• Aucun résultat trouvé

Simulations of composite laminates inter and intra-laminar failure using on a non-local mean-field damage-enhanced multi-scale method

N/A
N/A
Protected

Academic year: 2021

Partager "Simulations of composite laminates inter and intra-laminar failure using on a non-local mean-field damage-enhanced multi-scale method"

Copied!
29
0
0

Texte intégral

(1)

Computational & Multiscale

Mechanics of Materials

CM3

www.ltas-cm3.ulg.ac.be

Simulations of composite laminates inter- and intra-laminar

failure using on a non-local mean-field damage-enhanced

multi-scale method

Ling Wu (CM3), L. Adam (e-Xstream), B. Bidaine (e-Xstream), Ludovic Noels. (CM3) Experiments: F. Sket (IMDEA), J.M. Molina (IMDEA), A. Makradi (List)

STOMMMAC The research has been funded by the Walloon Region under the agreement no 1410246-STOMMMAC (CT-INT 2013-03-28) in the context of M-ERA.NET Joint Call 2014.

SIMUCOMP The research has been funded by the Walloon Region under the agreement no 1017232 (CT-EUC 2010-10-12) in the context of the ERA-NET +, Matera + framework.

(2)

CM3

EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 2

Introduction

– Failure of composite laminates – Multi-scale modelling

– Mean-Field-Homogenization (MFH)

Micro-scale modelling

– Incremental-Secant MFH

– Damage-enhanced incremental-secant MFH

Multi-scale method for the failure analysis of composite

laminates

– Intra-laminar failure: Non-local damage-enhanced mean-field-homogenization

– Inter-laminar failure: Hybrid DG/cohesive zone model – Experimental validation

Introduction of uncertainties

– As a random field

(3)

Failure of composite laminates

Difficulties

– Different involved mechanisms at different scales

• Inter-laminar failure • Intra-laminar failure

– Direct finite element simulation On Micro-scale volume

Not possible at structural scale

Delamination Matrix rupture Pull out Bridging Fiber rupture Debonding

(4)

CM3

EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 4

Failure of composite laminates

Difficulties

– Different involved mechanisms at different scales

• Inter-laminar failure • Intra-laminar failure

– Direct finite element simulation is not possible at structural scale

– Continuum damage models do not represent accurately the intra-laminar failure

• Damage propagation direction is not in agreement with experiments

Delamination Matrix rupture Pull out Bridging Fiber rupture Debonding

(5)

Failure of composite laminates

Difficulties

– Different involved mechanisms at different scales

• Inter-laminar failure • Intra-laminar failure

– Direct finite element simulation is not possible at structural scale

– Continuum damage models do not represent accurately the intra-laminar failure

• Damage propagation direction is not in agreement with experiments

Solution:

– Embed damage model in a multi-scale formulation

– For computational efficiency: use of mean-field-homogenization

– For macro cracks: using hybrid DG/Cohesive zone model

Delamination Matrix rupture Pull out Bridging Fiber rupture Debonding

(6)

CM3

EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 7

Mean-Field-Homogenization

– Macro-scale • FE model

• At one integration point e is know, s is sought

– Transition

• Downscaling: e is used as input of the MFH model • Upscaling: s is the output of the MFH model

– Micro-scale

• Semi-analytical model

• Predict composite meso-scale response • From components material models

Multi-scale modelling

w

I

w

0

ε

σ

ε

σ

Mori and Tanaka 73, Hill 65, Ponte Castañeda 91, Suquet 95, Doghri et al 03, Lahellec et al. 11, Brassart et al. 12, …

(7)

Key principles

– Based on the averaging of the fields

– Meso-response

• From the volume ratios ( )

• One more equation required

– Difficulty: find the adequate relations

Mean-Field-Homogenization

V

a

V

V

a

1

(

X

)

d

1

I 0

 v

v

I I 0 0 I 0 I 0

σ

σ

σ

σ

σ

σ

v

w

v

w

v

v

I I 0 0 I 0 I 0

ε

ε

ε

ε

ε

ε

v

w

v

w

v

v

 

I I

ε

σ

f

 

0 0

ε

σ

f

0 I

B

: ε

ε

e

?

e

B

0 I

B

: ε

ε

e

w

I

w

0 matrix inclusions composite ?

