > L 2 l , N 2 . This

orrespondstothep-modes.Likewise,k 2

r

isagainpositivewhen 2 <L 2 l ,N 2 ,

andthiso ursfortheg-modes.IntheregionsofthestarwhereL 2 l < 2 <N 2 orN 2 < 2 <L 2 l ,k 2 r is negative(k r

is imaginary),and thegravito-a ousti

wavesareevanes ent.

Itispossibletoobtainfurtherqualitativeinformationastothebehaviors

oftheeigenfrequen ies(periods)ofbothp-modesandg-modesby onsidering

two limiting ases. Spe i ally, in the limit where  2  L 2 l ;N 2 , the above

dispersionrelationleadsto,

 2 = 2 p ' 2 k 2 r . (8)

Thisisthelimitwhereessentiallypurea ousti orpressuremodesarefound

sin eonlythespeedofsoundisinvolvedintherighthandsidetermofequation

(8).One anseethatthefrequen y(period)ofap-modein reases(de reases)

whenk

r

(i.e, thenumberofnodesintheradialdire tion)in reases.

Intheopposite limitwhere 2 L 2 l ;N 2

,equation(7)redu es to,

 2 = 2 g ' l(l+1)N 2 k 2 r r 2 . (9)

Thisisthelimitofpuregravitymodessin eonlytheBrunt-Vaisalafrequen y

(and noa ousti term)is involvedin theexpression. One aninfer thatthe

frequen y (period) of a g-mode de reases (in reases) when the radial order

in reases. In addition, the frequen y (period) of a g-mode of given radial

order in reases (de reases) when the degreeindex l in reases.Furthermore,

g-modes with adegreeindex l=0{ these would beradial modes {do not

exist astheyhaveafrequen yofzero.

Inbrief,gravito-a ousti modesbehaveasalmostpurepressuremodesat

veryhighfrequen ies,whiletheybehaveasalmostpuregravitymodesatvery

lowfrequen ies.Inboth ases,theselimits orrespondtoverylargevaluesof

theradialorder,i.e.,k1,sometimesreferredtoasthe\asymptoti limit".

Asindi atedabove,itisimportantto realizethatforgravito-a ousti modes

of low radial order (su h as those generally observed in white dwarf stars

forinstan e), theeigenfrequen iesdepend atthesametimeonbotha ousti

and gravitye e ts. Despite this,the usualnomen lature in stellarpulsation

theory is to keepthe terms p-modesand g-modes for all modes with radial

orderk1.

Figure3summarizesthese onsiderationsonthebasisofanexa t

al ula-tionofthelow-order, low-degreeperiodspe trumof atypi almodelofaZZ

Cetipulsator.Thismodelis hara terizedbyatotalmassM=0:6M

andan

e e tivetemperatureT

e

=11,800K.Ithasapure arbon oresurroundedby

aheliummantle ontaining10 3

ofthetotalmassofthestar,itselfsurrounded

byahydrogenouterlayer ontaining10 6

ofthetotalmassofthestar. The

(11)

un-Fig. 3. Low-orderandlow-degreeperiodspe trumforarepresentativemodelofa

ZZCeti star. Resultsare shownfor valuesof thedegree indexl =0,1, 2,and 3.

Thevaluesof the radial orderk are alsoindi ated up to k =5.Thetwofamilies

of gravito-a ousti modes, the p-modes and the g-modes, are learly illustrated.

Sometimes,dependingonthe onventionadopted,theradialindi esofg-modesare

assignednegativevalues,sothat,onafrequen ys ale,thevaluesofkin reasewith

in reasingfrequen yoverthefullspe trum.

are fullyrepresentativeofa ZZCeti star. This equilibriumstru ture will be

usedagainbelowasareferen emodel.

We omputedallpulsationmodeswithvaluesofl=0,1,2,and3inthe

periodwindow1 1000sforourreferen emodel.Figure3neatlyillustratesthe

p-modeandg-modebran hesofthegravito-a ousti periodspe trum,aswell

astheso- alled\fundamentalmode"formodeswithl2.Thefundamental

modehasnonodeintheradialdire tion(k =0)andfallsbetweenthep-and

g-bran h.Inwhitedwarfs,thatmodeismoreakintoap-modethanag-mode,

although,on eagain,it doesdepend onbotha ousti andgravitye e ts. It

is noteworthy that an isolated star annot havea fundamental mode ifthe

degreevalue is l= 1sin ethis would implya motionof the enter ofmass

(12)

with l =0 areknown asradialmodesbe ause allmotions are restri tedto

theradialdire tion asthere isnoangulardependen e (Y 0

0

(;)= onstant).

They are simply a parti ular ase of nonradial p-modes. Their eigenperiod

spe trumdoes ontainafundamental mode.

It should be pointed out that a stellar atmosphere loses its apa ity to

re e t ba k towardthe interioroutgoing gravito-a ousti wavesin the limit

of very high radial order k. Indeed, in this limit, pulsation eigenmodes are

stronglydampedbyoutwardlypropagatingwavesintheatmosphereandare

not expe ted to belong to the gravito-a ousti avity mentioned above. In

otherwords,highradialordermodes\leakthrough"theatmosphereandtheir

energyislosttotheoutside.Amethodforestimatingthese uto {or riti al

{periodsinawhitedwarf ontexthasbeendevelopedby[23℄.Applyingthis

approa hto therepresentativeZZ Ceti starmodelused inFigure 3,we nd

that p-modeswithperiods lessthan0.1sand g-modeswithperiods larger

than6000/ p

l(l+1) sarenotexpe tedto beofinterestinthatmodel.

4 Properties of Pulsation Modes in White Dwarfs

In the adiabati approximation, there are four distin t eigenfun tions that

omeoutofthenumeri aleigenvalueproblemandwhi hspe ifyagiven

pul-sationmode.Itis possibletoexpress twoofthose 2 dire tly intermsof r (r) and  h

(r), the radialand horizontal omponent of theLagrangian

displa e-mentve tor,respe tively.Thelatterisgivenby,

 =   r (r); h (r)   ; h (r) 1 sin    Y m l (;)e it ; (10)

and hasanobviousphysi al interpretation.In thefollowing,weuse thetwo

distin t(radial)eigenfun tions,

r

(r)and

h

(r),toillustratesomeinteresting

propertiesof pulsationmodesin whitedwarfs. Notethat, foragiven mode,

both

r

(r)and

h

(r)have,of ourse,thesamenumberofnodesintheradial

dire tion(thatistheradialorderkofthemode),butthosenodesdonot

over-lapinspa e.Forg-modes,thenodesofthe

r

eigenfun tionaresystemati ally

higherin thestarthanthe orrespondingnodesofthe

h

eigenfun tion. The

oppositeistrueforp-modes.

