• Aucun résultat trouvé

une formalisation des faisceaux et des schémas affines en théorie des types avec Coq

N/A
N/A
Protected

Academic year: 2021

Partager "une formalisation des faisceaux et des schémas affines en théorie des types avec Coq"

Copied!
45
0
0

Texte intégral

(1)une formalisation des faisceaux et des schémas affines en théorie des types avec Coq Laurent Chicli. To cite this version: Laurent Chicli. une formalisation des faisceaux et des schémas affines en théorie des types avec Coq. RR-4216, INRIA. 2001. �inria-00072403�. HAL Id: inria-00072403 https://hal.inria.fr/inria-00072403 Submitted on 24 May 2006. HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés..

(2) INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE. Une formalisation des faisceaux et des sch´emas affines en th´eorie des types avec Coq Laurent Chicli. N° 4216 Juin 2001. ISSN 0249-6399. ISRN INRIA/RR--4216--FR. ` THEME 2. apport de recherche.

(3)

(4) 

(5)     ! "$#%!'&)*( + ,- /.0* *1&)( 

(6) 2354768*9 !:;=<>@? A*BDCFEHGJILK7M;NFOQPSRQO T!UWXHV Y;X/Z[]\_XH^ `bacXdcegfJachaiXjd Xjkhu'lv dmehnowxXjdLk'prqbyY XjYzsDegY;dcamX tSnoX { lJ|o|}e v k!~bX v Xjh U X v h U X`D€ ‚Zbƒj„[] gnbam`Z†J†oƒ![0}ƒ,|olfJXjp. ‰‡ Š‚ˆ ‹HŒ  Šˆ Ž

(7)  `| v XH^ prXH`Jk‘X’amhano`~'Xj^ s}U nbk~bX/“”e v Yzldcacp•lu k‘aieS`$v ~oX,dcl;fX^ eJY–Xj^ k v aiXldcfV XH^ s v v act‚nbXUXj`7k v U X^ e v acX “Q~o| lgXjv aceSp’p•sbhk—XHd q‚XjVlg|DY;n‚Xj¡¢Xjpp l™eSv ˜g`JXjXHk£`oh/hXj^eJdckbl$`SXH^ kpŸ~šv XXj^~š^ ›Dp©Xj^ `b˜gdie acXjkrv diacp!eSeJ|o`~o|šX~bXj^ hXHXjX/p’p¤kp•XHvh `3l™˜XH^ l¥

(8) Y;ac¦HdªlJž§p l`bœ@eSno`bp7XHp~'ž Xj^ h eJv acn ˜geS`ohXjp@dclŸdcXjkrn eJv |Dpegp•dceg|'fJXj^ aihXJa¨›5 Dhlgldif k‘aiXjeSs `opjX/ 'Xlkam`ok p‘a,X^ e tSnoacXX8~bdcXjXjpp «¬}­ ˆ Vv v U U k‘eJ|Degdc‹eg®°fJ¯gai±XJŠ‚ S‹²k U Ž>Xj^ e ³ v aidcX/f ~bXHsXjpXJk— µq‚´'|DXje‚p t5  ´'k•hebt5 W“”e Yzldcacp•lk‘aieS`¶~bXHpYzlk Xj^ YzlgkramtSnoXjpj ·“Qlamp‘hXjlgnb¡· Lp•h XH^ Yzlgpj . Unit´e de recherche INRIA Sophia Antipolis 2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France) T´el´ephone : +33 4 92 38 77 77 — T´el´ecopie : +33 4 92 38 77 65.

(9) 

(10)   ! F; ‰ &* !:-  / .  '&* + j >& F4 "F < @? . . . 4$6. . ­ ­ v v T U v U v v ;amY ` eb¥

(11) ~b‹ X¦jv§`_  š¯ lgX/diŽfJ~oXjsXjp•v h lXv amach,| sDfJX,XHXprk eJXHU Y;`JXjka Xjv kl¤v p•qg|D“”e ž XjhTY;ai›DeSlghj|}dilaeJjkrdilgaceJeJkrfg`}acaceJXgp!`7 ·lglam`o` dc~7fgXHk s qbU v |DXl}X 5| lJkv eS`osbX~¶edcXjp Yzq7U XHp el™“

(12) '˜glXjX p*œ@U k `bl™U X ˜JXjX’e p•hvXHai`oXHXHhp YeSU noXHl™`Sp˜gkr }XX › v sDXHpr~WXk*XHž `¶p‘krXH~b|Xj˜gkrXje dieS|}l XH~~  .

(13). . . . . . . Š ·® ¬ ‹gŽ ³ dcfgXjs v l} o´'ebt5 5´'k•hebt5 ‚“”e v Y;lgdia jlgkraceJ`W bp U Xjl™˜JXjpj bp‘h U XHY;Xjpj bkreJ|DegdcegfJqg bk—qb|DX,k U Xje v q    . .

(14) ¦. Q¦ $¥

(15) ¦j§ ) * + ; Ÿ_"šF; , eJnopL| v XH^ prXH`SkreJ`}pW`beJpWp•|šXH^ hai›DhlgkraceJ`op·XjkL| v XHnb˜gXHpWXj`k U X^ e v acX~bXjpLk—q‚|DXjpµ~bXjp`begk‘aieS`opWYzlk U Xj^ Yzlk‘act‚nbXHp `šlgdiXj^fhXj^Xjs p•p‘v amlgt‚a vnbXjX’p Y;l–V ebdc~bl X v ~š`bXXJ^ ›Dž `backraceJ`‰~bXHpp‘h U Xj^ Yzlgp@lœ@`bXjpj 'd.- no` ~oXjp7| v XHY;aiX v p$eJs‚wxXjk‘p7~bXdcl–fXj^ eJY X^ k v acX v l™v ˜™lgaidXjp‘k*solJpbX^ p‘n v dcl¤“”e v Y;lgdivamp•lkraceJ`~bXd- ldcf XjV s vv X,X/·Xjhk‘nšXj^ X |ol v yµe102mh v u egkrk‘aiX v43 u  T65587   ' ´  X k t‚l™˜JnbXja·h¤heSdmlYz|˜JX XHv pr`oac~oeJp©` diXH„}p©ž Zo`bž )_eJkr~}aceJn `opšdieJ~bfgX’amhhjacXldkbX^ 9~ fJ- e lamai~bXJX  9~ l¶V - XHdc`ol_p‘Xj~šY Xj^ Y;sodieJXJ`} gprf k v eJlgn}krac|}eJXJ`  Jlg¥

(16) `}¦j`b§ XjlJ3 ´nW JXj:k'5he587<|o; pX gkzXkš~beJXj`op‘k

(17) h$Xl™/·˜gXjXHhh¤k‘nšdiXX ^ ¥=  >?  @¥¦   @Q¦  6A  @BC(   heJYzY;X/k U X^ e v acX~bXHp k—qb|}XHpD•ž v lg|}|}e v k!Bp - l v k‘achjnbdiXlJnbkreSn v v ~bX p‘ai¡7|ol v v k‘aiXHpžby l¤| v XHY;a XV v X,~šXj^ h v ackšdml v Xj| v Xj^ p‘Xj`Sk•lkraceJ`$v ~bXjpXjF` E ' ´ X dmp‘~ol*XjX*Yp‘krqbsbeS`Sdc|}Xjk eJUWpšdiXHVeJtSprfgnoXšacX/Xlgnb`oheSk‘eJeJY;noYzpšY;lnbXk‘kracact‚hdcacXnbp‘dceJXšdcXj`o9~ p©pj-  ‚H~l Xv - amfJk!`Snokb| Y;X ^ v Xj^Xjacp‘Xj`SXjn k•`Svpµk‘ gamX*Yz9~ h- |blgX ~diamk•UhlacX ^kramv`bXHXjXjp`}pž h |DXg` eJ Jp•~bhprX*eJamsb`Sk‘aceJk‘diacac|D`‚kbegXHnb^ p'dcXšeg~ofgXjX$ac`oXp•¥