σ

ε

(8)

CM3

EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 9

Key principles (2)

– Linear materials

• Materials behaviours

• Mori-Tanaka assumption • Use Eshelby tensor

with

Mean-Field-Homogenization

w

I

w

0 matrix inclusions composite ?

σ

ε

1 0 1 1 0

:

(

)]

:

[

I

S

C

C

C

B

e

0 I

0 I

B

I

,

C

,

C

:

ε

ε

e 0

ε

ε 

 I I I

C

: ε

σ

0 0 0

C

: ε

σ

(9)

Key principles (2)

– Linear materials

• Materials behaviours

• Mori-Tanaka assumption • Use Eshelby tensor

with

– Non-linear materials

• Define a Linear Comparison Composite (LCC) • Common approach: incremental tangent

Mean-Field-Homogenization

0 alg alg I

B

I

,

C

0

,

C

I

:

ε

ε

e inclusions composite

σ

ε

alg I

C

alg 0

C

matrix:

σ

0 I

ε

ε

ε

0

w

I

w

0 matrix inclusions composite ?

σ

ε

1 0 1 1 0

:

(

)]

:

[

I

S

C

C

C

B

e

0 I

0 I

B

I

,

C

,

C

:

ε

ε

e 0

ε

ε 

 I I I

C

: ε

σ

0 0 0

C

: ε

σ

(10)

CM3

EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 11

Content

Micro-scale modelling

– Incremental-Secant Mean-Field-Homogenization (MFH) – Damage-enhanced incremental-secant MFH

(11)

Incremental-secant mean-field-homogenization

Material model

– Elasto-plastic material • Stress tensor

• Yield surface

• Plastic flow & • Linearization

,

p

eq

R

 

p

0

f

σ

σ

s

Y

)

(

:

pl el

ε

ε

C

σ

N

ε

p

pl

σ

N

f

σ

ε

el C pl

ε

ε

C

σ

alg

:

(12)

CM3

EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 13

New incremental-secant approach

– Perform a virtual elastic unloading from previous solution

• Composite material unloaded to reach the stress-free state

• Residual stress in components

New Linear Comparison Composite (LCC)

Incremental-secant mean-field-homogenization

inclusions composite

σ

ε

matrix unload I

ε

unload 0

ε

unload

ε

(13)

New incremental-secant approach

– Perform a virtual elastic unloading from previous solution

• Composite material unloaded to reach the stress-free state

• Residual stress in components

New Linear Comparison Composite (LCC)

– Apply MFH from unloaded state • New strain increments (>0)

• Use of secant operators

Incremental-secant mean-field-homogenization

inclusions composite

σ

ε

matrix unload I

ε

unload 0

ε

unload

ε

r 0 Sr Sr r I

B

I

,

C

0

,

C

I

:

ε

ε

e unload I/0 I/0 r I/0

ε

ε

ε

inclusions composite

σ

ε

matrix r I

ε

ε

r r 0

ε

Sr I

C

Sr 0

C

(14)

CM3

EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 16

Zero-incremental-secant method

– Continuous fibres • 55 % volume fraction • Elastic – Elasto-plastic matrix

– For inclusions with high hardening (elastic) • Model is too stiff

Incremental-secant mean-field-homogenization

0 2 4 6 8 10 12 0 0.002 0.004

s/s

Y0

e

Longitudinal tension

FE (Jansson, 1992) C0Sr 0 0.5 1 1.5 2 2.5 3 0 0.003 0.006 0.009

s/s

Y0 e

Transverse loading

FE (Jansson, 1992) C0Sr inclusions composite

σ

ε

matrix r I

ε

ε

r r 0

ε

Sr I

C

Sr 0

C

 

,

p

eq

R

 

p

0

f

σ

σ

s

Y

is underestimated

eq

σ

(15)

Zero-incremental-secant method (2)