4.1 Propagationdiagram

Figure4isknownasa\propagationdiagram"andillustratesthebehaviorof

themodesinrelationtothepro lesoftheBrunt-Vaisalafrequen yandofthe

Lamb frequen y asfun tions ofdepth. Theplot refersto ourrepresentative

2

Inpra ti e,atthenumeri allevel,thea tualeigenfun tionsare onveniently

(13)

\Dziem-Fig.4. Propagationdiagramforquadrupole(l=2)modes omputedusinga

rep-resentative modelof a ZZ Ceti pulsator. Thesolid urve shows the pro leof the

logarithm ofthe squareof theBrunt-Vaisalafrequen y asa fun tionoffra tional

mass depth.Thevalue oflogq =0 orrespondstothe enterofthestellarmodel.

The lo ations of two atmospheri layers, thosewith R = 10 2

and R = 1, are

alsoindi atedbytheverti al dottedlinesonthats ale.Likewise,thedashed urve

givesthe logarithmi pro leofthesquareoftheLambfrequen yfor modeswithl

= 2.Thelabelledhorizontal dotted linesshowthe low-order frequen y spe trum,

again ona s ale involving the logarithm ofthe square ofthe frequen y.The dots

givethe lo ations ofthe nodesof the(radial) eigenfun tion 

r

(r) for thedi erent

modesillustrated.

ZZ Ceti starmodel andfeatures anabs issade ned bythe logarithmofthe

fra tional mass depth, a s ale hosen to emphasize the outer layers where

most of the \a tion" goes on in terms of modal behavior in white dwarfs.

Thiss aleisusedrepeatedlybelowinother gures.Thesolid urveshowsthe

distribution of the logarithm of the square of the Brunt-Vaisala frequen y.

Thewell inthepro leisdueto thepresen eofasuper ial onve tionzone

ausedbyHpartialionizationinthemodel.Inaddition,therearetwobumps

inthedistributionoftheBrunt-Vaisalafrequen y,one enteredaroundlogq

' 6and asso iated with the H/He ompositional transition zone, andthe

(14)

ontrastin mean mole ular weightbetween Hand Hethan betweenHeand

C.

The dashed urve in Figure 4 shows the pro le of the logarithm of the

squareoftheLambfrequen yforquadrupole(l =2)modes,theones hosen

forthisillustrativeexample.Bumpsdueagaintothepresen eof ompositional

transitionzonesarepresent,buttheoneasso iatedwiththeHe/Ctransition

region is quite weak and is hardly visible in the plot. These ompositional

featuresaresigni antasthey\pin h"theeigenfun tionsandprodu emode

trapping and mode on nement, ultimately leadingto a nonuniform period

distribution. Thee e t is parti ularlyimportant in g-modes as an be seen

in thelow-ordermodesof thekindillustratedin Figure3above.

Thehorizontal dottedlinesgivethevaluesofthelogarithmofthesquare

oftheeigenfrequen iesforquadrupolemodesinarange overingfromthek=

6g-mode(termed g

6

)atthelow-frequen yendto thek=6p-mode(termed

p

6

) at the high-frequen yend of the retained interval. Note, in passing,the

nonuniformdistributionofeigenfrequen iesthatisparti ularlyevidentforthe

low-order g-modes onsidered here,a hara teristi that wasmentionedjust

aboveinthepreviousparagraph.Thedotsin the guregivethelo ationsof

thenodesintheradialdire tionforea hofthemodesillustrated.Hen e,the

f-modeshowsnonode, onsistentwithitsradialorderk =0.Thelo ations

of the nodes indi ate where, in astellar model, a given pulsationmode has

an os illatory behavior in the radial dire tion, a region where the mode is

saidtopropagate.Figure4then learlyrevealsthatp-modespropagatewhen

 2 >L 2 l ,N 2

,whileg-modesdowhen 2 <L 2 l ,N 2

. Thisresult, omingfrom

detailednumeri al omputations,isentirely onsistentwiththe onsiderations

presentedin thepreviousse tion.Inaddition,Figure4showsthatlow-order

p-modes in whitedwarfspropagate in mu h deeper layersthan low-order

g-modes, whi h insteadpropagateinthe outermostlayers.Quiteinterestingly,

thisistheexa toppositeofthebehavioren ounteredinmainsequen estars

andin allnondegeneratestarsin general.

Wenote, in this ontext, that the sear h for g-modesin theSun is

on-sidered of fundamental interest in helioseismology, as asu essful dete tion

wouldallowtheextensionofasteroseismologi alprobingof thesolarinterior

tomu hdeeperregionsthanis urrentlypossibleonthebasisoftheobserved

p-modes.Inwhitedwarfs,onlylow-to medium-orderg-modeshavebeen

ob-servedso far,and itis thelow-orderp-modes thatwouldallowto probethe

orebest.Although thepresen e ofex ited p-modesis expe ted from

nona-diabati pulsationtheory,su h modeshaveyet tobefound in whitedwarfs.

Thelatest(unsu essful)attempttodete tp-modesinwhitedwarfsusingthe

VLThasbeenreportedby[39℄.

4.2 Angularmodaldependen e

(15)

of whi h anbemodeledin terms of temperature, radius,and surfa e

grav-ityperturbations. Inpulsating white dwarfs, it was rst shownby [36℄ that

the luminosity variations are ompletely dominated by temperature

pertur-bations,aresultthathasbeenformally on rmedby[34℄,althoughthelatter

authorspointedoutthatthisisnotne essarilytrueinthe oresofabsorption

lines.Hen e,toagoodapproximation,theluminosityvariationsofapulsating

whitedwarfmaybevisualizedsolely intermsof temperaturewavesa rossa

diskthat otherwisedoesnot hangeinshapeorsurfa earea.

Figure 5 illustrates typi al angular geometries for nonradial pulsation

modes expe ted in whitedwarfs, giventhat the modesfor whi h the degree

indexhasbeenidenti edsofarhavevaluesofl=1orl=2.Onere ognizes,

of ourse,thegeometriesofspheri alharmoni fun tions.Ea h olumnrefers

to amodewith xed angular indi es land m, and showsthe instantaneous

temperaturedistributionon the visible disk over half apulsation y le

ov-eredby vedistin tphases.Forea hofthe vedi erentmodesdepi ted(the

ve olumns), it is assumedthat the stellarsphere is in linedsu h that the

anglebetweentheline-of-sightandthesymmetryaxisofthepulsationmode

isequalto1radian(toberegardedasarepresentativevalue).

The rsttwo olumnsrefertodipole(l =1)modes,i.e., toageometryin

whi hthere isonenodalplane that dividesthestellar sphereintotwoequal

hemispheres. The ase m = 0 ( rst olumn) orresponds to a nodal plane

that isthesameastheequatorialplane(i.e.,the utisperpendi ulartothe

symmetryaxis),whilethe asejmj=1(se ond olumn) orrespondstoanodal

planethatisakintoagreatmeridianplane(i.e.,the utisalongthesymmetry

axis). It should beunderstood that, at any giventime, all eigenfun tionsof

interest havezero amplitude onan angular nodal plane, from the enter to

thesurfa eofthemodel.

