• Aucun résultat trouvé

From linear to nonlinear PGD-based parametric structural dynamics

N/A
N/A
Protected

Academic year: 2021

Partager "From linear to nonlinear PGD-based parametric structural dynamics"

Copied!
11
0
0

Texte intégral

(1)

Science Arts & Métiers (SAM)

is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in:

https://sam.ensam.eu

Handle ID: .

http://hdl.handle.net/10985/15463

To cite this version :

Giacomo QUARANTA, Clara ARGERICH MARTIN, Rubén IBÁÑEZ, Jean Louis DUVAL, Elias

CUETO, Francisco CHINESTA - From linear to nonlinear PGD-based parametric structural

dynamics - Comptes Rendus - Mecanique - Vol. 347, n°5, p.445-454 - 2019

Any correspondence concerning this service should be sent to the repository

(2)

From

linear

to

nonlinear

PGD-based

parametric

structural

dynamics

Giacomo Quaranta

a

,

Clara Argerich Martin

b

,

Ruben Ibañez

c

,

Jean

Louis Duval

a

,

Elias Cueto

d

,

Francisco Chinesta

c

,

aESIGROUP,99,ruedesSolets,94513Rungiscedex,France

bGeM,ÉcolecentraledeNantes,1,ruedelaNoe,44321Nantescedex3,France cESIGROUPChair,ENSAMParisTech,151,boulevarddel’Hôpital,75013Paris,France

dAragonInstituteofEngineeringResearch,UniversidaddeZaragoza,EdificioBetancourt,MariadeLuna,s.n.,50018Zaragoza,Spain

a

b

s

t

r

a

c

t

Keywords:

Linearandnonlinearparametricdynamics ProperGeneralizedDecomposition Harmonicanalysis

Modalanalysis Lowfrequencydomain

The present paper analyzes different integration schemes of solid dynamics in the frequency domain involving the so-called Proper Generalized Decomposition – PGD. The lastframework assumesfor the solution aparametric dependency with respect to frequency. Thisprocedure allowed introducingotherparametric dependences relatedto loading,geometry,andmaterialproperties.However,inthesecases, affinedecompositions are required for an efficient computation of separated representations. A possibilityfor circumventing such difficulty consists in combining modal and harmonic analysis for defining an hybrid integration scheme. Moreover, such a procedure, as proved in the present work, can be easily generalized to address nonlinear parametric dynamics, as wellastosolveproblemswithnon-symmetricstiffnessmatrices,alwaysoperatinginthe domainoflowfrequencies.

1. Introduction

Governingequationsinsoliddynamicsareusuallyformulatedeitherinthetimeorinthefrequencydomain.Theformer is preferredwhencalculating transient responses, whereas thefrequency approachis an appealingchoice forcalculating forcedresponses.Bothapproacheshavebeenextensivelyusedanddescribedinmanyclassicalbooksas,forinstance,[1].

Timedescriptions are used inboth the linear andthe nonlinear cases,being speciallyefficient when combined with modal analysis. The latter allows expressing the solution in a series of decoupled ordinary differential equations. Other worksconsideredadvanced space–timeseparatedrepresentations[2–4],foraddressing transientdynamics[5–7]. Medium frequencies were efficientlyattainedwithin the VariationalTheoryofComplex Rays—VTCR—proposed by P. Ladeveze and intensively andsuccessfully used (the interested reader can refer to [5] and the numerousreferences therein). Recently, a PGD-based dynamical integrator that takes asa parameter the field of initial conditions—conveniently expressed in a reducedbasis—hasalsobeendeveloped[8,9].

*

Correspondingauthor.

E-mailaddresses:giacomo.quaranta@esi-group.com(G. Quaranta),clara.argerich-martin@ec-nantes.fr(C. Argerich Martin),

Ruben.Ibanez-Pinillo@eleves.ec-nantes.fr(R. Ibañez),Jean-Louis.Duval@esi-group.com(J.L. Duval),ecueto@unizar.es(E. Cueto),Francisco.Chinesta@ensam.eu

(3)

As discussed in[10–12], problemsbecome abit morecomplex inthe caseofparametrizeddynamics, andmore con-cretely whenthoseparametersdependonfrequency.Inthiscase,frequency-basedmodelingseemsmoreappropriatethan itstimecounterpart,assoonasthefunctionalformsexpressingtheparametricdependenceonfrequencyiscompatiblewith theuseofaspace-frequency-parameterseparatedrepresentation[13–15].

