• Aucun résultat trouvé

Combined use of finite volume and network modelling for Stokes flow and permeability tensor computation in porous media

N/A
N/A
Protected

Academic year: 2021

Partager "Combined use of finite volume and network modelling for Stokes flow and permeability tensor computation in porous media"

Copied!
62
0
0

Texte intégral

(1)

N. Combaret1,2 D. Bernard1 E. Plougonven1

1ICMCB-CNRS

University of Bordeaux 1

2VSG - Visualization Sciences Group

2nd Conference on 3D-Imaging of Materials and Systems 2010

(2)

3D image: direct numerical processing

Network modeling:

Structured network model Unstructured network model

(3)

3D image: direct numerical processing

Network modeling:

Structured network model Unstructured network model

(4)

3D image: direct numerical processing

Network modeling:

Structured network model Unstructured network model

(5)

Stokes equations ( #« ∇. #«v = 0 ∇2#«v −∇p = 0#« B.C.: #«v = 0 on Afs Linear system:       M X j=0 Qij =0 P − P .Q

(6)

Stokes equations ( #« ∇. #«v = 0 ∇2#«v −∇p = 0#« B.C.: #«v = 0 on Afs Linear system:       M X j=0 Qij =0 P − P .Q

(7)

Stokes equations ( #« ∇. #«v = 0 ∇2#«v −∇p = 0#« B.C.: #«v = 0 on Afs Linear system:       M X j=0 Qij =0 P − P .Q

(8)

Graph construction: from the pore space to a graph relating pores

Pore positioning: what is a pore? Pores separation: where are the pores?

Network equations and parameters: what are the relations between the pores?

Stokes equations equivalence on a graph Direct numerical computation of the resistances

(9)

Graph construction: from the pore space to a graph relating pores

Pore positioning: what is a pore? Pores separation: where are the pores?

Network equations and parameters: what are the relations between the pores?

Stokes equations equivalence on a graph Direct numerical computation of the resistances

(10)

Graph construction: from the pore space to a graph relating pores

Pore positioning: what is a pore? Pores separation: where are the pores?

Network equations and parameters: what are the relations between the pores?

Stokes equations equivalence on a graph Direct numerical computation of the resistances

(11)

Skeletonisation: homotopic thinning Digitisation artefact removal method Boundary conditions Skeleton points characterisation: curves and intersection points Nodes fusion criterion: relative volume

(12)

Skeletonisation: homotopic thinning Digitisation artefact removal method Boundary conditions Skeleton points characterisation: curves and intersection points Nodes fusion criterion: relative volume

(13)

Skeletonisation: homotopic thinning Digitisation artefact removal method Boundary conditions Skeleton points characterisation: curves and intersection points Nodes fusion criterion: relative volume

(14)

Skeletonisation: homotopic thinning Digitisation artefact removal method Boundary conditions Skeleton points characterisation: curves and intersection points Nodes fusion criterion: relative volume

(15)

Skeletonisation: homotopic thinning Digitisation artefact removal method Boundary conditions Skeleton points characterisation: curves and intersection points

Nodes fusion criterion: relative volume

(16)
(17)
(18)

Skeletonisation: homotopic thinning Digitisation artefact removal method Boundary conditions Skeleton points characterisation: curves and intersection points Nodes fusion criterion: relative volume

(19)

Skeletonisation: homotopic thinning Digitisation artefact removal method Boundary conditions Skeleton points characterisation: curves and intersection points Nodes fusion criterion: relative volume

(20)
(21)
(22)

Pore delimitation:

Pore throats positioning

Pore volume invasion: watershed

Unexpected configurations

⇒ Skeleton: good for positioning the pores, bad for representing their interconnexions

(23)

Pore delimitation:

Pore throats positioning

Pore volume invasion: watershed

Unexpected configurations

⇒ Skeleton: good for positioning the pores, bad for representing their interconnexions

(24)

Pore delimitation:

Pore throats positioning

Pore volume invasion: watershed

Unexpected configurations

⇒ Skeleton: good for positioning the pores, bad for representing their interconnexions

(25)
(26)

Pore delimitation:

Pore throats positioning

Pore volume invasion: watershed

Unexpected configurations

⇒ Skeleton: good for positioning the pores, bad for representing their interconnexions