Thelastthree olumnsrefertoquadrupole(l=2)modes,i.e.,theyinvolve

twonodal planes.The ase m=0(third olumn) orrespondsto twonodal

planes parallel tothe equatorialplane, the ase jmj =1(fourth olumn) to

onenodalplanefusedintotheequatorialplaneandonenodalplanealongthe

symmetryaxis,andthe asejmj=2( fth olumn)totwonodalplanesgoing

throughthepulsationaxisandperpendi ulartoea hother.Itisinterestingto

pointoutthat modeswithm=0havenodalplanesthatdonot hangewith

time, whereas modes with jmj 6= 0have jmj planes that \rotate"aboutthe

symmetryaxis.Fromthatpointof view,theangular omponentofam =0

modemaybe onsideredasastandingwave,whilethatofajmj6=0modemay

be onsideredasarunningwave.Notethatthetwomodeswiththesamevalue

ofjmjbutwithdi erentsignshavesimilartemperaturedistributions(orother

eigenfun tionsofinterest)that\rotate"atthesameabsolutespeedaboutthe

symmetry axis,but one lo kwise and theother ounter lo kwise.It should

benoted that the \rotationspeed" is dire tly related to theeigenfrequen y

.

(16)

Fig.5.Instantaneoustemperaturedistributionsonthevisiblediskofawhitedwarf

modelfor di erent modal angular geometries.Ea h olumnrefers to agivenpair

(l ,m), and overshalf apulsation y lein vephases. The pulsationfrequen y is

arbitraryand remainsunde nedinthisplot.Inea h ase, theangleofin lination

betweentheline-of-sight andtheaxis ofsymmetryofthepulsationhasbeen xed

to 1 radian. The olor ode is su hthat the deepest blue may orrespond to the

highestlo altemperature(abovetheaverageone),thedeepestredmay orrespond

(17)

disk twi e during a pulsation y le. This is well illustrated in the rst and

third olumn for thephase orrespondingto 1/4ofafull y le. In ontrast,

runningangular waves(jmj 6=0)nevershow aphasewhen thetemperature

distribution is uniform a ross the visible disk. Finally, for ompleteness, it

should be remembered that pulsation modes with a value of the azimuthal

order m =0 are sometimes referredto as\zonal modes", while those with

l=jmjare alled \se torialmodes".

4.3 Radialmodaldependen e

Figure6illustratesthetypi alradialdependen e ofthe

r and

h

eigenfun -tions orresponding, respe tively, to theradialand horizontal omponentof

thedispla ementve torinapulsatingwhitedwarf.Weagainrefertoour

rep-resentativeZZ Cetistarmodel,andwe onsiderthelowestorderquadrupole

modesfrom g

5 to p

5

,in ludingthef-mode.

The upper panel of the gure depi ts the pro le of 

r

as a fun tion of

depthforthef-mode,threelow-orderp-modes(p

1 ,p

3 ,andp

5

),andthethree

orrespondinglow-orderg-modes(g

1 ,g

3 ,andg

5

).Themodeswithradialorder

k=2andk=4werenotplottedinordertonot lutterthediagramtoomu h.

InkeepingwithourremarkaboveinSe tion2relatedtothelinearapproa h,

theamplitudesoftheeigenfun tionsinthelineartheoryofstellarpulsations

havetobearbitrarilynormalizedatsome onvenientvalueandlo ation.Here,

theamplitudeofthe

r

eigenfun tionhasbeennormalizedtothevalueofone

at the surfa eof the model for ea h mode onsidered, i.e., 

r

(r = R ) = 1.

Hen e,a omparisonofthe

r

pro lesforvariousmodesbe omesmeaningful

ifoneunderstandsthattheamplitudes ofallthemodesarenormalizedtobe

thesameat thesurfa eofthestar.

One ansee that the amplitudes of the low-order p-modes are generally

mu h larger than those of the low-order g-modes in the deeper layers. The

latter exhibit nodes mu h higher in the star than the former (these nodes

are, of ourse, thesameas those shownin Figure 4above).It is interesting

to observethat thef-modekeepsthelargest amplitudeoverthefull stellar

model.Also,theg

3

modebehavesdi erentlyfromtheg

1 andg

5

modesinthat

itsamplitudeinthestellar oreremains omparativelylarge,whereasthetwo

othermodesshowverysmallamplitudevaluesatthesedepths.Thisisbe ause

the g

3

mode is partially on ned below the H/He transition layer due to a

resonan e ondition:these ondnodein

r

( ountingfromthesurfa einward)

falls just below the H/He ompositionaltransition zone, while, at the same

time,the rstnodein

h

fallsjustabove.The orollary onditionfortrapping

ofag-modeabovea ompositionaltransitionzoneisthatthen th

nodeofthe



r

eigenfun tionfallsjustabovethetransitionregion,whilethen th

nodeofthe



h

eigenfun tionfallsjustbelow.Thisnotionofmode on nementandmode

(18)

Fig. 6. Upper panel: Pro le of theradial eigenfun tion

r

as a fun tionof depth

for thelowestorderquadrupolemodesinourreferen eZZCetistar model.Lower

panel:Absoluteratioofthehorizontaltotheradial omponentofthedispla ement

ve torforthesamemodes.

ofresonan e.Thereaderisreferredtothatpaperformoredetails.Webrie y

revisitthe on eptofmode on nement/trappingbelow.

ThelowerpanelofFigure 6showstheabsoluteratioof thehorizontalto

radial omponentsof thedispla ementve torasafun tion of depth forthe

same modes. This is a parti ularly interesting plot as the results are

inde-pendent of the a tual normalization adopted. That is, whatever the a tual

amplitudeofamode, lineartheorypredi tsagivenamplituderatiobetween

(19)

thenodesin the

r

eigenfun tion,whiletheminima orrespondtothenodes

in the

h

eigenfun tion.Asindi atedabove,thenumberofnodesforagiven

mode is thesamefor theradial andhorizontal displa ementeigenfun tions,

but theydonotfallatthesamelo ationsin thestar.

It is quite instru tive to fo us on the amplitude ratio at the surfa e of

the model. Thus, in the observable atmospheri layersof apulsating white

dwarf,matterisdispla edmu h morehorizontallythanverti allyduringthe

pulsation y leofag-mode.Indeed,a ordingtothelowerpanelofthe gure,

the ratio of the horizontal to radial omponents of the displa ement ve tor

alreadyex eeds100forak=3mode,anditin reasesrapidlywithin reasing

radial order. Conversely, the ratio of the radial to horizontal displa ement

in reases rapidly with in reasing radial order for p-modes, rea hing nearly

100forthep

5

modeillustratedin Figure6.The ontrastbetweenhorizontal

and radial displa ements is even larger for l = 1 modes, being some three

timeslargerforthek=3g-modethantheg

3

quadrupolemodeshowninthe

gure. It is therefore ertain that the g-modes observed in pulsating white

dwarfs orrespondto material motionsthat are essentiallyhorizontal in the

super iallayers.Theverylargesurfa egravity hara teristi ofwhitedwarfs

(logg 8) isattheoriginofthisphenomenon.

4.4 Kineti energy

Aninterestingglobalpropertyofapulsationmodeisitskineti energyde ned

bythegeneralrelation,

E kin  1 2 Z V v 2 dV , (11)

wheretheintegrationis arriedoutoverthetotalvolumeo upiedbythestar.