(18) nbXH`b¦Hackr§fgX XHhl™`oeS˜g~ YzXHv h©XY^ X!~bXGaeS/*dcn¤XjX ^ pv ~bXjX’h`Se‚krhX XHeJpµ`Sh`bkraceJameJ`‚`}krnbp©aceJaikbeS`oXg^n p ž u nbamp,l™˜gXjhd.- lgdif XjV s v XILac~šXj^ lJn‚¡¶| v XjY;aiX v pjv  LYzl¡bamY;lJn‚¡W WdiX v lg~bamhlgd~9v - n}`8am~šXH^ v ld  WdiXHp,lg`o`oXjlgv$nb¡¶V diebvhjlgn‚¡ Xjdcamk prX dmv ldidcXHe‚p hjlp•hdcacU p•XHl^ Y;k‘aieSlJ`²p,l9~ œ@- lJ`b`oXH`bpXHžlgyn‚¡lt‚“”eJno`Slkk v |}a XHVl YkrX@acXŸ|}~bl Xjv pkracXg`b µegk‘dmlaieS`o|bp dmno`špXj^ ach·YzXj^ p•|Dp‘e lgv a k‘lgXj`Sp/k‘|DX@eJ~bn XŸhhXŸeSY;k v Y;l™˜™XHlg`oaihd X ~šXjl^ h v“”eack,Yz`beJl pE p•l¶V |šnoXH^ h` ai›D| hv lgX^ kr“QaclgeJac`op•hp XH~blgX!nWdmž l k U` Xj^ Bpe - v q8aiX XH~bprXHk pF“”“Qe lv amkrp‘XjhY;XjlJXHn‚`J¡ k Xac`okp•p‘|bX!a vkrX@X ^ v ~oY;n am`bdcX!ai˜ |ov lJX v - dm³ l,difJheSXjs`ovprlk v amh$n}h\’kracXjeJeJ`Y;~oXnk v “Q&qlam- p‘h3 K XjlJ³ n{<lJLp‘L1p‘7ebh~baXX ^ { ž K v l v k‘p U e v `bXJž T eJ|DegdcegfJaiXJU  ldcf XHV s v XJ µXjk;k U Xj^ e v aiX7~bXjp;“Qlgv acp•hXHlgn‚¡ p‘eJ`Skzv Xj`oVp•vnbackrX vv Xj^ no`bamp;|}eSn v v |}X v E Y;| v XjeSkrsbk d XjV X*Y;dml Xjp ~št‚X^ ›DnbX,`oai`bk‘aieJeSn}`¤p!~bl™Xj˜gpšeJp‘`}h p v Xj^ XjYz`}lgheJp©`Slk œ@v XH^`bp©Xjdcpje žNv M'p `‚~b›DX`@hX,eJ`¤k v ~šl™XH˜^ h lgaiaid k'ž ~olg`op'dml ~bX `ba X X|ol k‘aiX*diXHp'~baG/*X ^ Xj`Sk‘p O- am`SkrX v “QlghX’f v lJ| U amt‚nbXŸ¥P‘¥¦H§ 3 ´ {  5 „ 7 |}eSn v ¥¦H§l Xj^ kbX^ nbkracdiampbX^ X|}eSn v pramYz|bdiai›}X v dml;h v Xj^ lgkraceJ` y ~o; t‚Xjnbp/X| v`bXjeJnbno˜Jp;Xjp ˜JeJ; nbl™˜gdceJXH`oQh p;- | lgv n}e‚p‘ep‘C“a!E—sJ| Nq v E—eb|}h eJU acX`Sk‘t‚ac`bnbRfX- |}3 SUeSp‘Tp‘acT6sodi5 X 7 ~oD!n Xk/dclJ|}`beSfJn lgv fgX$lgnbYzfSYlgk XHU `SXH^ krYzX v lkrdmaml$t‚nbdcamX pramD•sbWž acVdiackblJX;^ `o~bp;Xjdcp¶lXH^ Y;`beJXj`}p•n h·vXH^ X p e P¥ nV ‘¥

(19) h¦jXj§;dcl@t‚`onbXX,`‚`bnbeJa n}v l@p!nb|}krlgacpdiamp‘l@V X v dceJl@`ohp!eJ|DYzeJ| n v v X ^ UdcXjXjp*`o|p‘aiv eSXj^ `p‘Xj~b`SX krX `bv eSž p*p•|'Xj^ ha¨›5hlk‘aieS`opj }h- Xjp‘k’~9- lacdcdiXHn v p*d- lœ@h U lgfgX~bX Z]\_^ !=  *6 _(  *; ;  *Q ` X Y "*?Ÿ"= +,FF"[ ’b a v XH^ prvXH`Jk‘X/v achat‚nbXdmt‚nbXjp’lgp•v |}XHhk•pv ~bXdmlz“”e v v‘Yzv ldcacp•lv k‘aieS`$v ~oXv*d -V ldc3 fu XjV s 6Tv X/5Xj58`7 ¥

(20) ¦j§zv nokracdiampbX^ XheSYzYX  ` |  s}lgp‘X~bX’`beJk Xk l™˜lacdªžgyµXdcXjhkrXjn am`Jk‘X Xjp•pbX^ |}eSn l,p‘X XH|}e k‘X l  |DeJn |bdmnopš~bX*~šXj^ k‘lgaidmpž  

(21)             ! " # %$ & ' (  . cedgf. hji_klnmpo_q%lrksl9tvux9wl tzyn{ |%}!lrk. Vv v v v v v “QXjnokk‘t‚n y n9v lXg- ac bdLY;acp‘dWeglJXjac`bp‘kakšX p‘~on‚X;eJœ@`o~op•hX lgY;Xjp•XHXjp‘| `SXj`SkeXj^kr~}p‘acXjXXdW`S¡‚krt‚amXsbnbdcX,XdcXjh|}pX/eSXjhn U`ov egp‘`bXjai¡ŸXYh|osblJlJdiXH|bp pk‘k n hv v eSeJX `o|7l ~bV pacdm-rkrXjl^acdieJeJ“”`oegaifS`oampš`bX;X krk‘veJeJn}~onbp lgk `}diXHdip X¤p'dikXHXH`on l™p‘v ˜XjlnbY ackrdsoacdcXdiacXHp•k pšldck‘Yzl$aieSlg“”`7e k U ~oYzXHXj^ Yzp!ldclYzacp•krllamt‚kk‘nbaiU eSXjX^ ` pE YzlgkramtSnoXjp!p‘k‘lg`}~ol v ~opjž n€‚?ƒ„B %†.

(22) . ¥.  N  . yk—qblz|D`bXeghk‘eSaiY;eS`$Y;~bX!X,d.-k—XHqb`o|Dp‘XXjY prXHsoY diXsb~bdcX,XHpl¤kr| X vv Y;aie vXHaWphtSeSno`Sao˜gdXj- eJ`o`Sa v k

(23) |D|DeJeJnn vv vk—q‚Xj||DvXgXH^ JprY;XH`SlgkracX p

(24) v aid}dcXj`Hp - XXj¡‚`}amprp‘XHkrY XYzsbdclXjdp9U I}XjeJn `v XH|}noXHprnbXHY;k!˜gXj`SeJka v |on}lg` p XHYz`olghk e U v XHX,^ Yz~blX,kram`bt‚eJnbkrXjaceJpš`Xjk!~bX,diXHnk—qbv |Dp!X| vtSeSno| egv kraacXj^Xjkb`SXH^ kpž t‚nbaLp‘egackp‘nbœ¤p•lgY;XH`Jk X¡b| v XHp‘p‘a¨“F|}eSn v XH`bfgdceJsDX v dcXjp!t‚nbeJkracXj`Sk‘p v v ; v v 3  517 v;v v v pXj‘^ XjdXjY^ Y; sbXjdc` `SXjpjk‘nopž kr~bacdiX©`amprd.X7pb- XjXj^ `o~bkr1ep‘eJXj02c`}~oYh@X*sbdmXjdil¶XJp‘k jp‘Xjkdcklzno~H~bh- eSk•non`o`o`šX X$Xj^ v XX~bdmX7H~ l-krnopoacXjeJ`$^ kr` 1e k—02c~9qb~b|}-xXXj^ Xt‚nbp•˜gnoaceg˜™|oalg|DdiXHe |}`ov l kh oXJ jt‚Xt‚nb¡WnbaLž a‚p‘prX X v ³ vl˜‚ aca `Sv l!krX D~Hv |-x|DXj^ veJfJXj^nlgkbdiX^ackbhX

(25) ^ XjeSp•| Y;n vXjY;^ p‘hXjX/Xj`Skµdck‘XXjX `}k—qbprdcXH|DXjY X,psb~bXjdc`FXjXgpE ž vU v Vv U V p‘v XjX`dmYlk‘sb|DaidcXjeS X no`@