We revisit in next section, for a sake of completeness, the case of linear dynamics and the harmonic-modal hybrid approachdevelopedin[16].

2. Classicallineardynamicsinthetimeandfrequencydomains

Thegeneral,semi-discretizedformofthelinearsoliddynamicsequations,writes

Md

2U

(

t

)

dt2

+

C

dU

(

t

)

dt

+

K U

(

t

)

=

F

(

t

)

(1)

whereM,C andK arerespectivelythemass,damping,andstiffnessmatrices.Massandstiffnessmatricesareusuallypositive definite. U representsthe vectorthat contains thenodaldisplacements andF the nodalexcitations(forces). Theproblem boundaryconditionswereincorporatedwhenthespacediscretizationleading toEq. (1) wasperformed. Thisequation can beobtainedthroughanysuitablemesh-baseddiscretizationtechniquelike,forinstance,theFiniteElementMethod,andcan besolvedassoonasthedisplacementsandvelocitiesarespecifiedattheinitialtime.

BymovingtothefrequencydomainthroughtheFouriertransform

F(•)

—denotingF

ˆ

(

ω

)

=

F(

F

(

t

))

andU

ˆ

(

ω

)

=

F(

U

(

t

))

—, itresults



ω

2M

+

i

ω

C

+

K



ˆ

U

(

ω

)

= ˆ

F

(

ω

)

(2)

Ifdampingvanishes,i.e.C

=

0 (ifit isnot thecase,itisusuallyassumedtobeproportional, C

=

a0M

+

a1K),andone

focusesonthefreeresponseofthesystem,F

ˆ

(

ω

)

=

0,Eq. (2) reducesto:

KU

ˆ

=

ω

2MU

ˆ

(3)

This defines an eigenproblem whose result is givenby the eigenmodes Pi and the associated eigenfrequencies

ω

2i. The inversetransformallowscomingbacktothetimedomain,U

(

t

)

=

F

−1

( ˆ

U

(

ω

))

.

2.1. Thehybridharmonic-modalapproach

When dampingisneglected, C

=

0 (or whenproportionaldampingisconsideredC

=

a0M

+

a1K),thesingle-parameter (frequency)dynamicequationreads



ω

2M

+

K



U

ˆ

(

ω

)

= ˆ

F

(

ω

)

(4)

WenowconsidermatrixP diagonalizingmatricesM andK.Inotherwords,



PM P

= M

PK P

= K

where

M

i j

=

mii

δ

i j and

K

i j

=

kii

δ

i j.Here,

δ

i j representstheKroenecker’sdelta,i.e.

M

and

K

becomediagonalwithentries

miiandkii,respectively.

Such a choice impliesthat the systemis no longerdescribed in terms ofits nodaldegrees offreedom, butrather in termsofthemodalcontent.Bothareformallyrelatedthroughthelineartransformation

ˆ

U

(

ω

)

=

P

ξ (

ω

)

(5)

Thus,thedynamicalproblemreducesto[16]



ω

2

M + K



ξ (

ω

)

=

PF

ˆ

(

ω

)

= ˆ

f

(

ω

)

(6)

whichresultsinasystemofNn decoupledalgebraicequations(Nn beingthesizeofmatricesM andK)



ω

2mii

+

kii



ξ

i

(

ω

)

= ˆ

fi

(

ω

),

i

=

1

,

2

, . . . ,

Nn (7)

fromwhichitresults

ξ

i

(

ω

)

=

ˆ

fi

(

ω

)



ω

2m ii

+

kii

,

i

=

1

,

2

, . . . ,

Nn (8)

(4)

Thus,thespace-frequencyseparatedrepresentationreads

ˆ

U

(

ω

)

=

Nn



i=1 Zi

ξ

i

(

ω

)

whereZiisthei-columnofmatrixP.

TheobtentionofU

ˆ

(

ω

)

allowsustocomebacktothetimedomainU

(

t

)

byapplyinganinverseFouriertransform,

U

(

t

)

=

F

−1

( ˆ

U

(

ω

))

Remark.Asitisusualwhenusingharmonicanalysis,theforcedtimeresponsecanberecoveredatanytime,exceptduring thetransientregime.