(27)
(28)
(29)

Pore delimitation:

Pore throats positioning

Pore volume invasion: watershed

Unexpected configurations

⇒ Skeleton: good for positioning the pores, bad for

(30)

Z VHi #« ∇. #«v dV = 0 Z AHi #« v . # «nHidS = 0 Z AHi H #« v . # «nHiHdS = 0 M X j=1 " Z AHi Hj #« v . # «nHiHjdS # =0 M X Qij =0

(31)

Z VHi #« ∇. #«v dV = 0 Z AHi #« v . # «nHidS = 0 Z AHi H #« v . # «nHiHdS = 0 M X j=1 " Z AHi Hj #« v . # «nHiHjdS # =0 M X Qij =0

(32)

Z VHi #« ∇. #«v dV = 0 Z AHi #« v . # «nHidS = 0 Z AHi H #« v . # «nHiHdS = 0 M X j=1 " Z AHi Hj #« v . # «nHiHjdS # =0 M X Qij =0

(33)

Z VHi #« ∇. #«v dV = 0 Z AHi #« v . # «nHidS = 0 Z AHi H #« v . # «nHiHdS = 0 M X j=1 " Z AHi Hj #« v . # «nHiHjdS # =0 M X Qij =0

(34)

Z VHi #« ∇. #«v dV = 0 Z AHi #« v . # «nHidS = 0 Z AHi H #« v . # «nHiHdS = 0 M X j=1 " Z AHi Hj #« v . # «nHiHjdS # =0 M X Qij =0

(35)

What did we learn?

We need something on the network to support the flow rate through the surfaces

(36)

What did we learn?

We need something on the network to support the flow rate through the surfaces

(37)

Z Cij #« ∇p. #«c dC | {z } ¬ − Z Cij ∇2#«v . #«c dC | {z } ­ =0 ¬: Z Cij #« ∇p. #«c dC = p Hj − p (Hi) ­:

independent from the path (see ¬) Q ∝ #«v ∝ ∇2#«v ⇒ Z Cij ∇2#«v . #«c dC = λijQij  − p (H

(38)

Z Cij #« ∇p. #«c dC | {z } ¬ − Z Cij ∇2#«v . #«c dC | {z } ­ =0 ¬: Z Cij #« ∇p. #«c dC = p Hj − p (Hi) ­:

independent from the path (see ¬) Q ∝ #«v ∝ ∇2#«v ⇒ Z Cij ∇2#«v . #«c dC = λijQij  − p (H

(39)

Z Cij #« ∇p. #«c dC | {z } ¬ − Z Cij ∇2#«v . #«c dC | {z } ­ =0 ¬: Z Cij #« ∇p. #«c dC = p Hj − p (Hi) ­:

independent from the path (see ¬) Q ∝ #«v ∝ ∇2#«v ⇒ Z Cij ∇2#«v . #«c dC = λijQij  − p (H

(40)

Z Cij #« ∇p. #«c dC | {z } ¬ − Z Cij ∇2#«v . #«c dC | {z } ­ =0 ¬: Z Cij #« ∇p. #«c dC = p Hj − p (Hi) ­:

independent from the path (see ¬) Q ∝ #«v ∝ ∇2#«v ⇒ Z Cij ∇2#«v . #«c dC = λijQij  − p (H

(41)

Z Cij #« ∇p. #«c dC | {z } ¬ − Z Cij ∇2#«v . #«c dC | {z } ­ =0 ¬: Z Cij #« ∇p. #«c dC = p Hj − p (Hi) ­:

independent from the path (see ¬) Q ∝ #«v ∝ ∇2#«v ⇒ Z Cij ∇2#«v . #«c dC = λijQij  − p (H

(42)

Z Cij #« ∇p. #«c dC | {z } ¬ − Z Cij ∇2#«v . #«c dC | {z } ­ =0 ¬: Z Cij #« ∇p. #«c dC = p Hj − p (Hi) ­:

independent from the path (see ¬) Q ∝ #«v ∝ ∇2#«v ⇒ Z Cij ∇2#«v . #«c dC = λijQij  − p (H

(43)

What did we learn?