(26) k’am`bl acam kr`oamp‘l9` adcX- lJXj|op‘l k | X^v kbXac^ XXj^ `7XHh `oU 9~ ~blJ- lg`bX nbfk X~b^ v X’X X,|}Yzt‚l nbvlgX,`b{ dca X,X ž pbX,Xj^ krk‘1eeg02ck‘~olgX’diXHl™Y;qJXjlJ`S`Sk k'dcXeSYY eJXj f Y;XHX`bX/k—q‚diXH|DpXXHp•`onopr|oXH|DY e sbv kdcXjt‚p*nbtSX no egkracYzXj`Slk•amHp p I}e .d n$-V XjF` dcl E Definition. a set is a structure with the following components: Carrier: a type (coercion) Equal: a type relation on Carrier Prf_equiv: a proof that Equal is an equivalence (coercion). v v•v V v v v v lJ|o| Oy v eJ- am| Yzv alXg^ fg SXXdc| diX,Xj^hh·e Xj^ v•~ov XjXH`Sp‘|DkrX@eJ`oh~Ÿe Xj`$XHp‘“Q|DleJack`o~ lgn7lhhebX~bXt‚nb¥

(27) a!¦Hlg§;|op‘|}nbl ac˜llgac`Skk9p‘I eJnop8¥Pr¥

(28) ¦H§ l™˜JXjh$no` - | Xkrk—qNE—| ac`SkrX -. !"$#&%'()#+*-, .0/ 1$#324%'(65 7089 /0: #4;<0 :/ =>? ./ 1>1@A5 B0CD89E"FG#H2I;J89E"F /0: ?=K7089 /: @MLON. `@Y;l™egqSk©lgl™`S˜Jk'Xj|Dh eJhn Xjv k

(29) n}X¡b`bXjact‚Yznb|bX,dcX*heJp•`on p‘v k dmv lnohp‘k‘q‚Xj`Sn k•v l¡bdmlX“”~beSX@`oh¥

(30) k‘¦HaieS§`QžSyZ l,9EYz: lg h v eQP=RTSVUWYXt‚nbh vaLX^ ~bX XHamYzhaDlgdi`oX~bk—X/qb|Dk vXeJamac`op ~ol nov hfJkrnzai“E Y;.0/ XH`J1k•p/~bXj[\p70k—qb8|}9 XH/0p/: p‘[|šXjB0^ haiC ›!XH^ p*8~o9ElJ]F`optSdiXHnop/aF~blJa>p‘/’p‘ebX ^ vhXHacX `Jv k•eJp’`Sh k U l7V lgYzno`¶|opjpbžX^ M'k‘e8didc02mX~bX ~šXv ^ Xj›Dp•`o|}aik/XHhlgk‘noai˜Jp•Xjp‘Y;a dcXjXj`Spk’k p‘v eJeJ`¶acpk—| qbv |}eXJwx ·Xjhp•krl aceJv `oXpE dmlk‘aieS`W bXk!dmlz| v Xjnb˜JX/t‚9n - acdµp - lfJaik!sbacXj`79~ - no`bX v Xdmlk‘aieS`$9~ -rXH^ tSnoai˜ldcXj`}hXgž v .0/ 1> %'( v vv v .0/ 1> 2 v hXj keJv YzXyY;˜bXnWXp‘  qbhlV Y eSXk sDvv egl™h˜gaidceSX X `v p Xj.0`S| / k vXj^ X;!p‘Xj>di`SX;k© k—XHqb `Sh|}keJX YzX Y;0X*!no`@k—Xq‚k|DXXgdcXk ž u k—qbdmno|Dp'X | %|Dv 'XjX^ (hamY;pbI·Xj^X~bY;k XzXj~b`ShX/Xjkj~'kr krprXj^ XzaRhdcM Yzl XjlgX p‘`bk©a dmXV nolv `@X | p‘n}Xe`8k‘wxe8XHp‘0h2mX~bk‘k‘aiXJ8eeS 02m` eJ~b`¤X |D|DeJeJnn v•v•vv ll v vv ; v v d.lg- diace`op‘p’k‘lJh`oeSh`oacprX amv ~šl;X ^ lgX nbk‘eJnoYz` lX^k‘dacXHt‚^ YnbXHXHY`SkXH`S¡ k 0|}~ol XGv k—^ qb#>|D; X .004/ M1ldcMe p*7=@_t‚Nnb"X M 9` - Xjp‘k,|olgpno`8k—qb|}X D‘ L|ol hXt‚nbX¥¦H§  !". ced c. uUyO`!ka8t>bdcfe_g=lpl9t4che_iztjglrk}lkm`!i lni!kNlrmpo<qgl. Š‚‹ H­Tp SŠ ‹Ÿ¯ ¬  ²Šqo FŠ ˆ rp ¯ b­. n

(31) o.

(32) . .

(33). sutvsxw.

(34) ¦. Q¦. $¥

(35) ¦j§.  

(36)             ! " # %$ & ' (  . . v| XH^ ~byamX hlY;k eu qJXjv p•`,n dcv X!M‰|bdc~on}Xp`ok—qbl|}k•n X v 7Xjdb2~bXB0v Xj|( v XH^; pr³ XH`Sp‘krX X v v lnod.`b- XjX!`o|op‘Xjl Yv k‘sbaiX diX³ ~b~9Xjp7- n}vX` ^ dXjXH^ Y;`oprXjXH`SY vk•p!sbdc~bXeX#M8M‰XHpr˜'kX ^ v~baiX ›DlgprX!`Sk ~beSu `oD•`bž X  v Vlgn}v ac` p |}~Hnb- Xj ack p•v t‚X’9n h- eJeJ`,Yzk |oll™k‘˜aclsoacdidcXHdiX©p'l™l™˜J˜JXjXjhhdcd.Xj-xpX^ fSpblX^ dck‘aie8kb02mX^ ~b~bXjpjX<  M*acdJž “QlJ nbegkµack XH~b` eJ|b`odmh’nop dml,~bXj“”eJYz`}lJh`okrac~beJX ` (lgnb¡/ | XH^~bac( hjl/ k•=pµt‚nb: X© d.-t‚eJnb`aWhlgeJp•`oprebp‘ach~ aiXX lVX n}`7| v XH^ ~bamhlk u ; ~bX,k—qb|DX 72B00( D dclz| v eJ|DeJp‘ackraceJ`

(37)    ; rD ;  rD !" ; D?I. #C1]?="=>? (00D( / = :  # ; 7 2B0(E@$2B00( #+* % BG#+7&2B0((' ; ^ [ '$+# 7=@I; B ^  @ 2 ; 789 /0: ' ^ @)2 ; B'=@_N.  `|DXjnbklgdie v p ~šX^ ›D`ba v hX,t‚n9- Xjp‘kno`| v Xj^ ~bamhlgkš~olJ`op dcXhlg~ v X/~bXjp*pbXj^ kre 0ac~bXHp&I.  B001 /  #+* , B00DC9?d# * 7 2B0( 5 B00D0 ( / =  : D(CO# ;3(00D( / = : KB0DC9?E@LON n

(38) o

(39)  Tp  ,+. ‚Š ‹ H­ ŠS‹Ÿ¯ ¬  ²ŠŠ ‹HŠ‚ ±QŠ  lgacpš|DeJn v “Qla v X~bXdcl|ol v kracX’~bX ~šX^ ›D`bacX’|}l v no`@k‘X v YX  ~bXk—q‚|DX B01 /  no`ŸpbX^ k‘e80 2m~bXJ  ac| d!v am“QY;lJnbaik‘k@ai˜J|}X/eS~onbX˜geJpra eSv no~bpgEeSk—`oqb`b|oX lv fJXgno S` eJ`k—q‚| |Dv X ebh l²V XHV ~bprX’XHp–lgacX^`odp‘XH^ aYI XH`Sk‘pjž