Itisimportanttohighlight—thiswillbecruciallaterwhenaddressingnonlineardynamics—thateachterm

ξ

i

(

ω

)

involves transformednodalforces,thatis,nodalforcesaffectedbythetransformationmatrix P.Thus,Eq. (9) representsacanonical space-frequency-loadingseparatedrepresentation,whichonlymakesuseofaproportionaldampingassumption.

2.2. Extensiontodynamicsinvolvingnon-symmetricstiffnessmatrices

Above,matricesM andK wereconsideredsymmetric,makingitpossibletodiagonalizethemaccordingtoEq. (13).Some dynamicalsystems,whichwillbediscussedlater,likenetworkscomposedofHelmholtzresonators,leadtonon-symmetric stiffness matrices KNS.Therationaleconsidered abovecanbeextendedaccordinglybyjustdefiningthesymmetricmatrix KS insuchawaythat

KS

=

KNS

+

KNS (10)

andrewritingthedynamicalsystemaccordingto

Md 2U

(

t

)

dt2

+



KNS

+

KNS

KNS



U

(

t

)

=

F

(

t

)

(11) or,equivalently, Md 2U

(

t

)

dt2

+

KSU

(

t

)

=

F

(

t

)

+

K  NSU

(

t

)

(12)

Remark.ThedecompositionofKNS initssymmetricandskew-symmetriccomponentscanalsobeconsidered. Thus,theleft-handsideofthepreviousequationcanbediagonalizedaccordingto



PMP

= M

PKSP

= K

(13) whichleadsto



ω

2

M + K



ξ (

ω

)

=

PF

ˆ

(

ω

)

f

(

ω

)

(14)

where,inthepresentcase,F

ˆ

(

ω

)

istheFouriertransformoftheright-handsideofEq. (12),i.e.

ˆ

F

(

ω

)

=

F

(

F

(

t

)

+

KNSU

(

t

))

(15) Thistermwillbelinearized,intheframeworkofaniterativescheme,bysimplyevaluatingU

(

t

)

atthepreviousconverged iteration.

ThetimesolutioncanbeobtainedbyapplyingtheinversetransformtothefrequencysolutionU

ˆ

(

ω

)

=

P

ξ (

ω

)

,according to

(5)

3. Nonlineardynamics

Inthenonlinearcase,thegeneralsemi-discretizedequilibriumequationwrites

Md

2U

(

t

)

dt2

+

C

dU

(

t

)

dt

+

KU

(

t

)

H

(

U

)

=

F

(

t

)

wherethenonlinearcontributionisgroupedinthevectorH

(

U

)

andagainaproportionaldampingisassumed.

The simplestlinearization of thisequation consists in an explicit evaluation ofthe non-linear term H

(

U

)

atthe last converged iteration. For the sake of notational simplicity, it will be denoted by U

(

t

)

. Thus, as soon as the nonlinear contributionisassumedknown,itcanbemovedtotheright-hand-sidemember,i.e.

Md 2U

(

t

)

dt2

+

C dU

(

t

)

dt

+

KU

(

t

)

=

H

(

U

(

t

))

+

F

(

t

)

(16)

AnobviouspossibilityconsistsincomputingtheFouriertransformoftheright-handmemberofEq. (16),

ˆ

F

(

ω

)

=

F

(

H

(

U

(

t

))

+

F

(

t

))

and then toproceed exactly inthe samewayas inthe linearcase. However, in orderto take benefitfrommodel order reduction,inwhatfollowswepresentanalternativebutequivalentformulation,moreadaptedtotheuseofreducedbases.

ByinvokingthelinearityofFouriertransform,wewrite

ˆ

F

(

ω

)

=

F



H

(

U

(

t

))

+

F

(

t

)



=

F



H

(

U

(

t

))



+

F

(

F

(

t

))

= ˆ

FH

(

ω

)

+ ˆ

FF

(

ω

)

which could be expressed using a piecewise linearapproximation basis Nl

(

ω

)

(like the usually considered one in linear finiteelementanalyses)

ˆ

FH

(

ω

)

=

L



l=1

ˆ

FH

(

ω

l

)

Nl

(

ω

)

or

ˆ

fH

(

ω

)

=

PF

ˆ

H

(

ω

)

Inturn,

ˆ

FF

(

ω

)