– Continuous fibres

• 55 % volume fraction • Elastic

– Elasto-plastic matrix

– Secant model in the matrix

• Modified if negative residual stress

Incremental-secant mean-field-homogenization

0 2 4 6 8 10 12 0 0.002 0.004

s/s

Y0

e

Longitudinal tension

FE (Jansson, 1992) C0Sr C0S0 0 0.5 1 1.5 2 2.5 3 0 0.003 0.006 0.009

s/s

Y0 e

Transverse loading

FE (Jansson, 1992) C0Sr C0S0 inclusions composite

σ

ε

matrix r I

ε

ε

r r 0

ε

Sr I

C

Sr 0

C

inclusions composite

σ

ε

matrix r I

ε

ε

r r 0

ε

Sr I

C

S0 0

C

(16)

CM3

EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 18

Verification of the method

– Spherical inclusions • 17 % volume fraction • Elastic – Elastic-perfectly-plastic matrix – Non-proportional loading

Incremental-secant mean-field-homogenization

.000 .020 .040 .060 .080 .100 0 10 20 30 40

e

t e13e23 e332e112e22 -70 -45 -20 5 30 0 10 20 30 40

s

13 [Mpa ] t FE (Lahellec et al., 2013) MFH, incr. tg.

MFH, var. (Lahellec et al., 2013) MFH, incr. sec. -80 -40 0 40 80 120 0 10 20 30 40

s

33 [Mpa ] t FE (Lahellec et al., 2013) MFH, incr. tg.

MFH, var. (Lahellec et al., 2013) MFH, incr. sec.

FFT

(17)

Non-local damage-enhanced MFH

Material models

– Elasto-plastic material • Stress tensor

• Yield surface

• Plastic flow & • Linearization

,

p

eq

R

 

p

0

f

σ

σ

s

Y

)

(

:

pl el

ε

ε

C

σ

N

ε

p

pl

σ

N

f

σ

ε

el C pl

ε

ε

C

σ

alg

:

(18)

CM3

EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 20

Non-local damage-enhanced MFH

Material models

– Elasto-plastic material • Stress tensor • Yield surface

• Plastic flow & • Linearization

– Local damage model

• Apparent-effective stress tensors

• Plastic flow in the effective stress space • Damage evolution

,

p

eq

R

 

p

0

f

σ

σ

s

Y

)

(

:

pl el

ε

ε

C

σ

N

ε

p

pl

σ

N

f

σ

ε

el C pl

ε

σ

ε

el

C

pl

ε

σˆ

σ

σ

1 D

ˆ

el

1

D

C

ε

C

σ

alg

:

σ

σ

1 D

ˆ

)

,

(

p

F

D

D

ε

(19)

Non-local damage-enhanced MFH

Material models

– Elasto-plastic material • Stress tensor

• Yield surface

• Plastic flow & • Linearization

– Local damage model

• Apparent-effective stress tensors

• Plastic flow in the effective stress space • Damage evolution

– Non-Local damage model • Damage evolution

• Anisotropic governing equation

• Linearization

,

p

eq

R

 

p

0

f

σ

σ

s

Y

)

(

:

pl el

ε

ε

C

σ

N

ε

p

pl

σ

N

f

σ

ε

el C pl

ε

σ

ε

el

C

pl

ε

σˆ

σ

σ

1 D

ˆ

el

1

D

C

ε

C

σ

alg

:

σ

σ

1 D

ˆ

)

,

(

p

F

D

D

ε

)

~

,

(

p

F

D

D

ε

p

p

p

~

~

g

c

p

p

F

F

D

ˆ

D

:

ˆ

~

D

~

1

alg





ε

σ

ε

σ

C

σ

(20)

CM3

EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 22

Equations summary: zero-approach

– For soft matrix response

• Remove residual stress in matrix • Avoid adding spurious internal energy

– Solve iteratively the system

– With the stress tensors

Non-local damage-enhanced MFH

unload I I r I

ε

ε

ε

unload 0 0 r 0

ε

ε

ε

r 0 Sr I 0 S 0 r I

B

I

,

(

1

)

C

,

C

:

ε

ε

e

D

matrix: inclusions composite

σ

ε

matrix:

ˆσ

0 0

σ

r I

ε

ε

r r 0

ε

Sr I

C

S0 0

C

r 0 S0 0 0

(

1

)

C

:

ε

σ

D

r I Sr I res I I

σ

C

: ε

σ

I I 0 0

σ

σ

σ

v

v

) r ( I I ) r ( 0 0 ) r (

ε

ε

ε

v

v

(21)