(40) ´'eSYzYXacd*`9- X¡bamprk‘X_|olgpzXH` ¥

(41) ¦H§¶~oX_`begk‘aieS` M'k‘lg`Sk!~beS`o`šX,^ no`7k—qb|}. X -–Xkno`bX/“”eS`ohk‘aieS`/©~bX,k—qb|}X10 27  beS`$~šX^ ›D`oaik dcXprXjkre102c~bX ;32"9,0'( 27 0 @ |ol v dcXŸk—qb|DX4- Xjk dml v XdmlkraceJ` ~H-xXH^ t‚nbai˜lgdiXH`ohX 1 5 ²p•p‘a ; rD67 ; RD•ž´'X poXj^ kr1e 02c~bX’Xjp‘k!Xj`7sba wxXjhk‘aieS`l™˜gXjh   o.d - amYzlfJX/~o.X • bXjk|}XHnbk~beS`oh X k v X/˜bnheJYzY;X,no`bX|ol v k‘aiX,~bX M’ž u eSn v acYz|bdXj^ Y;XH`Jk‘X v dml|ol v k‘aiX/~bX M ~šX^ ›D`bacX|ol v diX,| v Xj^ ~oachjlk u  SacdLp•n‚œ¤kldce v p'~bX,| v Xj`}~ v X/|DeJn v - diX/k—qb|DX 2]9,0'( p•nbac˜lg`S9 kI 82"9,0'()# *,(2]9,0'(0D :   # 7 2",9 0'(0D>(0C # ; B000DC9?MB92"9,'(0D : =@L ; 9"M 92"9,0'(  : \: # 2"9,'(27GN 9D 3; 2",9 0'( 2; 7 2],9 0'(&  2",9 0'(  : =@ 80 2. v U v v ‚t din XHpacd©krX˜©X ^ Y;v aiXj›}p/X¤t‚diX7nbaF| d v Xj^ ~blJamsbhailgk‘Xjk `Su k,•pr µeSX`Sk;k’|}dcXjeSp/n hv eSašnodm|bl_dcXj| p/v p‘heX eSwxv `oXjlzhp‘krkrlacacameJk‘`onš` prX;^aWdc~ Xnopb`¶X^ k‘ek‘X m~bY;X’~šX;X^ ~b›DX;`oaik—k!qb|}|oXl v diXX|k/v ~ XH^ ~bnoac`bhjyµlX¤X@k | u k‘X Xjž v nbY˜JXX v v v v v v v Xjt‚knbaac`S l$V ˜J`X nov Y`¶prXHXjpbYkX^ XHk‘XH8e`S`02mk~b|bžX dmylgM’-hlgX© ·|}dcn}|oXj`_lpFv hkrkre‚XHX X`ov Y;lgh`oX aceJh`}¡¶X pµl,V ~b`šXnoXH^ `bhk—XXHqbp‘|D|op•4X ll av M’k‘XHai DXpLXj|D|Dk eJXjl$Vnnbk'no|}l`¶dceSe |nbv v˜gpXHeJ^ pr~ba Xamh~š˜gleJX^k ›Da ³ `bnoa v ` p•nh| eSv YzXHM ^ ~bYaclJhjX!p‘lp‘dmkµeblhh“”eJaceJX Yz`}dmhY;lŸkracXš|eJvn}` eJ`b]?|DX'eJ|op‘( laik‘/ aik‘eSai`X ; B00 C9?=< ^ @ I #C1]?="=>? ]?!D>( / . n€‚?ƒ„B %†. # * % 7G#H!>' % ^ # 7' % <G#>; B01 / K7=@?'6; B0DC9?@< ^ @_N.

(42) „. ¥.  N  . Š ‹jŠb ±”Š Š‚‹

(43) o H­Tp ŠS‹ v v B001 /  Xk

(44) |DeJn v Xj^ fJlgdiyackbX*X^ pbdmX^l;kre1~o02meJ~bnoXšsb~šdcXX/^ ›Dac`o`}achp•dmp‘nolJpr`SaceJk` d.- XHI `op‘XjY sodiX*~oXjp

(45) |ol k‘aiXHp

(46) ~bX6M l,|DeJn k—q‚|DXdcX!k—qb|}X n +. . .

(47) . #C1]?="=>? 8D>( / G# 3; B001 /  % <G#>; B01 /  71@?' % Z #>; B01 ;;T]?!D>( /  ^ =< @@2 ;TT?!D>( /  ^. 71@2 ; B01 /   =7 @)2B0( # * / K7=@?' ; ^ #+7=@ @  ;;T]?!D>( /   ^ Z @)2 ;T]?D>( /  ^ <1@@_N Z @. 0, / 8D>( / D89="FG# ;J89E]F /0: ?1M80D>( / 1@_N. 'k!eJ`7|}XHnbkldce v p!~šX^ ›D`ba v d.- Xj`op‘XjYsbdiX,~bXHp|ol v k‘aiXHp!~bX }| l v I M. #C1]?="=>? ( / D(2G#&!". # *); Z 9E : 0DM8D>( / D89="F=@_N. ( /  2> ha>E—~bXHp‘p•nop’eJ`¶`oX~beS`o`bX l V ¥

(48) ¦j§Ÿt‚n9- n}`¶p‘Xjnbd~bXHp’k v eJacpl v fJnzE / g l o `  p m d Ÿ l š ~  X ^ D › b ` c a r k c a J e ¶ ` b ~ X v V Yk—;qbXH|D`JX k•p,;3B0`š0XH^ hXj1p•p•l/ a XH p l77=@ dmlŸX“”kzeS`odcl hk‘v aieSXdm` lk‘Z aieS9E` :  8 ( / ! "Džp‘eJM'`S`8kzXacYz/·X|bkjdc µamhdcacXjkrp,XjY;~bXHXHn‚`J¡8k¤lheJv fJ`Sn}krXHY`SXHn `Sk‘~op,lJ`oYzp;lg`odiXt‚nok—qblJ|}`SXk ;~bdiXX 8 ( /  89E]FO[ XjkpreS`Jk!lJnbkreSY;lgkramt‚nbXjY;Xj`Sk!p‘q‚`Sk U X^ k‘acpoXH^ p'|ol v ¥

(49) ¦j§ž { XHYzl v tSnoeJ`op!t‚nbX,dml;“”eJ`ohkraceJ` 2"9,'(  :  `beSnop!|DX v YXjk*~bX,˜Jega v n}`£^ X^ dXj^ Y;XH`Jkv ~9- no`bX|ol v k‘aiX h;3eJ2"Yz9,0Y;X,'(no `‰ X^ : dXj ^ Y;^ XH@_`Jk #+7$~bN X/d.- XHl`od prU XHXjY n sbv XHdcXnoprlgXHn7Y;~bXjXH`Sp‘k p•¥nop9¦H§I}p‘`ba X

(50) <G|D#>X ;3v ( Y;/ Xkµ |o2lJpL~bX

(51) 7=~š@ Xj^ hXjdmkl v prX a v h#X< krk‘Xlg“”dieeJ`}p hkraceJ`/heJYzY;X he‚X v haceJ` ; XdcdiXp‘X v lack!|ol v lgY–Xj^ k v X^ X’|ol v dcX,prXjkr1e 02c~b<X M* DhX,t‚nbaµ9` - Xjp‘k|olgp!lJhhXj|bkbX^ |}l v ¥

(52) ¦j§ D•ž  ` h U eJacp‘aik9~ - lœ@h U X v p‘eJnop P¥ ‘¥¦H§  |DeJn v diX k‘X v YX ;T]? ( /  ^ <=@   ; "DŸ|DeJn v ;3( /  27=@  bXk~bXhjlgh U X v dml“”eJ`ohkraceJ` 2"9,'(  :  |DeJn v |odcnop*~bX/diampramsbacdiackbXg^ ž –;6 . V. .

(53) 6dgf. . ycyOqgygOj%l!lni!kNlrmpo<qglrksy `lvi?tzk&ym m]l t>bdcl. v n}`XH`op‘v XjY sodiX6M²Xjp‘k

(54) no`bv X|}v l v kracX~bX!d- Xj`}prXHY sbdcX!v ~bXjp

(55) |}l v kracXjp~bX6M’ gheS`Jk‘Xj`olJ`Svk  b `  X r k S e } | J e i d J e g f c a š X • p n M Xkzd.- XH`oprXHY sbdcXŸ˜‚am~bXg Xjk˜'X ^ ai›DlJ`Jk~bXjn‚¡–| eS| aXj^ kbXH^ p@I

(56) p‘k‘lJsbaidcackbX7 amp‘`Sk‘lJkrX sbv acp‘diacXjkbhX7^ krac|oeJ`l v ›Dno`o`oaiXJaieSž `– `¶t‚nbhXeSdmhYzeSY`ot‚XHnb`oX hXz; dm~bl8eS`o| hv eJ|}| l v vaX^ kb~šX ^X^ ›D9`b?Ea >v >h? X;]?t‚n9- Xj>p‘k,( ^|}heS|oaGEn l ~bv XHnop‘nop‘`_`beJacn}XHeJp`o` DprXHtSXY k¤noXsb|odmdchlXzeJv `}~bamtSX¤`Snokr|oXgX l v  vp‘XkrXjk¤achXjk‘p’|oaieSl dc`l ›5`baiX ; ]? T? ( D‘ž . sutvsxw.

(57) ¦. Q¦. $¥

(58) ¦j§.  