If one negle ts the rotation of the star and any other possible ma ros opi

velo ity eld (su h as onve tion ormeridional ir ulation),one anexpress

thekineti energyintermsofaradialintegralinvolvingthetwoeigenfun tions

 r and h , E kin   2 2 R Z 0   r (r) 2 +l(l+1) h (r) 2  r 2 dr . (12)

Given thearbitrary normalization ofthe eigenfun tions in lineartheory,

thekineti energyofamodeisknownonlytowithinamultipli ativefa tor.In

pra ti e,thismeansthat onlyrelative omparisonsbetweenthekineti

ener-giesofdi erentmodeshaveaphysi alsense.Hen e,toex iteamodewiththe

sameobservableamplitudeatthesurfa eofastarasthatofareferen emode

requires (moreor less)energy,and thatin rementisgivenbythedi eren e,

E

kin

,betweenthekineti energiesofthetwomodes.

(20)

Fig. 7. Kineti energyasafun tionofperiodfor thefamilyof quadrupolemodes

with periods inthe rangefrom 1s to 1000 s as omputed usingourreferen e ZZ

Cetimodel.

1s and 1000 s as omputed onthe basis ofour representativeZZ Ceti star

model. Given the behavior of its displa ement eigenfun tions { as an be

observedinFigure 6{in onjun tionwithequation (12),itisnotsurprising

thatthef-mode omesoutwiththelargestkineti energyofthelot.Indeed,

theamplitudeofthefundamentalmode(bothin

r and

h

)isbasi allylarger

than anyother mode overthe whole stellar model. This means that the f

-mode requires the most energy to be ex ited to a given surfa e amplitude.

Sometimes,su hamodeisreferredtoastheonewiththemost\inertia".

Thefa t that thelow-orderp-modeshavesigni antlylargeramplitudes

than their g-mode ounterparts in thedeeperregions of a white dwarf (see

againFigure6), ombinedwiththelargevaluesofthedensityatthesedepths

ompared toits envelopevalues,readilyexplainswhythekineti energiesof

thep-modesaremu hlargerthanthoseoftheg-modes.Thisisanimportant

hara teristi ofwhitedwarfstars.Inaddition,theeigenfun tionsdepi tedin

Figure6forbothp-modesandg-modesexhibitanoutward\migration"with

(21)

the signi ant drop of the kineti energy with in reasing radialorder along

thetwobran hesofnonradialmodes.

The ase of g-modes merits further dis ussion as these are the modes

observedinrealpulsatingwhitedwarfs.Forinstan e,amodelikeg

3

inFigure

7 shows a lo al maximum in kineti energy along the g-bran h. As brie y

alluded to above, su h a mode an be seen as partially on ned below the

H/He transition zone. It exhibits the larger amplitudes below that region

as ompared to other g-modesand, therefore, it hasalargerkineti energy.

Conversely,theg

6

modeshowsalo alminimumin kineti energyduetothe

fa tthatittendstobepartiallytrappedabovetheH/Hetransitionzone,with

the onsequen ethat ithasloweramplitudes belowthat regionas ompared

toitsimmediateadja entmodes.

4.5 Weight fun tion

Ithasbeenshownby[27℄(andseealso[7℄)thattheeigenvaluesoftheadiabati

pulsationequations anbeestimatedfromavariationalapproa h.Forapurely

spheri almodel,thesquareofaneigenfrequen yisgivenby,

 2 = D A , (13)

where D and A are two integralexpressions involving the eigenfun tionsof

that eigenfrequen y. This expression an be used, after the solution of the

eigenvalueproblemhasbeenobtained,to deriveavariationalestimateofthe

eigenfrequen y.Whilethisisgenerallylessa uratethantheresultprovided

bytheeigenvalueitself, inpartdue tothefa tthat theboundary onditions

used in the variational approa h are notexa tly the same asthose used in

the eigenvalueproblem, theapproa h isoften used asameasure of internal

onsisten y.Ofgreaterinterest,however,isthefa tthatequation(13)involves

integralexpressionsoverthestellarmodel.WhiletheintegralAappearingin

the denominatoris simply proportionalto the kineti energy de ned above,

theintegrandoftheintegralDappearinginthenumeratorprovidesameasure

of the ontribution of ea h shell in the stellar model to the overall integral.

As su h, theintegrandofthe integralD foragivenpulsationmode isoften

referredtoasthe\weightfun tion" ofthemode.This on eptisveryuseful

forinferringwhi hregionsofastellarmodel ontributemosttotheformation

ofamode.TheintegralD maybewritten,

D= R Z 0   2 r N 2 + (P 0 ) 2 1 P + 0  P 0 1 P + r N 2 g  r 2 dr , (14)

where twootheradiabati eigenfun tionsexpli itlyappear: 0

(the Eulerian

perturbationofthegravitationalpotential),andP 0

(22)

Fig. 8. Upper panel: Normalizedweight fun tionas afun tionofdepthfor afew

low-orderquadrupolemodesinourreferen eZZCetistarmodel.Thenormalization

insuresthattheareaunderea h urveisthesame.Lowerpanel:Normalizedweight

fun tionfora on nedmode(g3)andatrappedmode(g6).

Figure8illustratestheweightfun tionsforafewofthelow-orderquadrupole

pulsationmodesthat havebeendis ussed aboveforourrepresentativewhite

dwarfmodel.The weightfun tion of ea h mode isnormalizedsu h thatthe

areaunderea h urveisthesame.Inkeepingwithourpreviousdis ussion,it

isnotsurprisingtoobserveintheupperpanelthatap-modeofagivenradial

(23)

thephysi al onditionsintheinteriorthang-modesdo.Thelatteraremostly

envelopemodesin oolpulsatingwhitedwarfssu hasZZ Cetistars.

ThelowerpanelofFigure8showstheweightfun tionsofthequadrupole

modes g

3 and g

6

that have been dis ussed above. The former is partially

on ned belowthe H/Hetransition zone entered onlog q ' 6, whilethe

latterispartiallytrappedabovethat ompositionaltransitionregion.Clearly,

their weight fun tions re e t this state of a air. It should be evident that

this on ept of mode on nement/trapping must be seenas the result of a

(relativelyweak)partialwavere e tioninthetransition layers,allowingthe

on nedmodetoextendabovethetransitionregion,andthetrappedmodeto

extendbelowthat region.Themodesremainglobal(asalways),buttheyare

moresensitivetothe onditionsfoundaboveorbelow,dependingonwhether

ornottheyaretrappedor on ned.

It is very instru tive to investigate the evolution of the weight fun tion

ofapulsationmodealongtheevolutionarytra kfollowedbya oolingwhite

dwarf.Inthisway,one anappre iatethe hangeofregimefromtheGWVir

hotphaseofevolutiontothe oolZZCetiphase(whi hhasbeenemphasized

throughtheuseofourreferen emodelin theillustrativeexamplespresented

sofar).Alongthe oolingtra k(see,e.g.,the urvesshownin Figure1),the

overalldegenera yofawhitedwarfmodelin reasesandthispushestheregion

of g-mode formationoutwards.This implies that mode sensitivity to model

parameters hanges from theGWVir phasetothe V777Herphaseandthe

ZZCeti regime.