=

L



l=1

ˆ

FF

(

ω

l

)

Nl

(

ω

)

or

ˆ

fF

(

ω

)

=

PF

ˆ

F

(

ω

)

eachonecontributingtothesolution

ξ (

ω

)

accordingto

ξ (

ω

)

= ξ

H

(

ω

)

+ ξ

F

(

ω

)

(17) with

ξ

iH

(

ω

)

=

L



l=1

ˆ

fiH

(

ω

l

)

Nl

(

ω

)



ω

2m ii

+

kii

 ,

i

=

1

,

2

,

· · · ,

Nn (18)

ξ

iF

(

ω

)

=

L



l=1

ˆ

fiF

(

ω

l

)

Nl

(

ω

)



ω

2m ii

+

kii

 ,

i

=

1

,

2

,

· · · ,

Nn (19)

Thus,itfinallyresults

ˆ

U

(

ω

)

=

P

ξ (

ω

)

= ˆ

UH

(

ω

)

+ ˆ

UF

(

ω

)

=

P

ξ

H

(

ω

)

+

P

ξ

F

(

ω

)

beingitstime-dependentcounterpart

(6)

Fig. 1. Simple case study.

Itisimportanttohighlightthattheinversetransforminvolvesterms

T

il,i

=

1

,

. . . ,

Nnandl

=

1

,

. . . ,

L

,whoseformreads

T

il

F

−1

Nl

(

ω

)

ω

2m

ii

+

kii

thatcanbecomputedofflineandstoredinmemory.

Our numerical experiments reveal that this offline–online procedure does not allow for significant computing time savings when one considers a standard piecewise linearapproximation bases. However, by considering reducedbases to approximatefunctionsF

ˆ

H

(

ω

)

andF

ˆ

F

(

ω

)

,thenumberofintegralstobeperformeddrasticallyreducesandtheoffline–online

procedurebecomesvaluable.Thesereducedbasisarecomputedofflineafteranadequatetrainingstage.Moreover,the com-putationalcostfortheevaluationofthenonlinearterminthetime domainH

(

U

(

t

))

canbe drasticallyreducedbyusing empiricalinterpolationtechniques[17–19].

As soonasreduced basesare available inthe frequencydomain,their counterpart inthe time domainis easily com-putable,andfromit,directFouriertransformcouldbealsocomputedoffline.Theuseofstrategiesbasedontheusereduced basesconstitutesaworkinprogress.

4. Numericalresults

4.1. Nonlineardynamics

Inthissection,weusetheproposedstrategytoaddressthe1DdynamicsofarodoflengthL,crosssection A,clampedat itsleftboundaryandsubjectedtoanaxialloadappliedonitsrightboundaryasdepictedinFig.1,subjectedtohomogenous displacementandvelocityinitialconditions.

Ifalinearelasticbehaviorisassumed,therelationbetweenthestress

σ

andthestrain

ε

reads

σ

=

E

ε

where E istheYoung modulus.Ineverysimulation,weused L

=

1 m, E

=

2

·

109 N/m2,and

ρ

=

8000 kg/m3,where

ρ

is

thedensity.Whendampingvanishesorwhenproportionaldampingisassumed,themechanicalresponseiscomputedfrom thediscretesystem

Md

2U

(

t

)

dt2

+

KU

(

t

)

=

F

(

t

)

(20)

whoseexpressioninthefrequencydomainisgivenbyEq. (4).However,whenanonlinearelasticbehaviorisassumed,the stress–strainrelationreads

σ

=

C

(

ε

)

where

C

isanon-linearfunctionof

ε

.Inthenumericaltesthereaddressed,itisassumedthat

σ

=

E

(

ε

+

c

ε

3

)

(21)

wherec canbeconsideredasaparameter(obviously,whenc

=

0,thenonlinearcasereducestothelinearcase). RecallingthelinearizationdescribedinSection3,themechanicalresponseiscomputedfromthediscretesystem

Md

2U

(

t

)

dt2

+

C

dU

(

t

)

dt

+

KU

(

t

)

=

c H

(

t

)

+

F

(

t

)

(22)

whereH

(

t

)

accountsforthenonlinearcontribution.

