• Aucun résultat trouvé

Wetlands influencing river biogeochemistry: the case study of the Zambezi and the Kafue Rivers

N/A
N/A
Protected

Academic year: 2021

Partager "Wetlands influencing river biogeochemistry: the case study of the Zambezi and the Kafue Rivers"

Copied!
21
0
0

Texte intégral

(1)

Wetlands influencing river

biogeochemistry: the case study of the

Zambezi and the Kafue Rivers

AFRIVAL Project (African River Basins)

http://ees.kuleuven.be/project/afrival/

EGU General Assembly 2014, Vienna

Cristian R. Teodoru

1

, Frank C. Nyoni

2

, Imasiku Nyambe

2

, Alberto V. Borges

3

, and

Steven Bouillon

1

1

K.U. Leuven, Belgium;

2

University of Zambia, IWRM Center, Zambia,

3

University of Liege, Belgium

2

nd

International Conference “Water Resources and Wetlands”

(2)

Introduction: AFRIVAL project (2009-2014)

AFRIVAL – ‘African river basin: catchment scale carbon fluxes and

transformation”

(

http://ees.kuleuven.be/project/afrival/

)

joint European Research Council Starting Grant project hosted at the Department

of Earth & Environmental Sciences (K.U. Leuven, Belgium) and the Chemical

Oceanography Unit (Université de Liège, Belgium)

5-year funding to explore the role of African rivers in carbon cycling

Fieldwork within AFRIVAL has taking place in:

Kenya: Tana & Sabaki Rivers

Niger: Niger River

Gabon: Ogooué River

Madagascar: Bestiboka and Rianila Rivers

DRC Congo & Central African Republic: Congo River Basin

Zambia & Mozambique: Zambezi River Basin

Tana River

Ogooué River

(3)

Study site: the Zambezi River

The Zambezi River – general characteristics

4

th

largest in Africa and the largest flowing in to the Indian Ocean (from Africa)

Total length: > 3000 km; Drainage basin: ~ 1.4 x 10

6

km

2

(shared by 8 countries)

Average annual discharge at Zambezi Delta: 3800-4130 m

3

s

-1

2 large reservoirs: Kariba (5580 km

2

; 180 km

3

), and Cahora Bassa (2670 km

2

; 52 km

3

)

2 major wetlands: Barotse Floodplains (7700 km

2

), and Chobe Swamps (1500 km

2

)

Kariba Reservoir

Victoria Falls

Zambezi source

Barotse Floodplains

Chobe Swamps

Barotse Floodplains

(4)

Study site: the Kafue River

The Kafue River – general characteristics

Main tributary of the Zambezi River (entirely within Zambia)

Total length: > 1500 km; Drainage basin: ~ 156,000 km

2

Average annual discharge at the confluence with Zambezi: 370 m

3

s

-1

2 reservoirs: Itezhi Tehzi (365 km

2

; 5.5 km

3

), and Kafue Gorge (13 km

2

; 0.8 km

3

)

Major wetlands: Lukanga Swamps (2100 km

2

), and Kafue Flats (6500 km

2

)

(5)

General characteristics: Climate & Rainfall

Climate is classified as humid subtropical or tropical wet and dry

Annual rainfall varies with latitude: 1400 mm in N to 400-500 mm in S (mean average

rainfall for entire basin: 940 mm)

Two seasons:

1. Wet season (Oct/Nov – Apr) corresponding to summer, with 95% of annual rainfall (900 mm)

2. Dry season (May – Sep/Oct), corresponding to winter, with 5% of annual rainfall (40 mm).

Ju

l

A

u

g

S

e

p

O

ct

N

o

v

D

e

c

Ja

n

F

e

b

M

a

r

A

p

r

M

a

y

Ju

n

Ju

l

A

u

g

S

e

p

O

ct

N

o

v

D

e

c

Ja

n

F

e

b

M

a

r

A

p

r

M

a

y

Ju

n

Ju

l

0

50

100

150

200

250

Dry Season

May-Sep

(40 mm)