This notion of hangingmode sensitivity along the white dwarf ooling

tra k is well illustrated in the toppanel of Figure 9.In order to avoidthe

ompli ations ausedby hemi allayering,i.e.,mode on nementand

trap-pingwhi hwould ausetheweightfun tionnottobehavemonotoni allyand

onfusetheplot,theevolutionofapureCmodelwas onsidered.The gure

showstheweightfun tion ofthelowest-order(k =1)dipoleg-modein terms

of depth, andin terms ofdi erent phasesof oolingasquanti edby the

ef-fe tivetemperature.Theweightfun tionisagainnormalizedsothatthearea

under ea h urveisthesame.Figure9 learlyrevealstheoutwardmigration

of theregionofg-mode formationwith ooling.Thisimpliesthat the

pulsa-tionmodesofawhitedwarf(theg-modesasobserved)progressivelylosetheir

abilitytoprobethedeepinterior(GWVirregime)andbe omemoresensitive

to the details of the outermostlayers(ZZ Ceti regime) as oolingpro eeds.

It is parti ularlyobviousherethat the k =1, l=1g-modein the10,117 K

model doesnotprobethe oreverywell.

Thepanelat thebottomofFigure9illustrates,in ontrast,thefa t that

there is littlemigration of theregion of mode formationfor ap-modein an

evolving white dwarf. There is some outward migration, parti ularly below

30,000K,butthee e t remainsmild.Hen e,evenatT

e

=10,117K,thep

1

modestillprobesthedeep oreasitdidatmu hhighere e tivetemperatures.

(24)

Fig. 9. Upper panel:Evolution ofthe normalizedweight fun tionfor the

lowest-orderdipoleg-modeinaseries of models ulled fromanevolutionarysequen eof

pureCwhitedwarfs.Lower panel:Similar,butforthelowest-orderdipolep-mode.

reason forthis is to befound in the di erent behavior ofthe Brunt-Vaisala

frequen y omparedtothat oftheLamb frequen y.

4.6 Rotational splitting

Thevariationalapproa hputforwardby[27℄isagainofgreatusefor

estimat-ingthee e tsofslowrotationontheeigenfrequen yspe trumofapulsating

(25)

tationasaperturbationandleadsto orre tionstotheeigenfrequen iesthat

are given in terms of integral expressions involving the unperturbed

eigen-fun tions,i.e.,those omingoutofthesolutionoftheeigenvalueproblemfor

purelyspheri allysymmetri models(su has

r and

h

en ountered above).

Themain e e t of slow rotationis to destroythespheri al symmetryof

the star and, asa onsequen e, the (2l+1)-fold degenera y that exists for

theeigenfrequen iesofmodeswithdi erentvaluesofmbutbelongingtothe

samepair(k,l)inanonrotatingmodelislifted.Undertheassumptionthatthe

angularrotationfrequen yisasimplefun tion ofdepth,(r),thefrequen y

of a mode, now de ned by the three indi es k, l, and m, is given through

rst-orderperturbationtheoryby,

 k lm ' k l m Z R 0 (r)K k l (r)dr , (15) where  k l

is the frequen y of the degenerate modes (k,l) in the absen e of

rotation,andthese ondtermontherightsideisthe rst-order orre tionto

that frequen y,withmtaking onthevalues l; l+1;:::;l 1;l.The

quan-tity K

k l

(r) appearing in the orre tion termis referredto as the rst-order

rotation kernel. It obviously plays the role of a weight fun tion,verymu h

similar to the weight fun tion dis ussed above for the eigenfrequen y, but,

thistime, referringtotheregions ontributingtothefrequen ysplittingdue

torotation.Itisgivenbythefollowingexpressioninvolvingtheunperturbed

eigenfun tions, K k l (r)= f 2 r +[l(l+1) 1℄ 2 h 2 r  h gr 2 R R 0 f 2 r +l(l+1) 2 h gr 2 dr . (16)

Ifthestarisfurtherassumedto rotateasasolidbody(6=(r)),equation

(15)redu esto,  k lm ' k l m(1 C k l ) , (17)

whereisthe(uniform)angularrotationfrequen y,andC

k l

isa

dimension-lessquantitynamedthe rst-ordersolidbodyrotation oeÆ ient(orLedoux

oeÆ ient).Itisgivenby,

C k l = R R 0 f2 r  h + 2 h gr 2 dr R R 0 f 2 r +l(l+1) 2 h gr 2 dr . (18)

Giventhesolutionoftheeigenvalueproblemforamode,equation(18)allows

theevaluationoftheC

k l

oeÆ ientforthatmode.Notethat rst-ordersolid

body rotation leads to a set of equally-spa ed frequen ies with a splitting

betweenadja entfrequen y omponentsgivenby,

(26)

Figure10showsthevaluesofthe rst-ordersolidbodyrotation oeÆ ient

for a series of quadrupole modes (the same as those illustrated in Fig. 7)

overing the period interval 1 1000 s, and referring to our representative

whitedwarfmodel. Asis the asefor alltypesofstars,thevaluesofC

k l for

p-modes tend to be ome verysmall ompared to 1 in the asymptoti limit

of highradialorder.In ontrast,thevaluesofC

k l

forg-modestend towards

anonzero value,1=(l(l+1)), in the samelimit,as anbeseenin the gure

forl=2.Notethatthelowest-orderg-modes{ofmostinterestforpulsating

white dwarfs { show signi antly di erent values of C

k l

from one mode to

another,agood thingbe ausethismayhelpin onstrainingtheradialorder

ofamodeversusanotheronein presen eof observedrotationalsplitting.

Fig. 10. First-order solidbodyrotation oeÆ ient asa fun tionof periodfor the

familyofquadrupolemodeswithperiodsintherangefrom1sto1000sas omputed

onthe basisof ourreferen e ZZCeti starmodel. Theformat is similartothat of

Fig.7above,andthemodes onsideredarethesame.

Figure11showsexamplesoffrequen yspe tra,withandwithoutrotation,

obtainedfromourreferen ewhitedwarfmodel.Arelativelysmallvalueof3

hwasassumedfortherotationperiodofthemodelinorderto learlyseethe

(27)

rotational splitting has beendete ted and used to inferthe rotation period

of some 14 pulsatingwhite dwarfsso far (see Table 4of [17℄). The inferred

rotationperiodsvaryfrom 5hto55h, whi h isagainquiteslow.

Fig. 11. Rotationalsplitting inour representative ZZ Ceti star model. The

low-orderg-modefrequen y spe trafor bothdipole andquadrupole modes,with and

withoutrotationturnedon, areillustrated.Itisassumedthatthestarrotatesasa

solidbodyandwitha(relatively)shortperiodof3h.Degeneratedipolemodessplit

into triplets,whilequadrupolemodessplitintoquintuplets. Thespa ings between

adja ent omponentswithin a given multipletare the samein frequen yspa e as

shownhere.

5 Period Evolution

Anotherobservableofhighpotentialinterestforwhitedwarfasteroseismology

istherateofperiod hangeofamodeinagivenpulsatingstar.Iftheperiod

hangeisdueprimarilytothese ularevolutionofthestar,andnottoexternal

(28)

planet-propertiesor on rm/testthe propertiesderivedfrom usingtheperioddata

in astandardasteroseismologi alexer ise.