Thus,usingthenotationintroducedintheprevioussection,thefrequencyandtimedomainsolutionsread

ˆ

U

(

ω

;

c

)

= ˆ

UF

(

ω

)

+

cU

ˆ

H

(

ω

)

(23) thatcanbeseenasaparametricsolutioninvolvingboththefrequency

ω

andtheparameterc controllingthenonlinearity, withitstimecounterpartexpressedfrom

(7)

Fig. 2. Displacement at the rod right border for two different values of c: (top) c=0, which corresponds to the linear case and (bottom) c=220.

Table 1

HybridvsNewmarkmethods,T=4 s.

Hybrid Newmark Nn=100 1.34 s 5.97 s Nn=250 3.26 s 14.29 s Nn=500 7.19 s 39.08 s Nn=750 11.70 s 68.12 s Nn=1000 16.33 s 100.75 s Table 2

HybridvsNewmarkmethod,Nn=100.

Hybrid Newmark

T=4 s: 1.34 s 5.97 s

T=8 s: 2.44 s 12.20 s

T=20 s: 6.32 s 29.75 s

T=40 s: 13.54 s 59.30 s

Both formulations,theonedefinedinthetime domainandtheharmonic-modal hybridformulationsaresolved inthe timeinterval I

= [

0

,

T

]

withT

=

4 s,thefirstbyusingastandardNewmarktime-stepping(withtimestep



t

=

10−2s).

Fig.2comparesbothsolutionsfortwodifferentvaluesoftheparameterc:c

=

0,whichcorresponds tothelinearcase andc

=

220 forthesimpleharmonicloadingF

(

t

)

=

1010sin

(

2

π

t

)

.Thecomputedresultsagreeperfectly,butwhenusingthe hybrid solver,significantcomputingtime savingsare noticed.ThesearesummarizedinTables 1and2.Moreover, Table1 alsoreflectsthefactthatcomputingtimesavingremainsalmostindependentoftheconsideredmeshsize.

Finally,weconsideramorecomplexloadingscenario,asdepictedinFig.3.Itcontainsaricherfrequencyspectrum,with

c

=

0 andc

=

4000.ThesolutionswhenusingtheNewmark(



t

=

10−3 s)versustheharmonic-modalhybridschemesare

(8)

Fig. 3. Loading containing a richer frequency spectrum.

Fig. 4. Displacement at the rod right border for two different values of c: (top) c=0, that corresponds to the linear case and (bottom) c=4000.

Table 3

HybridvsNewmarkmethod,T=4 s.

Hybrid Newmark Nn=100: 2.49 s 9.68 s Nn=250: 6.90 s 23.38 s Nn=500: 14.28 s 48.26 s Nn=750: 21.90 s 69.72 s Nn=1000: 30.13 s 93.11 s

(9)

Table 4

HybridvsNewmarkmethod,Nx=100.

Hybrid Newmark

T=4 s: 2.49 s 9.68 s

T=8 s: 4.95 s 21.32 s

T=20 s: 13.57 s 59.48 s

T=40 s: 28.29 s 122.23 s

Fig. 5. Case of study for non-symmetric dynamics.

4.2. Non-symmetricstiffness

Inthissection,weconsideranetworkofHelmholtzresonators,depictedinFig.5.Here,theoscillationamplitude ofthe airineach pipecontributestothecompressionoftheairfillingthecavitiesconnectingdifferenttubes.Thatcompression results in a pressure variation that generates an extra force, acting atthe entrance section of each tube. In each tube, the inertia contribution involves the second time-derivative of the oscillation amplitude. The whole model results in a quitestandard dynamicalsystemwiththeonlyexception ofcontaining anon-symmetricstiffnessmatrix.Inthat case,the modal-harmonic hybridmethodisappliedasdescribedinSection 2,whichproceedsbysymmetrizingtheproblembefore applyingthehybridstrategy.

AscanbenoticedfromFig.5,thegeometryofthesystemfollowsafractalstructure.Therefore,thegeometrical charac-teristics ofsubsequentgenerationswillbedeterminedbythecharacteristicsofthefirstgeneration:thetubecrosssection,

A1,thetubelengthl1,andthecavityvolume, V1.Subsequentgenerationsarecharacterizedbyagivenreductionfactor,in

ourcaseof 2.Standardthermodynamicalairpropertiesareconsidered. ThemodelofasingleHelmholtzresonatorreads

ρ

A Ld 2U

(

t

)

dt2

+

γ

p A2

V U

(

t

)

=

f

(

t

)

and,byassemblingthecontributionofthoseinvolvedinthenetworkofFig.5,itresults

Md 2U

(

t

)

dt2

+

K U

(

t

)

=

F

(

t

)

where Mii

=

ρ

AiLi Ki j

=

γ

P0AiAj 1 Vi j

,

for i

=

j

with j referringtoatubeconnectedtooneofthecavitiesassociatedwithtubei,withvolumeVi j,and

Kii

= −

γ

P0A2i Ni



j=1 1 Vi j

(10)

Fig. 6. Displacement of the air filling the first tube.