(59)             ! " # %$ & ' (  . L. Let E be a set. Definition. union_part:℘(℘(E)) ⇒ ℘(℘(E)) 1: Intros P. 1: Apply (!Build_Predicate ? x:E , ∃ A:℘(E) , (A ∈ P) ∧ (x ∈ A)). Definition (union_in_top). given top of type ℘(℘(E)) , we define the proposition union_in_top(top) by ∀ open_family:℘(℘(E)) , open_family ⊂ top ⇒ union_part(open_family) ∈ top Definition (inter_in_top). given top of type ℘(℘(E)) , we define the proposition inter_in_top(top) by ∀ open1,open2:℘(E) , open1 ∈ top ⇒ open2 ∈ top ⇒ open1 ∩ open2 ∈ top. `bX,kreS|}eJdieJfgacXp•n v Xjp‘kldce v p&I . Definition. a Topology is a structure with the following components: top: of type Predicate(℘(E)) (coercion) union_in_top_prf: a proof of union_in_top(top) inter_in_top_prf: a proof of inter_in_top(top) total_prf: a proof of full(E) ∈ top empty_prf: a proof of ∅ ∈ top. Xjkno`7Xjp•|olghX’k‘eJ|DegdcegfJact‚nbX/Xjp‘k!no`7Xj`op‘XjYsbdcX~beJ`o`šX^ l™˜JXjhno`bX,k‘eJ|DegdcegfgacXI Definition. a topological space is a structure with the following components: et_setoid: a set (coercion) open: of type Topology(et_setoid). v v v  20! #H |Dp‘X egv dcleg fJno`,ac`t‚~šnbX^XjX^ dhXH^ lgdmYl die XHXFv `Spnok

(60) n}`b~o`¤X©nŸhkrp‘eSX XvX k‘Y;e8h0X2mai~beS^ X*`*# p‘XHeJ`Snok ; p%lJXEcwrnbdilgkrX

(61) heSk—XHYzqb`S|Dk

(62) lXkrXamkt‚nbnoXj`@Y;XjkWk‘XHX di`JX

(63) v Y;k'k—qbhXe‚|D XX v #>h·;<X ^(˜JXv ? p ž^ ³ @#am; `o.0nopr/` aSprX!^ad>Xj^ Y; Xj`S;Jk©XH~opr kµX’2n}dml`/k‘XjeJp•|o|DlgeghdcegX fg@k‘ace@ XgED   ~oeJ`oh/no`7eJno˜gX v k oheJYzY;X/Xj`7dclJ`bfJlgfgXY;lgk U Xj^ Yzlk‘act‚nbX,heSn v lg`Skž

(64) 6d c. v}. vwl i@lri &l j it<vwl i!jglA`fi !oyiR}. v Y–XH^ u p ·vlg~ U X ^ v Xj`ohXjpj oam`Jkbv X ^ v acXjn v pv 5s}e v ~}U p ·v lam`op‘a t‚nbX;kreSnbk*v dcXjpdcXjYzY;Xjplgp•prebhaXH^ p y  j X / p b ` g e ‘ k i a S e o `  p b ~  X ” “ X v v pB- X¡o| acY;Xj`Skšhdmla XHYXH`Skž l X¡bXjYz|bdcXg b|DeJn ~šX^ ›D`ba d.- lg~ X ^ Xj`ohX*~9- no`bX/|ol kracX ³ ~bX<M* ‚eJ`$heSY'E n€‚?ƒ„B %†.

(65) ¥.  N  . Yd.;- acXH`S`okrX hvX p‘|oXjhl krv aceJh`7eS`o~bp‘X,k v hnbXHa pv X©“”X d.-v XjY `op‘Xj^ Xjp&YI sbdiX.  : (2 >?0 / T?E]?. ~bXHpµ“”X v Y–XH^ pheJ`SkrXH`olg`Sk ³  |onbamp eJ`| v XH`o~op. Let E be a topological space. Let A be of type ℘(E). Definition. closed_containing:℘(℘(E)) 1: Apply (!Build_Predicate ? F:℘(E) , A ⊂ F ∧ F is closed). Definition. let adh be intersection_part(closed_containing) (its type is ℘(E)).. h- XH`$prk Y;dceJX`S|bk dmv noXplg|Ddie Xv krp©ack diXH“”pX v diY XHYzX,^ Yt‚nbXHaµp hheSdmlg`Sp•krpracamXjt‚`onb`bXjX pš³ lamž `op‘a·t‚nbXdml| v eJ| v aX^ kbX*^ hjl v lghkbX ^ v amprk‘act‚nbX~bX/d.- lJ~ U X ^ v XH`ohXWI. Lemma (included_adh). A ⊂ adh. Lemma (adh_closed). ∀ A:℘(E) , adh(A) is closed. Lemma (closed_containing_adh). ∀ F,G:℘(E) , F is closed ⇒ G ⊂ F ⇒ adh(G) ⊂ F.. v v v v v v am`ohdcOynop!- am`S~}kblgX ^ `oacp Xjn³ ž ~9- no`bX|ol kracX ³ p- X¡o| acY;X~bX/“Qlh eS`$p‘acY;acdclga XPI}h- XHprk!d.- n}`baieS`~bX,kreSnop!dcXjp eJno˜gX k‘p. Definition. open_included:℘(℘(E)) 1: Apply (!Build_Predicate ℘(E) U:℘(E) , U ⊂ A ∧ U is open). Definition. let int be union_part(open_included) (its type is ℘(E)).. 'k oheJYzY;X|}eSn v d- lg~ U X ^ v Xj`}hXWI M. sutvsxw.

(66) ¦. Q¦. $¥

(67) ¦j§.  

(68)             ! " # %$ & ' (  . 5. Lemma (int_included). ∀ A,B:℘(E) , A ⊂ B ⇒ int(A) ⊂ int(B). Lemma (int_open). ∀ A:℘(E) , int(A) is open. Lemma (eq_set_int). ∀ A:℘(E) , A is open ⇒ A = int(A). Lemma (open_included_int). ∀ A,B:℘(E) , B is open ⇒ B ⊂ A ⇒ B ⊂ int(A)..  `|DXjnbklgdie v p ~šX^ ›D`ba v diX,sDe v ~~9- n}`bX|ol v kracX/Xk dml¤| v eS| v aXj^ kbX’^ ~bX~bXj`}prackbXP^ I. Definition. let border be the function defined by , for all A:Predicate(E) , adh(A) ∩ ¬int(A) (its type is ℘(E) ⇒ ℘(E)). Definition. let is_dense be the function defined by , for all A,B:℘(E) , B ⊂ adh(A) (its type is ℘(E) ⇒ ℘(E) ⇒ Prop).. XjkYeS`Sk v X v dcXjp dcXjYzY;Xjp!fXj^ `šX ^ v lgn‚¡¤heS`ohX v `olJ`SkšhXjp!`beJkraceJ`opjž.

(69) 6d

(70). 4` t0j q%k cyO`fi &yi!kt0i`fj3i?l `_i l tzycyq%ygOjgl. v nback|}l vv “”egampdcXjpXjp•|olghXjpkreJ|Dv egdcegfJact‚nbXHp t‚nbX$d- eJ` hv eJ`op‘am~ XV v X@XH` p‘|šXj^ ha¨›DlJ`Sk `bv eJ`–|olgpv `  h J e } ` r p k  d.n}- Xj`b`oX;p‘s}XjYlgp‘sbXdiX;~9-~beJXjnbp’˜JXeJvnok˜gž X  k‘`_p*Y;~šXH^ lgh acv paikhXj~odclgno`}a p’~bhXHXpkr“”k‘X X;Y–p‘XjXHh^ pkr DaceJeJ`¶ndiXHXH`_p*dchaceSs `ov lgp‘aacv~šaiX XH^ p’lgt‚`Snbk!aFdclŸ`beSkrnoeS|}p/eJ|}diXeJvfgY;acXXXjk‘kr`bXHfJ`JXjk/`o~~bX;Xj^ krXXj|odidclXjp heJ`op‘k v nohkraceJ`opjž   ¬ o ¬ ± ¬ !p Š ;Š ˆ + p Š o ± Š+‹jŠb ±”Š Š‚‹

(71) Š  Š‚ˆ ‹ v“”X Y– XHWa ^v pFM 9~ -Xjn}p‘`bk’X nokr`8eJV |DpbegX^ krdceg1e fJ02m~baiX Xp•Xn 5k v -‰M* ™noac`¶db“QXjlg`onbp‘kvXjt‚Y9n sb- aididbX;v ˜'~bX ^ Xzv ai›}|oXšl v diXHkracpXjt‚pno~blX k v M XHp h| lJv `oeS~b| amv~oalXj^ kkbXH^ l@Vpµp•“”nbe aiv ˜Y;lJX`Jv k‘Xj.d 9p - XHI`odcXp‘Xj˜‚Y ac~bsoX diX;Xjk~bXj p XHlJ`$|o|o|}l l v k‘lgaiXHY `oXV`bk Xjv `SXk dclXjp!z|  Hv prXjk•nblg˜JsbXjacdcp aikb0 X©^ ~bX (-'O|ol [ 0 am`Jk‘CX 9 :pr:XHh[ k‘ai0eS`(t‚0nbXj(dc=heJ[ `oXjt‚k nbX©0 X(kµno`o(aieS`/~b›DX`bhacXgXjžp! | `,v eJpr|DX©eJ~op‘eJaik‘`oaieS`b`oX'9p ~bI eJ`oh . n€‚?ƒ„B %†.