Fig. 12. Representative examples of period evolution for dipole g-modes during

the GWVir, V777Her,and ZZCetiphases. Notetheo setinagebetweenthese

di erentphasesofevolution.Theradialorderk isindi atedforsomeofthemodes

depi tedhere.

Figure12ismeanttoillustratehowpulsationperiodstypi allyevolvefor

thethreemain ategories ofpulsatingwhitedwarfsthatareknown:theGW

Vir,V777Her,andZZCetistars.Inea h ase,theevolvingmodelisspe i ed

byatotalmassof0.6M

andauniform ore ompositionmadeof arbonand

oxygen in the sameproportions by mass fra tion. Theenvelope in the GW

Vir model is made of a representative PG1159 omposition (X(He)=0.38,

X(C)=0.40,andX(O)=0.20)and ontains10 2

ofthetotalmassofthestar.

TheenvelopeoftheV777Hermodel alsohasanenveloperepresenting10 2

of the total mass of the star, but it is made of pure helium. In the ase of

theZZCeti model, thereisapureheliummantle ontainingamassfra tion

of10 2

surroundedbyapurehydrogenenvelope ontaining10 4

ofthetotal

mass.Giventhedi erenttimes alesinvolved{theevolutionofawhitedwarf

(29)

respe ttosomearbitraryzeropoint)astheabs issaandweintrodu edashift

of 0.80( 1.45)dexfortheV777Her(ZZCeti)model.

Forea htypeof pulsatorofinterest, thelowerpartof thedipoleg-mode

spe trum (starting with k = 1) was omputed for several equilibrium

on- gurations mapping the instability strip. Inthe ase of the GW Vir phase,

theequilibriummodels onsidered overthe\turningofthebend"intheHR

diagram(see,e.g.,Fig.1) orrespondingtothe nal ontra tionphaseduring

whi h thestar gets hotter andmore ompa tand the pulsation period of a

modede reases,followedbythebeginningofthe oolingphaseduring whi h

thestargets oolerand(slightly)more ompa tandthepulsationperiod

in- reases.Theperiodofag-modeinaGWVirmodelgoesthroughaminimum

pra ti allywhenthemodelrea hesitsmaximume e tivetemperatureinits

ex ursion in theHR diagram.Things are simplerfor the V777Her and ZZ

Ceti families whi h orrespondtopurely oolingphases and,therefore, su h

starsexhibitpulsationperiodsthatin reasemonotoni allywithpassingtime,

althoughnotatthesameratefromonemodetoanotheras anbeappre iated

in Figure 12. Thein rease of the pulsation period of ag-modein a ooling

whitedwarfisintimatelyrelatedtotheoutwardlygrowingdegenerateregion

whi hhasthee e t ofloweringthevalueoftheBrunt-Vaisalafrequen y. 3

It should be noted that the phases overed in Figure 12 en ompass the

empiri alinstabilitystripsandaremeantto beprimarilyillustrative.For

in-stan e,the oolestmodel onsideredintheGWVirphaseissomewhat ooler

at T

e

' 77,000 K than the a tual observed red edge. Also, the V777 Her

phasemapsarangeofe e tivetemperaturesfromabout28,000Kto 21,000

K,whiletheZZ Cetiphase oversanintervalfrom about13,000Kto about

10,300K,somewhatlargerthanthewidthsoftheobservedinstabilitystrips.

It shouldfurther benotedthat the gurerevealssigni antwavystru tures

in the omputed period distributions,most obvious for the GW Vir phase.

These stru tures, sometimes referredto as\mode bumpings" and \avoided

rossings",areduetothephenomenonofmodetrapping/ on nementat

om-positionaltransitionlayersinourwhitedwarfmodels.Purelyradiativemodels

withauniform hemi al ompositionwouldnotshowthese wavyfeatures.

Inthe aseoftheGWVirmodel,inparti ular,thenodesofagivenradial

overtone rstmigrateinwardsandthen outwardsasthemodelturns around

the bend in the spe tros opi HR diagram. These nodes su essively pass

through the omposition transition region at the interfa e of the C/O ore

andtheenvelope,where onditionsforpartialmode on nementortrapping

aremet.Hen e,agivenmodeisalternativelypartially trappedandpartially

on ned as afun tion oftime, and this produ es theperiod variationsthat

anbeseeninFigure12.Forhigherordermodes,thenodesaremore

numer-ousand losertogether, sothere aremore\waves"in theirtemporal period

distributionas analsobeobservedin the gure.

3

(30)

Brunt-Fig.13.Upperpanel:Evolutionoftheratesofperiod hangeforthreerepresentative

dipolemodes(k=1,k=20,andk=40)a rosstheGWVirinstabilitystrip.The

evolutionarypathsareshownbythesolid urvesandstartwithadot.Thedotted

urvesshowthevaluesofdP=dtforthe40overtonesatthreedistin tepo hsduring

theevolution.Middlepanel:Similar,butforthek=1,k=14,andk=27overtones

a rosstheV777Herinstabilitystrip.Also,onlytheinitialand naldistributionsfor

the 27modesare shownbythe dotted urves. Lower panel:Similar tothemiddle

panel,butforthek=1,k=13,andk=25modesintheZZCetistrip.

Figure13showssomeresultsforvaluesoftheratesofperiod hange

om-putedfromtheseevolutionarysequen es.Asexpe tedfromthewavystru ture

(31)

ompli ated. Forinstan e, in theupperpanelof Figure 13,theevolutionary

pathsfollowedbydP=dtfordipoleg-modeswithk=1,k=20,andk=40are

illustratedby thesolid urves.The startingpointfor ea hpath isindi ated

byasmalldot,andthis orrespondstoanearlyepo hwhenthemodelenters

theGWVir regionatlowgravityand (relatively) lowe e tivetemperature,

still ontra ting and getting hotter. The dotted urve onne ting the three

\starting"pointsshowsthespe trumof dP=dt valuesforthe rst40 dipole

overtoneswhenthemodelentersthestrip.Thequasi-periodi behavioralong

the spe trum is again due to mode trapping/ on nemente e ts. The

spe -trum is equivalent to measuring the slope for ea h of the 40 modes onthe

left side of the 40 urves shown in Figure 12 and referring to the GW Vir

regime.Inthisearlyphase,allslopesarenegativeandthedP=dtvaluesfora

ontra tingmodelofapre-whitedwarfareallnegative.

In ontrast, by thetime the model exits the GWVir domain asa

high-gravity ooling white dwarf with T

e

' 80,000 K, all values of dP=dt are

positive(topdotted urveintheupperpanelofthe gure).Inbetween,there

exist epo hs when, in agiven model, one an nd bothmodeswith positive

valuesoftherateofperiod hangeandmodeswithnegativevalues,depending

on theirradial order.This is illustratedby the middle dotted urvein that

samepanel, whi h orrespondsto anevolutionary phasenearthe turningof

thebendin theHR diagram.Thisparti ular ir umstan e,ifobserved,may

be of high value for pinning down the pre ise evolutionary status of a GW

Virpulsator.