M

o

n

th

ly

P

re

c

ip

it

a

ti

o

n

[

m

m

]

Wet Season

Oct-Apr

(900 mm)

(6)

General characteristics: Hydrological cycle

Driven by seasonality in rainfall patterns resulting in a bimodal distribution with a single

main peak flood (max. Q: Apr/May) and min. flow in Oct/Nov

1

/1

/2

0

1

2

2

/1

/2

0

1

2

3

/1

/2

0

1

2

4

/1

/2

0

1

2

5

/1

/2

0

1

2

6

/1

/2

0

1

2

7

/1

/2

0

1

2

8

/1

/2

0

1

2

9

/1

/2

0

1

2

1

0

/1

/2

0

1

2

1

1

/1

/2

0

1

2

1

2

/1

/2

0

1

2

1

/1

/2

0

1

3

2

/1

/2

0

1

3

3

/1

/2

0

1

3

4

/1

/2

0

1

3

5

/1

/2

0

1

3

6

/1

/2

0

1

3

7

/1

/2

0

1

3

8

/1

/2

0

1

3

9

/1

/2

0

1

3

1

0

/1

/2

0

1

3

1

1

/1

/2

0

1

3

1

2

/1

/2

0

1

3

1

/1

/2

0

1

4

0

500

1000

1500

2000

dry season

Kafue (Hook Bridge)

Kafue Gorge Dam

D

is

c

h

a

rg

e

[

m

3

s

-1

]

Data [mm/dd/yy]

Zambezi River

Kafue River

wet season

0

1000

2000

3000

4000

5000

Zambezi (Victoria Falls)

Kariba Dam

D

is

c

h

a

rg

e

[

m

3

s

-1

]

(7)

Methods: Sampling strategy

3 sampling campaigns: Wet (Feb-Apr) 2012, Wet (Jan-Apr) 2013, Dry (Oct-Dec) 2013

56 sampling sites: 26 along Zambezi (Kariba & CB Res.), 13 along the Kafue (ITT Res.),

and 17 on different tributaries

1 0 /1 /2 0 1 0 1 1 /1 /2 0 1 0 1 2 /1 /2 0 1 0 1 /1 /2 0 1 1 2 /1 /2 0 1 1 3 /1 /2 0 1 1 4 /1 /2 0 1 1 5 /1 /2 0 1 1 6 /1 /2 0 1 1 7 /1 /2 0 1 1 8 /1 /2 0 1 1 9 /1 /2 0 1 1 1 0 /1 /2 0 1 1 1 1 /1 /2 0 1 1 1 2 /1 /2 0 1 1 1 /1 /2 0 1 2 2 /1 /2 0 1 2 3 /1 /2 0 1 2 4 /1 /2 0 1 2 5 /1 /2 0 1 2 6 /1 /2 0 1 2 7 /1 /2 0 1 2 8 /1 /2 0 1 2 9 /1 /2 0 1 2 1 0 /1 /2 0 1 2 1 1 /1 /2 0 1 2 1 2 /1 /2 0 1 2 1 /1 /2 0 1 3 2 /1 /2 0 1 3 3 /1 /2 0 1 3 4 /1 /2 0 1 3 5 /1 /2 0 1 3 6 /1 /2 0 1 3 7 /1 /2 0 1 3 8 /1 /2 0 1 3 9 /1 /2 0 1 3 1 0 /1 /2 0 1 3 1 1 /1 /2 0 1 3 1 2 /1 /2 0 1 3 1 /1 /2 0 1 4 0 1000 2000 3000 4000 5000 6000 7000 8000 2010-2011 Wet Season D is c h a rg e [ m 3 s -1] Date [mm/dd/yy] Victoria Falls Kariba Dam Dry Season

biweekly monitoring: Zambezi and Kafue

Wet 2012 D ry 2 0 1 3 2011-2012 2012-2013 Wet 2013

(8)