(72) . . .

(73) ƒH†. ¥.  N  . Definition (infinite_inter_closed). given close of type ℘(℘(E)) , we define the proposition infinite_inter_closed(close) by ∀ closed_family:℘(℘(E)) , closed_family ⊂ close ⇒ intersection_part(closed_family) ∈ close Definition (finite_union_closed). given close of type ℘(℘(E)) , we define the proposition finite_union_closed(close) by ∀ closed1,closed2:℘(E) , closed1 ∈ close ⇒ closed2 ∈ close ⇒ (closed1 ∪ closed2) ∈ close Let F_empty be of type ∅ ∈ F. Let F_full be of type full(E) ∈ F. Let F_prop1 be of type infinite_inter_closed(F). Let F_prop2 be of type finite_union_closed(F).. e~ogX/achk Xj>p|}(l v: krac=Xjp9I?0 / ' dclš“”eS`ohk‘aieS`,tSnoa l!V no`/Xj`}prXHY sbdcX

(74) ~bX

(75) |ol v k‘aiXHpLlgp•prebhaiXFd.- XH`oprXHY sbdcX

(76) ~bXHpµheSYz|bdXj^ Y;Xj`Sk‘lga v Xjp . Definition. complementary:℘(℘(E)) ⇒ ℘(℘(E)) 1: Intros F. 1: Apply (!Build_Predicate ? C:℘(E) , ¬C ∈ F)..  `7|DXjnbk*lgdie v p ~šXj^ Y;eJ`Sk v X v dcXjp!t‚nolk v XHp diXHYzYXHpp•nbai˜lJ`Jk9I. Lemma (topology_by_closed_1). union_in_top(complementary(F)). Lemma (topology_by_closed_2). inter_in_top(complementary(F)). Lemma (topology_by_closed_3). full(E) ∈ complementary(F). Lemma (topology_by_closed_4). ∅ ∈ complementary(F).. t‚nba·“”eS`Sk~bX. ;V>( : =?0 / ' 0 @. no`bX,kreS|}eJdieJfgacX,p‘n v M_I. Definition. let Build_topology_by_closed be (!Build_Topology E complementary(F) topology_by_closed_1 topology_by_closed_2 topology_by_closed_3 topology_by_closed_4).. sutvsxw.

(77) ¦. Q¦. $¥

(78) ¦j§. ƒJƒ.  

(79)             ! " # %$ & ' (  . ¬ o ¬ ± ¬ !p ŠŠ+  Š+ FŠ‚ˆ Šqo Œ +µŠ ‹HŠ i¬ Œ 5Š H­ ‹ v v S v ~op‘k‘X7lJsbd.V/-acXjdilgac`okb`op‘X,^ p/XjY|o`bl eJsbv!kdiX_v XlJ~o|o~bXj|DXjp¤e˜gv|oXjkšdil eSlJv |ok‘n‚|}ai¡$XHXHp;Y;am`S~oXjkrXj`SX vkM*p‘ ·Xj 

(80) noh`bhk‘aieSX;eS`S`osokrp'lgXj`}p‘›DXlg`b`Sac~9Xjk"- pjeJMž5no´_˜gXjX - Xjkzp‘k‘kFdp - Xjwr`onop‘prXjXjk‘p‘XjYkY; ·sbXjhdcX7`SeSk!Y;˜‚XHamY;~b`7XgXzh 'eJnoY;`o`bp‘Xlgamac~'p¤krXeJ^ v`o|DlgX7eg`Sdckšeg˜'fJX d^ -aiv XjXJai`}›D 5prlJn}XH`J`bY kzXsbt‚|odcnbX,l X~bk‘XjdcailXp |}~oail k‘v

(81) X krac-XjXHp `bfgXj`oXH`ofgXj~ `}v X~ ^ X/v X^|oXjl p ev |oS l v-cž no`baceJ`t‚nbXdmheS`ot‚nbX,9~ -xX^ dXj^ Y;XH`Jk•p ~bX S t‚nbX,.d - eS`$˜lzeSsbkrXH`ba v n}`bX,kreS|}eJdieJfgacX . . .

(82) . 

(83). . . Definition. a open_base is a structure with the following components: open_base_setoid: of type Predicate(℘(E)) (coercion) base_inter_in_top_prf: a proof of inter_in_top(open_base_setoid) base_total_prf: a proof of full(E) ∈ open_base_setoid base_empty_prf: a proof of ∅ ∈ open_base_setoid. 'k eJ`~šX^ ›D`back9I M. Let B be of type open_base. Definition. generated_part_by_union:℘(℘(E)) 1: Apply (!Build_Predicate ? x:℘(E) , ∃ Y:℘(℘(E)) , Y ⊂ B ∧ (x = union_part(Y))).. . dL`oX v XHprk‘X/|odcnop*tSnH- lzV ~šXH^ Y;eJ`Sk v X v t‚nbX. >?. / 0 ( /  ' 9?E>?. Lemma (full_in_top_for_bases). full(E) ∈ generated_part_by_union. Lemma (empty_set_in_top_for_bases). ∅ ∈ generated_part_by_union. Lemma (union_in_top_for_bases). union_in_top(generated_part_by_union). Lemma (inter_in_top_for_bases). inter_in_top(generated_part_by_union).. |DeJn v |}eSnb˜geJa v ~šX^ ›D`ba v dcl;k‘eJ|DegdcegfgacX/Xj`bfJXj`o~ v Xj^ XnI. n€‚?ƒ„B %†. Xjp‘k!sbaiXH`no`bX,kreS|}eJdieJfgacXWI.

(84) ƒ™Z. ¥.  N  . Definition. let generated_topology_o be (!Build_Topology E generated_part_by_union(B) union_in_top_for_bases inter_in_top_for_bases full_in_top_for_bases emptyset_in_top_for_bases) (its type is Topology(E))..

(85) 6d. . yiOt0j iG`fj t<wl. v v h~oeJX<`SM’kr amž `‚` nbX/fSl Xj`7~bX@no`dml¶|}~šeJXac^ `S›Dk `b@ackracp‘eJaL` t‚nbdcl8Xdm|bt‚dcnbn}Xpp‘fegXjac^ k `šX^ leJdcX;no˜g~oX X$v k!dml¶~bX1heJ- `SkrhameJ`‚`SnbkraiXHkb`oXP^ lgIF`Snok `bX$; R“”eJD‘`o  hkraceJ` ; 4D

(86) XjIp‘ k!no`7eJ-nb˜JXHX prv kk . . . 

(87). . . Definition (cont_in_pt). given f of type (Map E F) and a of type E , we define the proposition (cont_in_pt f a) by ∀ W:open of F , f(a) ∈ W ⇒ f−1(W) is open. '~šXk!^ ›Dno`o`baik‘X,aieSlg`9|oI |odiamhlgkraceJ`$Xjp‘k heJ`Skram`‚nbX,praWXjdidcX/Xjp‘k!heJ`Sk‘ac`‚nbX/Xj`7h U lJhno`7~bXjp!|Degam`Sk‘p!~bX,p‘eJ`7~beJYzlgac`bX,~bX M. Definition (cont). given f of type (Map E F) , we define the proposition cont(f) by ∀ W:open of F , f−1(W) is open Lemma (cont_then_conteverywhere). ∀ f:(Map E F) , f is continuous ↔ ∀ a:E , (cont_in_pt f a)..  `8“Qlgaik soaiXH` >p n  v diX@dcacXj` l™˜gXHh;diXHplgnbk v XHp`beJkraceJ`opj /XH^ tSnoai˜ldcXj`Sk‘Xjpj L~bXŸheS`Skram`SnoaikbX ^ ; ma Y;lgfgX¤am`S˜gX v p‘X H~ - no`$“”X v Y–XJ^  ‚hjl v lghkbX ^ v amp‘lgkraceJ`¤|ol v d- lg~ U X ^ v Xj`}hXD I. Lemma (cont_with_closed). ∀ f:(Map E F) , f is continuous ⇒ ∀ C:closed(F) , f−1(C) is closed. Lemma (im_of_adh). ∀ f:(Map E F) , f is continuous ⇒ ∀ C:℘(E) , f(adh(C)) ⊂ adh(f(C)). Lemma (cont_with_adh_inv). ∀ f:(Map E F) , (∀ C:℘(F) , f−1(adh(C)) = adh(f−1(C))) ⇒ f is continuous.. sutvsxw.