We need something on the network to support the flow rate through the surfaces

⇒ one edge per surface separating two pores

We need something on the pores to support the pressure values

(44)

What did we learn?

We need something on the network to support the flow rate through the surfaces

⇒ one edge per surface separating two pores

We need something on the pores to support the pressure values

(45)

Extracting the pores connected to a surface (⇔ an edge)

Finite volume computation of local Stokes flow Resistance determination from the second Stokes equation in a linear system:

λij =

Pilocal− Plocal j Qlocal

ij

Linear system solution: pressure value at nodes, flow rate through edges

(46)
(47)
(48)
(49)

Extracting the pores connected to a surface (⇔ an edge) Finite volume computation of local Stokes flow

Resistance determination from the second Stokes equation in a linear system:

λij =

Pilocal− Plocal j Qlocal

ij

Linear system solution: pressure value at nodes, flow rate through edges

(50)
(51)

Extracting the pores connected to a surface (⇔ an edge) Finite volume computation of local Stokes flow

Resistance determination from the second Stokes equation in a linear system:

λij =

Pilocal− Plocal j

Qlocal ij

Linear system solution: pressure value at nodes, flow rate through edges

(52)
(53)

Extracting the pores connected to a surface (⇔ an edge) Finite volume computation of local Stokes flow

Resistance determination from the second Stokes equation in a linear system:

λij =

Pilocal− Plocal j

Qlocal ij

Linear system solution: pressure value at nodes, flow rate through edges

(54)

Strong graph construction method

Digitisation artefacts removal prior to skeletonisation Nodes merging criterion

Pores delimitation methods comparison

Network settings

Linear system construction

(55)

Strong graph construction method

Digitisation artefacts removal prior to skeletonisation Nodes merging criterion

Pores delimitation methods comparison

Network settings

Linear system construction

(56)

Strong graph construction method

Digitisation artefacts removal prior to skeletonisation Nodes merging criterion

Pores delimitation methods comparison

Network settings

Linear system construction

(57)

Strong graph construction method

Digitisation artefacts removal prior to skeletonisation Nodes merging criterion

Pores delimitation methods comparison

Network settings

Linear system construction

(58)

Strong graph construction method

Digitisation artefacts removal prior to skeletonisation Nodes merging criterion

Pores delimitation methods comparison

Network settings

Linear system construction

(59)

Strong graph construction method

Digitisation artefacts removal prior to skeletonisation Nodes merging criterion

Pores delimitation methods comparison

Network settings

Linear system construction

(60)

Strong graph construction method

Digitisation artefacts removal prior to skeletonisation Nodes merging criterion

Pores delimitation methods comparison

Network settings

Linear system construction

(61)

Compare the linear system solution to the real numerical computation

Finalise the implementation of the permeability tensor computation

( #«

∇.D# «k =0 ∇2D# «k−∇d#« k = −I#«k B.C.:D# «k =0 on Afs

(62)

Compare the linear system solution to the real numerical computation

Finalise the implementation of the permeability tensor computation

( #«

∇.D# «k =0

∇2D# «k−∇d#« k = −I#«k

B.C.:D# «k =0 on Afs

Références

Documents relatifs

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

First, the 3D micro structures of the porous media are constructed with a parametric program which allow to control the pore sizes, pore orientations,

An explicit finite element method is used to model the large deformation of the capsule wall, which is treated as a bidimensional hyperelastic membrane.. It is coupled

In Sections 4 and 5, we study the mixed finite volume approximation respectively for Stokes and Navier-Stokes equations: we show that this method leads to systems (linear in the case

• Section 2 is devoted to a steady version of (1.1): a short review of the concept of H-convergence is made, some examples of application of this notion are given; then results

Cette thèse est consacrée à la présentation et discrétisation du problème de Darcy multi- phasique, ainsi qu'à la mise en ÷uvre de stratégies de résolution du problème de

• les fichiers de données (data files), qui peuvent être connus en interrogeant la vue V$DATAFILE du dictionnaire des données, contenant le dictionnaire des données et les

In a Hele-Shaw cell [109], Saffman and Taylor [114] demonstrated, using linear stability theory, that when a fluid of lower viscosity is injected into a fluid of higher one at a