Methods: Measured parameters

Physico-chemical: pH, O

2

, t°, conductivity, Total Alkalinity

Total Suspended Matter (TSM) and sediment characterization

Concentration and stable isotope (δ

13

C) composition of POC, DOC, DIC,

Aquatic metabolism: Bacterial respiration and primary production

GHG (CO

2

, CH

4

, N

2

O) concentrations and fluxes

Radiocarbon isotopes dating (Δ

14

C

POC

and Δ

14

C

DOC

)

Headspace Technique

Membrane Equilibrator

In-situ CO

2

measurements

(9)

Results: pH spatio-temporal variability

0

500

1000

1500

2000

2500

3000

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

C.B. Res. (2012 wet) C.B. Res. (2013 dry) Kariba Res. (2012 wet)

Kariba Res. (2013 wet) kariba Res. (2013 dry)

p

H

[

N

B

S

]

Distance from source [km]

Zambezi (2012 wet) Zambezi (2013 wet) Zambezi (2013 dry) Barotse Floodplains Chobe Swamps

0

200

400

600

800

1000

1200

1400

1600

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

Kafue Gorge Reservoir

ITT Res. (2012 wet) ITT Res. (2013 wet) ITT Res. (2013 dry)

Lukanga Swamps

pH

[

N

B

S

]

Distance from source [km]

Kafue (2012 wet) Kafue (2013 wet) Kafue (2013 dry)

Kafue Flats

Zambezi River

Kafue River

pH decreases (more acidic) in-,

(10)

Results: DO spatio-temporal variability

Zambezi River

Kafue River

Significant DO decrease in-, and

downstream wetlands (below 2 mg L

-1

)

0

500

1000

1500

2000

2500

3000

0

20

40

60

80

100

120

140

160

180

Kariba Res. (2012 wet) Kariba Res. (2013 wet) Kariba Res. (2013 dry)

C.B. Res. (2012 wet) C.B. Res. (2013 wet) C.B. Res. (2013 dry)

D

is

s

o

lv

e

d

O

x

y

e

n

[

%

]

Distance from source [km]

ZBZ (2012 wet) ZBZ (2013 wet) ZBZ (2013 dry) Barotse Floodplains Chobe Swamps

2 mg L

-1

0

200

400

600

800

1000 1200 1400 1600

0

20

40

60

80

100

120

140

160

180

ITT Res. (2012 wet) ITT Res. (2013 wet) ITT Res. (2013 dry)

D

is

s

o

lv

e

d

O

x

y

g

e

n

[

%

]

Distance from source [km]

Kafue (2012 wet) Kafue (2013 wet) Kafue (2013 dry) Kafue Flats Lukanga Swamps

2 mg L

-1

(11)

Results: CO

2

spatio-temporal dynamics

0

500

1000

1500

2000

2500

3000

0

2000

4000

6000

8000

10000

12000

14000

C.B. Res. (2012 wet) C.B. Res. (2013 wet) Kariba Res. (2012 wet)

Kariba Res. (2013 wet) Kariba Res. (2013 dry)

p

C

O

2

[

ppm

]

Distance from source [km]

Zambezi (2012 wet) Zambezi (2013 wet) Zambezi (2013 dry) Barotse Floodplains Chobe Swamps

Kariba & CB Dam

hypolimnetic

water release Shire >13000 ppm

Degassing Vic. Falls

0

200

400

600

800

1000 1200 1400 1600

0

2000

4000

6000

8000

10000

12000

14000

Lukanga Swamps atm. CO2

p

C

O

2

[

ppm

]

Distance from source [km]

Kafue (2012 wet) Kafue (2013 wet) Kafue (2013 dry) ITT Res. (2012 wet) ITT Res. (2013 wet) ITT Res. (2013 dry)

Kafue Flats

Kafue Gorge Reservoir

Zambezi River

Kafue River

Substantial increase in CO

2

in-,

and downstream wetlands

(12)