(88) ¦. Q¦ $¥

(89) ¦j§ ƒ8)  ! a  V |DeJn v eJs‚v wxXjkL~bX

(90) ~bvamp‘hjnbv krX v - lgdifXj^ sV v amv t‚nbXjY;Xj`SkB' ´ S e ; Y ; Y

(91) X ‘ p J e / ` b ` S e £ Y .- am`o~bamt‚nbXg dcl fX^ eSY X^ k v acX lgdifXj^ s v amtSnoX l! d v v ~oheJX/Yzt‚|bnbdXHXV prk‘k‘XjaieSpF`ot‚pšnbXfXj^|DeJeJY–p•prXj^ amk sbdcacXgt‚ž nbMšXHp`ž |o dWl vXjk‘p‘ack hjnb~odceJaiX`ov h/di`šXHp

(92) XH^ hlgXH`op‘`op•lXjalgnbX¡·~b X,dcXj~šp

(93) Xj^ac˜g~šXXj^ dclgdceJnb|D¡·X  Xjk

(94) ~bXjhXp v dck•acls am`blgXja pai~bXHp X!~9dcXj- lgn div f |Xjsv eS|Xv lgaXjno^ kbp•XH^prp a ˜JYzeJlJ`Sn‚kb¡WwxeS jdcnbXjX p v v nolg`~bamv heglJdcn‚X©¡/| |}v aml Yv e v vlJ~o|oac|}lge dªž v k l’V`no~š`oXH^ Xšh v |oaikµl v~}k‘lgaiXš`op Y hnbXšdckrh amU |blgdcac|bhjaclk k‘v aiX

(95) ˜JdcX'XjpFt‚nb`bXeJdmkrhaceSeJ`o`ot‚pnb~9Xg- am H~šXXHkF^ lg`bn‚eJ¡,k v| X

(96) v Xj“”e Y;v acYzX v lpdc ™acp•Yzlk‘lai¡beSa>` E ~oXdmlzdce‚hjldcacp•lk‘aieS`Ÿ9~ - lg`}`bXjlJn‚¡ŸXkH~ - lJ`o`bXjlJn‚¡Ÿdcebhlgnb¡·ž  

(97)             ! " # %$ & ' (   . N}. vwl e6`   j } vwl e6` cfi?lnm j%lvi@k  mIej%m 6e `

(98) o. p  

(99) .   / . !dgf. Š ˆ. v XjY;acX v v Xjp‘k!no`$V ac~šXj^ ld·| v eJ| v X˜©X ^ v a¨›DlJ`Sk©dml| v eJ| v aX^ kbX*^ p•nbac˜™lJ`SkrX=I ’ $ ` c a š ~ j X ^  l W d | Œ ‚ Š  Š ‹ v V v ‘p a ŸlJ|o|ol k‘aiXH`Jk l lgdie p eJn ŸlJ|o|ol k‘aiXH`Jk l ž Let R be a commutative ring. Definition. let is_prime be the function defined by , for all I:ideal(R) , ∀ x,y:R , x*y ∈ I ⇒ (x ∈ I) ∨ (y ∈ I). Definition. let propre be the function defined by , for all I:℘(R) , I ≠ full(R). Definition. a prime_ideal is a structure with the following components: prime_ideal_ideal: of type ideal(R) (coercion) prime_ideal_prop: a proof of prime_ideal_ideal is a prime ideal prime_ideal_propre: a proof of prime_ideal_ideal is a proper ideal. Lemma (prime_ideal_propre2). ∀ p:prime_ideal , 1R ∉ p. Lemma (is_prime_reverse). ∀ p:prime_ideal , ∀ x,y:R , y ∉ p ∧ x ∉ p ⇒ x*y ∉ p.. V -. lJnbk v XjpdiXHY;Y;XHp9I. Lemma (inter_included_prime). ∀ p:prime ideal of R , ∀ I,J:ideal(R) , (I ∩ J) ⊂ p ⇒ (I ⊂ p) ∨ (J ⊂ p).. ;. u v v v v v l;T>2k‘krXj(`Snb!k‘acp@aieS=`diXHIJp¤am hdi@XHa5Yzdcl D•Yž | XHv pŸeS|}t‚eSnbpra*ackrhjaceJl `lghkbX ^>2 amprXH/ `Sk(1dcXjp¤=-am~šXH^lgn‚ ¡ /0: | hXHe Y;v‘vaiXXjp•pz|DeJXH`o` ~¤krp‘X acYzY;|bXjdcp@XjY;~HXH- lJ`J`ok `bl,V XjlJdml n‚¡ | v t‚eJnb|DeJeJkrp‘acaiXjk‘ai`SeSk‘` p. n€‚?ƒ„B %†.

(100) ƒj. ¥.  N  . Definition. let idomain_proposition be the function defined by , for all R:CRING , ∀ x,y:R , x ≠ 0R ⇒ y ≠ 0R ⇒ x*y ≠ 0R. Lemma (prime_integral). I is a prime ideal ⇒ R/I is an integral domain. Lemma (integral_prime). R/I is an integral domain ⇒ I is a prime ideal.. Š ˆ

(101) Œ 

(102) . .  ’`²am~šXH^ ldYzl¡bacYzlgd

(103) Xjp‘kno`ac~šXj^ lgd

(104) | v eS| v XXjkY;l¡bacYzld'|}eSn v dcl v X dmlk‘aieS` Œ v ~H- am`ohdmnop‘aieS`ŸXH`Sk Xam~šXH^ lgn‚¡<I p.

(105). Definition. let is_maximal be the function defined by , for all I:ideal(R) , ∀ J:ideal(R) , I ⊂ J ⇒ I=J ∨ (J = full(R)). Definition. a maximal_ideal is a structure with the following components: maximal_ideal_ideal: of type ideal(R) (coercion) maximal_ideal_prop: of type maximal_ideal_ideal is a maximal ideal maximal_ideal_propre: of type maximal_ideal_ideal is a proper ideal. v|}l  `bXX¤klgn}nb`‰k v X^XdXj^ “QY;l h XjeJ`S`¶k t‚H~ nb- XX¡bdmh| eSv `oamY;t‚nbX vX1t‚ _9n ~b- n}X`¶ am~š`9XH^ - llgd |o|} l Xjv p‘krk/Xj`}Yzlg`Sl¡‚kšam|}Yzlglp dFlV Xjp‘ k,Xj~bp‘Xzk!d.~b- lJa v `oX¤`bt‚XjlJnbnXd. - ac~škrXjeJ^ lnodFk!XHXj`b`SfgkrXHacX`ov ~ I v X ^ Lemma (maximal_prop1). I is a maximal ideal ⇒ ∀ x:R , x ∉ I ⇒ full(R) = I+<{x}>. Lemma (maximal_prop1_rev). (∀ x:R , x ∉ I ⇒ full(R) = I+<{x}>) ⇒ I is a maximal ideal.. v am`S˜gX  v p‘`@acso~šdiXWX^ ›DI `oaik

(106) XH`op•nbaik‘X*dml| eJ|DeJp‘aik‘aieS`. £XHprkšno`¤he v |}p©p‘a}kreSnbk¤X^ dXj^ Y;Xj`Sk

(107) `beS`¤`‚nbdDXHprk. C!> :  (00( I. Definition. invertible:Predicate(R) 1: Apply (!Build_Predicate ? x:R , ∃ z:R , (x*z = 1R) ∧ (z*x = 1R)). Definition. let field_prop be the function defined by , for all R:ring , ∀ x:R , x ≠ 0R ⇒ x ∈ invertible(R).. sutvsxw.

(108) ¦. Q¦. $¥

(109) ¦j§. ƒ.  