Mesh-size effect

– Fictitious composite • 30%-UD fibres

• Elasto-plastic matrix with damage – Notched ply

Non-local damage-enhanced MFH

0 50 100 150 200 250 300 350 400 0 0.2 0.4 0.6 0.8 1 1.2 Fo rce [N/m m] Displacement [mm] Mesh size: 0.43 mm Mesh size: 0.3 mm Mesh size: 0.15 mm Mesh size: 0.1 mm

(22)

CM3

EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 25

Multi-scale method for the failure analysis of composite

laminates

– Intra-laminar failure: Non-local damage-enhanced mean-field-homogenization

– Inter-laminar failure: Hybrid DG/cohesive zone model – Experimental validation

(23)

Weak formulation of a composite laminate

– Strong form

for each homogenized ply Ω𝑖

for the matrix phase

– Boundary conditions

– Macro-scale finite-element discretization

Intra-laminar failure: Non-local damage-enhanced MFH

0

f

σ

T a a p

N

p

~

p

~

~

T

n

σ

p

p

p

~

~

g

c

g

~

0

c

p

n

a a u

N u

u 

p p p p u p p u u u

d

d

~ int ext ~ ~ ~ ~

~

F

F

F

F

p

u

K

K

K

K

 

i i i i i i 1 L L   1     

i i    X X 1  2  3  5  4 

i i

w

w

(24)

CM3

EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 29

[45

o

4

/ -45

o4

]

S

- open hole laminate

– Tensile test on several coupons

– Propagation of the damaged zones in agreement with the fibre direction

Experimental validation

40 220 300 4.68±0.05 39.60±0.35 O13

-45

o

-ply

45

o

-ply

(25)

[45

o

4

/ -45

o4

]

S

- open hole laminate (2)

– Predicted delamination zones in agreement with experiments – Tensile stress within 15 %

(26)

CM3

EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 32

[90

o

/ 45

o

/ -45

o

/ 90

o

/ 0

o

]

S

- open hole laminate (2)

– Propagation of the damaged zones in agreement with the fibre direction

Experimental validation

(27)

[90

o

/ 45

o

/ -45

o

/ 90

o

/ 0

o

]

S

- open hole laminate (3)

– Predicted delamination zones in agreement with experiments

Experimental validation

(28)

CM3

EMMC15 - 7 - 9 September 2016, Brussels, Belgium - 36

[45

o

/ -45

o

]

S

laminate under uniform tension

– No hole to trigger localization

– Material defects trigger localization

Introduction of uncertainties

Uniform volume fraction

5% variation in volume fraction

GFRP [45/-45]

(29)

Multi-scale method for the failure analysis of composite laminates

– Damage-enhanced MFH – Non-local implicit formulation

– Hybrid DG/CZM for delamination

Experimental validation

– Open-hole laminates

– Different stacking sequences

Introduction of material uncertainties in the model

– First simulations

Références

Documents relatifs

Enfin, comme les envois d’argent par les familles aux forçats sont systématiquement reportés sur leur pécule, il arrive fréquemment que certains d’entre eux usent de

REMIND ne vise pas à décrire l’action, mais à comprendre la logique de l’articulation de cette action à travers la dynamique cognitive et émotionnelle du couplage du visiteur

Les angles des joints du bras robotique pour chaque position sont envoyés au bras MICO simulé avec Gazebo afin d’exécuter la trajectoire jusqu’à atteindre la

An OECD/NEA sub-group on Uncertainty Analysis in Modelling (UAM) for Design, Operation and Safety Analysis of Sodium-cooled Fast Reactors (SFR-UAM) has been formed under

The depth map compression technique described in [3] is composed of two different parts: a lossless coding technique that uses elastic curves as inter-frame predictor is used for

L’épave d’un autre navire de la VOC, la flûte Lastraguer, coulée en 1653 aux Iles Shetland, pourrait nous fournir une autre référence, mais cette épave dont n’a

Figure 81 : Abondance relative des œufs de Lepidosaphes gloverii sur citronnier et oranger 77 Figure 82 : Evolution larvaire de Lepidosaphes gloverii sur citronnier et oranger

De plus, la proportion de la variance expliquée par les infractions commises chez les accusés CR au niveau de la présence de détention et de la durée de la détention et de