Results: CH

4

spatio-temporal dynamics

0

500

1000

1500

2000

2500

3000

1

10

100

1000

10000

100000

C.B. Res. (2012 wet) C.B. Res. (2013 dry) Kariba Res. (2012 wet)

Kariba Res. (2013 wet) Kariba Res. (2013 dry) Zambezi (2012 wet) Zambezi (2013 wet) Zambezi (2013 dry)

C

H

4

[

nm

ol

L

-1

]

Distance from source [km]

Barotse Floodplains Chobe Swamps

0

200

400

600

800

1000 1200 1400 1600

1

10

100

1000

10000

100000

C

H

4

[

nm

o

l

L

-1

]

Distance from source [km]

Kafue (2012 wet) Kafue (2013 wet) Kafue (2013 dry) ITT Res. (2012 wet) ITT Res. (2013 wet) ITT Res. (2013 dry)

Lukanga Swamps

Kafue Flats

Zambezi River

Kafue River

CH

4

increases substantially in-,

(13)

Results: TSM & POC spatio-temporal variability

0

200

400

600

800

1000

1200

1400

1600

1

10

100

1000

ITT Res. (2012 wet) ITT Res. (2013 wet) ITT Res. (2013 dry)

T

S

M

[

m

g

L

-1

]

Distance from source [km]

Kafue (2012 wet) Kafue (2013 wet) Kafue (2013 dry) Kafue Flats Lukanga Swamps

0

500

1000

1500

2000

2500

3000

1

10

100

1000

C.B. Res. (2012 wet) C.B. Res. (2013 wet) Kariba Res. (2012 wet)

Kariba Res. (2013 wet) Kariba Res. (2013 dry) ZBZ (2012 wet) ZBZ (2013 wet) ZBZ (2013 dry)

T

S

M

[

m

g

L

-1

]

Distance from source [km]

Barotse Floodplains

Chobe Swamps

Zambezi River

Kafue River

UPSTREAM

DOWNSTREAM

6

8

10

12

14

16

18

20

22

24

26

%

P

O

C

o

f

T

S

M

[

%

]

Barotse Floodplains Chobe Swamps Lukanga Swamps Kafue Flats

2% increase

5% increase

11% increase

- No clear TSM trend

- Notable increase in the relative

contribution of POC to the TSM in-,

and downstream wetlands

(14)

Results: DOC spatio-temporal variability

0

500

1000

1500

2000

2500

3000

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

C.B. Res. (2012 wet) C.B. Res. (2013 wet) Kariba Res. (2012 wet)

Kariba Res. (2013 wet) Kariba res. (2013 dry) ZBZ (2012 wet) ZBZ (2013 wet) ZBZ (2013 dry)

D

O

C

[

m

g

L

-1

]

Distance from source [km]

Barotse Floodplains

Chobe Swamps

Zambezi River

Kafue River

DOC increases in-, and

downstream wetlands

0

200

400

600

800

1000

1200

1400

1600

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Lukanga Swamps

ITT Res. (2012 wet) ITT Res. (2013 wet) ITT Res. (2013 dry)

D

O

C

[

m

g

L

-1

]

Distance from source [km]

Kafue (2012 wet) Kafue (2013 wet) Kafue (2013 dry)

(15)

River / Reservoir

Area

CO

2

flux

CH

4

flux

CO

2

load

CH

4

load

Emission Deposition

[km

2

]

[mg C m

-2

d

-1

]

[kt C yr

-1

]

Kafue River without reservoirs

287

2962

20.0

310

2.1

312

-Itezhi Tezhi Reservoir

364

1102

18.1

146

2.4

149

16

Kafue Gorge Reservoir

13

956

17.4

5

0.1

5

1**

Kafue River with reservoirs

664

1903*

18.9*

461

4.6

466

17

Zambezi River without reservoirs

1879

4291

45.0

2943

30.8

2974

-Kariba Reservoir

5364

-191

4.8

-374

9.3

-364

120

Cahora Bassa Reservoir

2670

-356

1.4

-347

1.4

-346

60**

Zambezi River with reservoirs

9913

614*

11.5*

2222

41.5

2264

180

Zambezi & Kafue Rivers with reservoirs

10576

695*

12.0*

2683

46.1

2729

196

Results: Carbon Budget

Total C Yield: 7165 kt C yr

-1

Total C Yield: 23,485 kt C yr

-1

Emissions increase 7 fold

(16)