The discrete systeminvolves the dynamicsof the airdisplacement in each tubeand its only specificityconcerns the factofhavinganon-symmetricstiffnessmatrix.Fig.6comparesthesolutionobtainedbyusingthemodal-harmonichybrid techniquesdescribed in Section 2andthe referencesolutionobtainedby a standard time-steppingintegration.A perfect agreementbetweenbothsolutionscanbenoticed.Theconvergenceisevaluatedfrom

=

||

Ui

(

t

)

Ui−1

(

t

)

||

||

Ui

(

t

)

||

wherethe superscripti refersto theiteration within thehybridstrategy. The convergenceisattainedvery fastafterfew iterations,threebeingingeneralenoughforreducingtheerrorbymorethanthreeordersofmagnitude.

5. Conclusions

Inthisnote,weproposedanextension ofthehybridmethodologycombiningharmonicandmodalanalysesfortreating nonlinearparametricdynamics.

The main contribution of the present work is the derivation of a parametric solution in the frequency space. Apart fromits naturaldependenceon frequency,the above-developedmethod alsoaccountsforother modelparameters. More importantly, itexplicitly decouples the dependenceon the amplitude of nodalloading. Thislast fact makes possiblethe solutionofnonlinearmodelscombinedwithsimplelinearizations.

Preliminary numerical results evidence the potentialities of the proposed technique, while proving its computational efficiency.

Acknowledgements

This work has been supported by the Spanish Ministry of Economy and Competitiveness through Grants Nos. DPI2017-85139-C2-1-RandDPI2015-72365-EXP,aswellasbytheRegionalGovernmentofAragonandtheEuropeanSocial Fund,researchgroupT2417R.ThisprojecthasalsoreceivedfundingfromtheEuropeanUnion’sHorizon2020researchand innovationprogrammeundertheMarieSklodowska-CuriegrantagreementNo. 675919.

References

[1]R.W.Clough,J.Penzien,DynamicsofStructures,CivilEngineeringSeries,McGraw-Hill,NewYork,NY,1993.

[2]P.Ladeveze,Thelargetimeincrementmethodfortheanalyzeofstructureswithnonlinearconstitutiverelationdescribedbyinternalvariables,C.R. Acad.Sci.Paris,Ser.IIb309(1989)1095–1099.

[3]P.Ladeveze,NonlinearComputationalStructuralMechanics,NewApproachesandNon-incrementalMethodsofCalculation,SpringerVerlag,1999.

[4]P.Ladeveze,L.Chamoin,Ontheverificationofmodelreductionmethodsbasedonthepropergeneralizeddecomposition,Comput.MethodsAppl. Mech.Eng.200(2011)2032–2047.

[5]A.Barbarulo,H.Riou,L.Kovalevsky,P.Ladeveze,PGD-VTCR:a reducedordermodeltechniquetosolvemediumfrequencybroadbandproblemson complexacousticalsystems,J.Mech.Eng.60 (5)(2014)307–314.

[6]L.Boucinha,A.Ammar,A.Gravouil,A.Nouy,Idealminimalresidual-basedpropergeneralizeddecompositionfornon-symmetricmulti-fieldmodels– applicationtotransientelastodynamicsinspace–timedomain,Comput.MethodsAppl.Mech.Eng.273(2014)56–76.

[7]S.Gregory,M.Tur,E.Nadal,J.V.Aguado,F.J.Fuenmayor,F.Chinesta,Fastsimulationofthepantograph-catenarydynamicinteraction,FiniteElem.Anal. Des.129(2017)1–13.

(11)

[8]D.Gonzalez,E.Cueto,F.Chinesta,Real-timedirectintegrationofreducedsoliddynamicsequations,Int.J.Numer.MethodsEng.99 (9)(2014)633–653.

