• Aucun résultat trouvé

Moisture transport coefficient in drying porous media

N/A
N/A
Protected

Academic year: 2021

Partager "Moisture transport coefficient in drying porous media"

Copied!
2
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 17334

To cite this version : Moghaddam, Alireza and Kharaghani, Abdolreza and Tsotsas, Evangelos and Prat, Marc Moisture transport

coefficient in drying porous media. (2015) In: 7th International

Conference on Porous Media & Annual Meeting, 18 May 2015 - 21 May 2015 (Padoue, Italy). (Unpublished)

Any correspondence concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr

(2)

Moisture transport coefficient in drying porous media

Presenter: Alireza Attari Moghaddam

AUTHORS

Alireza Attari Moghaddam (1), Abdolreza Kharaghani (2), Evangelos Tsotsas (3), Marc Prat (4)

1. M.Sc., Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, DE 2. Dr.-Ing, Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, DE 3. Prof., Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, DE 4. Prof., Université de Toulouse, Allée du Professeur Camille Soula, 31400, Toulouse, FR

ABSTRACT

Two main approaches have been used to derive mathematical models for the drying process: The first approach considers the partially saturated porous medium as a continuum and partial differential equations are used to describe the mass, momentum and energy balances of the fluid phases. The continuum-scale models obtained by this approach involve constitutive laws which require effective material properties, such as the diffusivity, permeability, and thermal conductivity which are often determined by experiments [1]. The second approach considers the material at the pore scale, where the void space is represented by a network of pores. Micro- or nanofluidics models used in each pore give rise to a large system of ordinary differential equations with degrees of freedom at each node of the pore network [2].

The characteristic length scale of the pore network models is several orders of magnitude smaller than the practically relevant length scale. A straightforward upscaling of the micro-scale models by using large pore networks is computationally costly, but it can be used to assess the quality of any chosen continuum-scale model as well as to estimate the effective parameters. When reliable estimates for these parameters have been obtained as functions of the pore size distribution and other material properties, the computationally much cheaper continuum-scale model may be used in future simulations without the need for further micro-scale simulations or experimental measurements. In this work, the moisture transport coefficient (D), the capillary pressure (pc), the effective liquid permeability (keff,l) and the effective vapor diffusivity (Deff,v) are estimated from the post-processing of the three-dimensional pore network simulations for multiple realizations of the pore space geometry from a given probability distribution. These effective parameters are then applied to the moisture diffusion model at the continuum scale.

REFERENCES

[1] Whitaker, S.: Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying. Advances in Heat Transfer 13, 119-203 (1977).

[2] Metzger, T., Tsotsas, E., Prat, M.: Pore network models: a powerful tool to study drying at the pore level and understand the influence of structure on drying kinetics. In: Tsotsas E. and Mujumdar A.S. (eds.) Modern Drying Technology, pp. 57-102. WILEY-VCH, Weinheim (2007).

Références

Documents relatifs

Simulation results presented as (a) electrokinetic coupling coefficient and (b) effective excess charge density as a function of the ionic concentrations for the different pore

The properties of the numerical scheme to solve a system of coupled advection–diffusion equations are provided in Section 4, while Section 5 shows the results of the numerical

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Mais le débat sur la nature juridique de ces accords est-il central lorsque l’objectif pour- suivi par les organisations syndicales dans ce type de négociation internationale

flows of solvent, salt and charge between these pores under the effect of pressure, salt concentration and potential gradients is, in the linear response regime, determined by

رلا تدهش ًاروضح ةرصاعملا ةيرئازجلا ةياو ًايعون رلا جاتنلإا ثيح نم روضحلاو يئاو نفلا رهظ ذإ ،ي ةلحرم اوزواجت نويئاور تلا م تاو نر اوهج نوكتل ديدج وه ام

Notons que le but visé par cette étude est l'établissement de la loi hauteur–débit ainsi que l'expression du coefficient de débit, deux types de dispositifs ont été

Excellent success using supercritical drying to prevent collapse by eliminating surface tension by means of supercritical fluid has been demonstrated on MEMS [2] and