Concluding remarks

Wetlands/floodplains have large influence on river biogeochemisty:

Decreasing the pH and Dissolved Oxygen concentrations

Increasing the Temperature and Evaporation

Increasing CO

2

and CH

4

, DOC and POC concentrations

Highly productive ecosystems, wetlands are essential elements of carbon

cycle, capable of shifting significantly the balance between Emissions,

Storage and Transport components of carbon budgets.

Further research (more quantitative data) are needed to better constrain

the role of wetlands in both regional and global C budgets, which so far has

been largely overlooked.

(17)

Thank you for your attention!

(18)

The global carbon cycle

Global C budget studies are mostly limited to the three major carbon reservoirs

with little or no focus on inland waters

Major carbon

reservoirs

Atmosphere

Biosphere

Ocean

(19)

Historical perception

Land 0.9 Pg C y

-1

Inland waters

Ocean 0.9 Pg C y

-1

River are passive “pipes” transporting to oceans terrestrial carbon

(Cole et al., 2007. Plumbing the global

carbon cycle: integrating inland waters into

the terrestrial carbon budget. Ecosystems 10,

172–185)

Introduction: Inland waters in global C cycle

Research on inland waters suggest that:

beside Transport

Emitting

Storing

(20)

Canadell & Raupach, 2008

Global NEP ~3.0 Pg C yr

-1

Terrestrial

Freshwater systems function as biogeochemical “hot spots”

(Aufdenkampe et al., 2011. Rivers key to coupling biogeochemical cycles between land, oceans and

atmosphere. Front. Ecol. Environ. 9, 53–60) based on Batin el al., 2009

3.3 (70%)

4.8

0.6 0.6 2.1

Introduction: Inland waters in global C cycle

More recent research

(21)

Overlooked importance of wetlands

“Three-quarters of the world’s flooded land consists of temporary wetlands,

but the contribution of these productive ecosystems to the inland water

carbon budget has been largely overlooked”.

“Flooded forests and floating macrophytes provide,

through litterfall and submerged root respiration, a

total of 305±120 Tg C yr

-1

of atmospheric carbon to

the waters”….“not significantly different from the CO

2

outgassing flux of 210±60 Tg C yr

-1

. Central

Amazonian waters thus receive at least as much

carbon from semi-aquatic plants as they emit to the

atmosphere”

Références

Documents relatifs

is a model employed to extend the emissions at regional or global scale in different ecosystem, used here to compare the estimations of CERES-EGC – PaSIM coupled

Indeed, the OTH radar is able to sound, as dense GPS network, large regions in the ionosphere [Bazin et al., 2006], consequently, it could image in the ionosphere plasma

Il importe toutefois de percevoir une nuance capitale : le corps est à la merci des démons et de la Tromperie parce qu’il est plongé dans sa propre nuit, celle que connaît tout

Si l’on doit choisir un ordinateur qui sera utilisé dans un environnement de travail (bureautique, gestion, Intranet…) il faudra avant tout s’assurer que l’ordinateur dispose,

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Zone d'affichage de la référence ou du nom de la cellule active Onglets du ruban Barre de titre Barre d’outils Barre de formule En-tête de colonne Cellule active En-tête

• Si vous spécifiez la valeur 0 (zéro) pour l'argument no_lig ou no_col, la fonction INDEX renvoie respectivement la matrice des valeurs de la colonne ou de la ligne entière. •

Figure 11: Formation energies (AIREBO) of full reonstructions of the DV defect in a 3838-atom sheet as a function of the number of atoms in non-hexagonal rings (Form Q, having a