Theevolutionarypaths shownin Figure 13 are ompli ated in that they

againre e tthee e tsofmodetrapping/ on nement.Forinstan e,thepath

forthek=40mode rossesthezerovalueseveraltimes,meaningthattherate

of period hange for that parti ularmodeis initiallynegative,then hanges

signafewtimesaroundtheturningofthebend,and nallytakesonapositive

valuebythetime thestarleavestheGW Virregion.Thispathisequivalent

to measuringtheslopealongtheGWVirk =40 urveinFigure 12.

For their part, dP=dt values for g-modes due to se ular evolution are

alwayspositivefor V777Her and ZZCeti pulsatorsas an be seenin both

Figures 12and 13. This isdue to the fa t that whitedwarfsin these

evolu-tionaryphasesarepurely oolingbodiesand thattheoverallde reaseofthe

Brunt-Vaisalafrequen yintheirinternalregionsduetothegrowing

degener-a ypushestheperiodsofg-modestohighervalues.Ofnotableinterest,Figure

13alsorevealsthat thevaluesofdP=dtformodesof omparableradialorder

de rease substantiallyalongthe whitedwarf oolingsequen e.Forinstan e,

the typi alorder of magnitude for the rate of period hange for a GW Vir

pulsator is dP=dt10 11

s/s,foraV777 Herstar itis dP=dt10 13

s/s,

and for aZZ Ceti pulsator it drops to the low valueof dP=dt 10 14

s/s.

These numberssimplyre e ttheverydi erentevolutionarytimes alesthat

hara terizethesethreephases.Thenumbersshowthatitismu hmore

(32)

ItshouldberealizedthatthemeasurementofdP=dtforamodeina

pul-satingwhitedwarf,assumingthatsu hmeasurementisavailableand redible,

is noteasyto interpretwithouthaving rstderivedareliableseismi model

forthepulsator under s rutiny. Su h amodel, obtainedfromthe analysisof

theperiod data(andadditionalinputsu hasmulti olorphotometryasmay

bethe ase),providesestimates ofthestru tural parametersof thepulsator

andamodeidenti ation.Theseareessentialingredientsrequiredfor

inter-pretingthemeasurementoftherateofperiod hange.Andindeed,it anbe

shown that agiven value of dP=dt may be shared by modes with di erent

radial order or degree index, or by models with di erent masses, envelope

layerings, ore ompositions, and e e tive temperatures. Hen e, it is

abso-lutelyne essaryto knowtheseparameterstoagoodlevelofa ura ybefore

attemptingto exploitthedP=dtdata.

Figure14summarizestheresultsofnumeri alexperimentsfeaturing

rep-resentativemodesofinterest(dipoleg-modeswithk=1,8,and15)formodels

of ZZ Ceti stars. It shows how the values of dP=dt for these modes hange

asthemodels oolthroughtheZZ Cetiinstabilitystrip.Intheupperpanel,

twosimilar models areused: they both haveatotalmass of0.6 M

,a

uni-form ore ompositionmadeof arbonandoxygeninthesameproportionsby

massfra tion,andapureheliummantle ontainingamassfra tion of10 2

,

but theydi erin thatone(dashed urves) hasapureH outermostenvelope

ontainingamassfra tionof10 4

(letus allitthe\referen emodel"inthis

Se tion),whiletheother(solid urves)hasamu hthinnerhydrogenlayerof

massfra tion 10 10

.Inthesamespirit, themiddlepanelof the gurerefers

to thereferen eevolutionarymodel(dashed urves)and asimilar one(solid

urves) di eringonly in its total mass, now equalto 0.9 M

. Likewise, the

lowerpanelreferstoadditionalmodelssimilartothereferen emodel(dashed

urves), but one having a pure C ore omposition (solid urves), and the

otherapureO ore omposition(dotted urves).

Therearesomedi eren esbetweenthevaluesofdP=dtforthelowest-order

(k = 1) mode onsidered in Figure 14 depending on themodel parameters,

butthesedi eren esremainsmallonthes alesusedhere,andtheyaremu h

smallerthanthosefoundforthehigherordermodes.Generallyspeaking,the

rates of period hange are highly dependent on modal and model

parame-ters.It shouldthereforebe learfromthisthat theinterpretation ofadP=dt

measurementmustrestontheavailabilityofareliableseismi model.

6 The Nonadiabati Approa h

6.1 Basi onsiderations

Initsfull version,thelineartheory ofnonradialstellarpulsationstakesinto

(33)

Fig. 14. E e ts of varying the envelope layering, the total mass, and the ore

ompositionontheratesofperiod hangeforrepresentativedipoleg-modes(k=1,

8,and15)inevolvingZZCetistarmodels.

energy onservationequationandtheenergytransferequation,arethus alled

uponattheoutset.Afterlinearization,oneendsupwithasystemof6linear

di erentialequationswith6dependent omplexeigenfun tions. 4

As ompared

to the adiabati approximation (whi h leads to a set of 4 linear equations

4

Thisistrueformodelsinwhi honlyradiative(and ondu tive)transportistaken

into a ount, although theone extreme treatment of onve tion that has been

usedmostoftenforwhitedwarfs,theso- alledfrozen onve tionapproximation,

(34)

with real variables), the full approa h be omes a mu h more ompli ated

problemfromanumeri alpointofview.Thisisthepri etopay,however,to

verifyif apulsationmode isex ited ornotin a stellarmodel. Likewise,the

full nonadiabati approa h is ne essaryto understand why apulsating star

pulsates,andtomapinstabilitystrips,amongotherthings.

Inthefullnonadiabati version,theeigenfrequen y ofamodeisa

om-plexnumberanditstemporaldependen etakesontheform,

e it = e i(R+iI)t = e iRt e It , (20) where  R

is the (angular) os illation frequen y of the mode, and 

I (also

expressedin rads 1

)isdire tlyrelatedtotheso- allede-foldingtimeofthe

mode de ned by 

e

= 1=

I

. (In somereferen es, the term \growth rate"

is also de ned by the expression = 

I = R ). When  I is positive, the

amplitudeof theinitialperturbationde aysa ordingto equation(20),and

the mode issaid to bestable, damped, ornot ex ited, andthe mode is not

expe tedto beobservable.Conversely,when 

I

isnegative,theamplitudeof

theinitialperturbationblowsupexponentially(thisislineartheory),andthe

modeissaidtobeunstable,driven,orex ited.Su hamodemaygrowto an

observableamplitudein a realpulsator.Note that, quitegenerallyin stellar

modelsandespe iallyforlow-ordermodes,j

R jj

I

j,whi hpartlyexplains

whytheadiabati approximationisusuallyjusti edfor omputingos illation

frequen ies(periods)atasuÆ ientlevelofa ura y.