[9]E.Cueto,D.González,I.Alfaro,ProperGeneralizedDecompositions:AnIntroductiontoComputerImplementationwithMatlab,SpringerBriefs in AppliedSciencesandTechnology,SpringerInternationalPublishing,2016.

[10]S.H.Crandall,Theroleofdampinginvibrationtheory,J.SoundVib.11 (1)(1970)3–18.

[11]C.Germoso,J.V.Aguado,A.Fraile,E.Alarcon,F.Chinesta,EfficientPGD-baseddynamiccalculationofnon-linearsoilbehavior,C.R.Mecanique344 (2016)24–41.

[12]M.H.Malik,D.Borzacchiello,F.Chinesta,P.Diez,Inclusionoffrequencydependentparametersinpowertransmissionlinessimulationusingharmonic analysisandpropergeneralizeddecomposition,Int.J.Numer.Model.Electron.Netw.,DevicesFields31 (5)(2018)e2331.

[13]F.Chinesta,A.Leygue,F.Bordeu,J.V.Aguado,E.Cueto,D.Gonzalez,I.Alfaro,A.Ammar,A.Huerta,ParametricPGDbasedcomputationalvademecum forefficientdesign,optimizationandcontrol,Arch.Comput.MethodsEng.20 (1)(2013)31–59.

[14]F.Chinesta,R.Keunings,A.Leygue,TheProperGeneralizedDecompositionforAdvancedNumericalSimulations.APrimer,SpringerBriefs,Springer, 2014.

[15]J.V.Aguado,A.Huerta,F.Chinesta,E.Cueto,Real-timemonitoringofthermalprocessesbyreducedordermodelling,Int.J.Numer.MethodsEng.102 (5) (2015)991–1017.

[16]M.H. Malik, D. Borzacchiello, J.V. Aguado, F.Chinesta, Advanced parametric space-frequency separated representations in structuraldynamics: a harmonic-modalhybridapproach,C.R.Mecanique346 (7)(2018)590–602.

[17]M.Barrault,Y.Maday, N.C.Nguyen,A.T.Patera,Anempirical interpolationmethod:applicationtoefficientreduced-basisdiscretizationofpartial differentialequations,C.R.Acad.Sci.Paris,Ser.I339 (9)(2004)667–672.

[18]S.Chaturantabut,D.C.Sorensen,Nonlinearmodelreductionviadiscreteempiricalinterpolation,SIAMJ.Sci.Comput.32 (5)(2010)2737–2764.

[19]J.V.Aguado,D.Borzacchiello,C. Ghnatios,F.Lebel,R. Upadhyay,C.Binetruy,F.Chinesta,A SimulationApp basedonreducedordermodelingfor manufacturingoptimizationofcompositeoutletguidevanes,Adv.Model.Simul.Eng.Sci.4(2017)1.

Figure

Fig. 2. Displacement at the rod right border for two different values of c: (top) c = 0, which corresponds to the linear case and (bottom) c = 220.
Fig. 4. Displacement at the rod right border for two different values of c: (top) c = 0, that corresponds to the linear case and (bottom) c = 4000.
Fig. 6. Displacement of the air filling the first tube.

Références

Documents relatifs

« Depuis la plus haute Antiquité ou plutôt depuis le premier siècle avant Jésus Christ ( …) le roman raconte une histoire ;comme il se doit pour une œuvre littéraire mettant

In order to derive linear incremental stress-strain relations from the proposed nonlinear constitutive law, tangent elastic properties depending on strains and pore pressure are

L’inconvénient d’un tel faisceau est que d’une part l’obtention d’un faisceau laser aussi étroit demande un télescope émetteur très grand et chère et d’autre part

Consistent with the view of an antecedent role of control beliefs, we found that greater initial perceived control independently predicted weaker declines in health and

Figure S2: Geometry changes of the interacting groups on one electron oxidation of the conformers A, B and C.. The green structures are those of the

Figure 3 shows the restriction on excitation forces applied in previous works. That is the point of the next section that will define the Green-Volterra kernels. Then, the method

For any given dimension, we prove the existence of an optimal subspace of at most that dimension which realizes the best approximation in mean of the error with respect to the

For any given dimension, we prove the existence of an optimal subspace of at most that dimension which realizes the best approx- imation –in mean parametric norm associated to