Innonadiabati pulsationtheory,oneveryuseful on eptisthatofa\work

integral"whi hmaybeevaluatedfromthe(nonadiabati )eigenfun tionsafter

the solution of the eigenvalue problem has been obtained. In a way similar

to the weight fun tion dis ussed in Subse tion 4.5 above, the integrand of

theworkintegralindi ateswhi hregionsofastellarmodel ontributetothe

driving of apulsation mode, and whi h regions ontributeto damping. The

integrandoftheworkintegralmaybewritten intheform,

dW dM r =   R Re  ÆT  T  Æ N Æ  1  r(F R +F C  , (21)

where the terms have their standard meaning. The nu lear term, Æ

N , has

yettoproveitsrelevan eforpulsatingwhitedwarfs,althoughit oulddrive,

throughtheappropriatelynamed-me hanism,short-periodg-modesinsome

modelsofGWVirstarswithresidualHeshellburninga ordingto[37℄(and

seealso[12℄).Shortperiodpulsationsofthetypehaveyettobedis overedin

GWVirstars,however,anditisnowgenerallya knowledgedthatthemodes

observedinthepulsatorsofthekindaredrivenbytheso- alled-me hanism

involvingthe modulation of the radiative ux F

R

around an opa ity bump

in the envelope (see, e.g., [31℄, and referen es therein). The -me hanism,

thistime basedonHshellburning, ouldalsodriveshort-period (40 125s)

(35)

thedotted urveshowninFigure1indi ates thepredi tedinstabilityregion.

Nolow-massDAOwhitedwarfhasbeenfoundto pulsateyet(see,in

parti -ular,[22℄),buttheseobje tsarequiterareandthejuryisstill outaboutthe

possibility.Thisisparti ularlytrueinthelightofthere entstudyof[20℄who

haveshownthatthepresumedpost-EHBDAOwhitedwarfsstudiedfor

vari-abilityby[22℄ are,in fa t,post-AGBwhitedwarfs.Inthe asesof theV777

HerandZZCetistars,residualshellburningis ompletelynegligibleandthe

-me hanism annotoperate.Instead, themodulations ofboththeradiative

and onve tive uxmustbetakenintoa ountinthedrivingpro essasthese

oolerwhitedwarfshavedevelopedextensivesuper ial onve tionzonesthat

intera t with the pulsations.Forla kof a better approa h, stabilitystudies

of white dwarfsof thekind have largelybeen basedon the so- alled frozen

onve tion approximation,whi h onsists in negle ting the perturbations of

the onve tive ux.Fortunately,progresshasbeenmadere entlyonthisfront

byimplementing,for the rsttime, anapproa hbasedonatime-dependent

treatmentof onve tioninawhitedwarf ontext([15℄,[33℄, [42℄)

The sign of the integrand dW=dM

r

indi ates if, lo ally, a region of the

star hasastabilizingordestabilizinge e t onamode.If dW=dM

r

<0,the

region will be short of energy after a pulsation y le and that energy will

be taken from the kineti energy of the mode. The amplitude of the mode

tends thento de reaselo ally,and theregion ontributesto dampingofthe

mode.If,ontheotherhand,dW=dM

r

>0,theregionendsupwithapositive

energy in rement after a y le, whi h is transfered as extra kineti energy

to the mode. The amplitude has then a tenden y to grow lo ally, and the

region ontributestodriving.Theglobalstabilityofamodeisdeterminedby

summingoverthe ontributionsofallregionsinamodel,andthisisthework

integralgivenby,

W = M Z 0 dW dM r dM r . (22)

If W <0,damping dominatesoverdriving and themodeis globally stable.

Conversely,ifW >0,themodeisgloballyex ited.

6.2 Ex itation ofpulsation modes in white dwarfs

Thephenomenonultimatelyresponsiblefordrivingpulsationmodesin white

dwarfs is the partial ionization of the main envelope onstituents. Indeed,

theK-shellele tronsof arbonandoxygenionizeandthenre ombineduring

the ex ursion around the bend in the GW Vir phase of the evolution of a

H-de ient,post-AGBstar,heliumre ombinesinthestri ly oolingphaseof

aHe-atmospherewhitedwarf orrespondingtotheV777Herregime,andso

doeshydrogenintheeven oolerphaseofaH-atmospherestar orresponding

(36)

on-ea h ase,partial ionizationleads to averyimportant in reaseof the

enve-lopeopa ity,and thistendsto hoketheoutgoingenergy ux.Inthe aseof

V777 Her models, and even moreso in Hot DQ models and ZZ Ceti stars,

theopa itybump be omesso largethat asuper ial onve tionzone

devel-opsasaresultofthebuildupofasuperadiabati temperaturegradient,and

this signi antly a e ts the me hani sof the a tual pro ess responsible for

theex itationofpulsationmodes.Conve tiveenergytransportmustthenbe

taken into a ount in addition to the usual radiative hannel. Figure 15

il-lustrates some opa ity pro les and onve tive ux pro les in the envelopes

of typi al models of pulsating white dwarfs. The monotoni in reaseof the

opa itymaximumwithde reasinge e tivetemperature(GWVir,V777Her,

Hot DQ,ZZCeti)isnoteworthy.

Fig. 15. Opa itypro les(heavy urves)intheenvelopesofrepresentativemodels

ofthefourtypesofpulsatingwhitedwarfs.Theratioofthe onve tivetototal ux

is also plotted (thin urves), ex eptfor the GW Vir modelin whi h there is no

onve tion.

Figure

Fig. 2. Segments of typial optial light urves for eah of the four known types of
Fig. 3. Low-order and low-degree period spetrum for a representative model of a
Fig. 4. Propagation diagram for quadrupole (l = 2) modes omputed using a rep-
Fig. 5. Instantaneous temperature distributions on the visible disk of a white dwarf
+7

Références

Documents relatifs

Despite some changes in the determined internal structure, we find that including the effects of neutrino cooling in our static DB white dwarf models has little impact on the

Fujita M, Saiki H , Harada H (1974) Electron Microscopy of Microtubules and Cellulose Microfibrils in Secondary Wall Formation of Poplar Tension Wood Fibers. Mokuzai

(4) Rachid bourouiba , les hamadistes, entreprise nationale du livre, Alger, 1984,p34. ) 6 ( لﻤﻜﻴ ﻭﻬﻓ ﻰﻟﻭﻷﺍ ﺔﺠﺭﺩﻟﺎﺒ ﺔﺤﻠﺼﻤ ﺝﺍﻭﺯ ﻲﺴﺎﻴﺴﻟﺍ ﺝﺍﻭﺯﻟﺍ ﻥﻴﻓﺭﻁﻟﺍ ﻥﻴﺒ ﻡﺭﺒﻤﻟﺍ ﺢﻠﺼﻟﺍ

This paper investigates this issue in the case of the West African Economic and Monetary Union (WAEMU), of which several countries have benefited from important

Observou-se também que até aos sessenta dias após o transplantio, após ocorrência de chuvas fortes, as mudas que estavam fora da casa de vegetação, em aclimatação, necessitavam

However, on some communications intensive benchmarks, the Java version exhibits scalability issues, even when using a high performance socket implementation (JFS)..

Obviously, the best thyristors with GEJTE have a distinctively higher forward breakdown voltage and a slightly lower leakage current level than their counterparts with just a

– one using the VLBI position and the other using our best fit position – show that the Shapiro delay parameters and the orbital variability parameters change by 1 σ or less with