(110)             ! " # %$ & ' (  . V d.- lgacv~bX’~bXjp©diXHY;Y;XHp'| v XH^ h·XH^ ~bXj`Sk‘p eS`¤|}XHnbk'~šXj^ Y;eJ`Sk v X v dmlhjl v lghkbX ^ v amp‘lgkraceJ` ~oXjp

(111) am~šXH^ lgn‚¡zYzl¡ba>E ' k , l YzlJn‚¡ŸXj`7k‘X YXHp!~9- lg`o`bXHlgn‚¡7tSnoegkracXj`Sk•p9I M. Lemma (maximal_field_prop). I is a maximal ideal ⇒ R/I is a field.. !d c. csvwl ietjgyi_k k`i qglrk4j%} Awl e_`. v v v v  ~oXjp ´'am~'eSXj^`olJprn‚am~š¡ŸX ^ ~beSX`o pFno; `¤d-rXj^lgfJ`}l`bdcacXjkblJX^ n;q@heJXjp‘Yzk7Y Xj^ ˜Snoamk‘~blXHk‘Y;a¨“vY; ;XH `JeSk!`;hhXeJdcdiYzX,Y;~bXHXjp`oh|oXl v |okrl acXjp h~beJX`}pr 4k D@nbI a XšdcX*pbX^ k‘e802m~bX.  0. /:. Let R be a commutative ring. Definition. Set_Ideal:set 1: Apply (!Build_Setoid ideal(R) !Equal(℘(R))).  p

(112). ¬  ² Š Š ˆ Œ.  eJaik 0 /0: C / r : ' no`oX/“QlgY;aidcdcX~9- am~šXH^ lgn‚¡Ÿ~oeJ`Sk!eJ`$˜gXHnbk~šX^ ›D`ba v dmlzpreSYzYXI v  /0: C / r : ' hheJeJ`S`Skrkry acaclXjXj`}`}p‘`b`beJXjXjYz`S`Sk!k Y;krkrXeSeSnono~bppjXjž dip_XH p ac`~šac~šXj^hXjlg^eSlJnb`on‚¡£p‘¡Ÿk v ~b~bnbX Xaik~o0eJ `o/0h: H~ C - lJ/ rs}e v: ~7'  S.d Xj-|oXHp‘no`ok7acprp!d.XH- Y eSac`S`ŸsbkrXdcXHX `p‘Xj| 0hvkr XHac/eJ`o:` ~op ~b.d X - ?am`S krkreS/ X no]?v Epp‘XjT?hdcXjkrpaceJ`Wam~b~'žXHXj^ p!, lJacn‚eJ~škr¡ XjeS^ lJ`ot‚n‚p!nb¡7a,t‚t‚n9dcXjnb- lVp a v v ]?02=? ( /  d.h|}- X@acl `Sv `bkrkrX acac˜gXjv p!p‘XjXjlJ~bhnXkraceJeJ ;`` ž `b~bXŸX|D|oXjl nov krk acXj|opzlgp ~bqX nbkr acdiamI

(113) p‘X n}`bdmXl7“Q“”lgeJY;`}hacdikrdcacXeJ` 9~ - am~šXH^ lgn‚¡ 9` - Xjp‘k¤|olgpz˜bn ht‚eJnbYza'Y;heJX`op‘nok ` nbXjack `op‘wrXjnoYprk‘sbXjY;diXXj~b`SXk. Let ideal_family be of type ℘(Set_Ideal).. Definition. ideals_containing:℘(Set_Ideal) 1: Apply (!Build_Predicate Set_Ideal a:ideal(R) , ∀ i:ideal_family , i ⊂ a). Definition. sum_ideals:ideal(R) 1: Vinyl2 x:R , ∀ a:ideals_containing , x ∈ a.. v XXj`}p‘nbackrX©diXHpL~bXjnb¡| v eJ| v aX^ kbXj^ p5hl v lJhkbX ^ v acp‘kramt‚nbXjp·~bXdml!preSYzYX

(114) ~H- am~šXH^ lgn‚¡Wž yl!| v XHYa XV v XWI / ` ; Y J e S ` k  k‘eJnop dcXjp am~šXH^ lgn‚¡7~beJ`Sk eJ`7l;“Qlack!dclzp‘eJYzY;X,preS`Jk am`ohdmnop~}lg`op dmlzpreSY;Y;XPI. Lemma (sum_ideals_prop1). ∀ a:ideal_family , a ⊂ sum_ideals.. n€‚?ƒ„B %†.

(115) ƒH„. ¥.  N  . ~oeJ`Sy k l$eJ`7p‘Xjl;heJ“Q`olac~bk!PX dcI·lzdmlŸp‘eJp‘YzeJY;YzXgY;ž X;~oXjp’ac~šXj^ lgnb¡XHprk/sbacXj`¶diXz|bdmnop/|}Xjkrack’am~šXH^ ldFheJ`Sk‘Xj`olJ`Jk’kreSnopdiXHp*am~šXH^ lgn‚¡ Lemma (sum_ideals_prop2). ∀ I:ideal(R) , (∀ J:ideal_family , J ⊂ I) ⇒ sum_ideals ⊂ I.. eP}fj =e6`. !d

(116).  ˆ ± Š ˆ

(117) b­]p”¬ +

(118)  ±

(119) oFŒ p ‹j‹

(120) +¯gŠ 

(121) +‹@Œ +

(122) + +Š

(123) Œ V md l|onbamp•p‘lJ`ohX ; Se `|DeJp‘X@heSYzYX 1T? (  ha>E—~bXH‘p p‘eJnop¶Xj^ d XV ˜gX;d.-xXj^ dXj^ Y;Xj`Sk1! l y 7 l ” “ J e o `  h r k c a J e ` U hdclJp‘p‘amtSnoXjY;Xj`Sk Xj`7Yzlk Xj^ Yzlk‘act‚nbX1!   ƒ =DRI . Let R be a ring. Let r be of type R. Definition: Let ring_power be the recursive function, with value into R, mapping n:nat to: Cases of n : O=>1R (S n’)=>ring_power(n’)*r. :. nbXjdct‚nbXHp diXHYzYXHpHI. Lemma (ring_power_comp). ∀ R:ring , ∀ n1,n2:nat , ∀ x,y:R , x = y ⇒ <nat> n1 = n2 ⇒ x ^ n1 = y ^ n2.. Lemma (ring_one_power). ∀ R:ring , ∀ n:nat , 1R ^ n = 1R. Lemma (ring_zero_power). ∀ R:ring , ∀ n:nat , n >=1 ⇒ 0R ^ n = 0R.. u eSn v no`lg`o`oXjlgn7heSYzY nbk•lkrai“eS`l;~oX|bdcn}pHI. sutvsxw.

(124) ¦. Q¦. $¥

(125) ¦j§.  

(126)             ! " # %$ & ' (  . ƒL. Lemma (cring_power_morphism). ∀ R:cring , ∀ n:nat , ∀ x,y:R , x*y ^ n = x ^ n*y ^ n.. š`‚›D`7no`7ac~šXj^ lgd¤| v XHYacX v ˜'X ^ v ai›}XWI M. Lemma (prime_power). ∀ R:cring , ∀ x:R , ∀ p:prime ideal of R , ∀ n:nat , x ^ n ∈ p ⇒ x ∈ p.. H­Tp Š‚‹Ÿ8Œµ± ­Tp o ± p ¯ b­Tp 5Š‚‹ v v v dmlzY nb`bdckrX am|b|odcl achjlk‘aik‘X,aieSY ` noI dik‘ac|bdcamhlk‘ai˜JX~9- no`lg`o`oXjlgn  XHprkn}`bX |ol k‘aiX,heS`SkrXj`}lg`Sk d- no`backbX,^ Xjkprk•lgsbdcX|DeJn .

(127) .

(128). . Let R be a ring. Definition. a multiplicative_part is a structure with the following components: multi_part: of type Predicate(R) (coercion) multi_part_one: of type 1R ∈ multi_part multi_part_prop: of type ∀ x,y:R , x ∈ multi_part ⇒ y ∈ multi_part ⇒ x*y ∈ multi_part. v v v v v Xjp•|D Xja h% k‘ai˜JXjXjY;p‘k’Xj`Sn}k `bX dcX/k‘| XvdcdiebX;~o|onbl ackkr~bacXXY~bXHnbn‚di¡¢k‘ac|oXj^ didamXj^hY;lgkrXjac`S˜gk‘Xgp  5~beJX`7 “”eSn Xk!`baid.k’- n}di`bXHpaikbX,“”^ eSh`oeShY;k‘aieSY;`oX/pkrtSX nov Y;a |DXX ~bY;X,Xk—qbkrk‘|DXjX `Sk’ ~ož X ˜geJa Let M be of type multiplicative_part. Definition. let build_elt_mp_prod be the function defined by , for all m1,m2:M , (m1*m2[in M]). Definition. let multi_part_unit be Build_subtype(multi_part_one(M)).. v nback 9 : = ' š k S e Ÿ `  h J e o ` ‘ p k t‚nbXzƒ ž M. ( /  r]?. dml|}l v kracX/Ynbdckram|bdiamhlgkrac˜gX/Y;ac`bamYzldcX=IohXjdidcX,t‚nbaW`bX,heJ`Sk‘aiXH`Jk. Definition. multi_part_min:multiplicative_part 1: Apply !Build_multiplicative_part({1R}). 1: Abstract ( Auto with algebra ).. ‡ p¯ ±  `@|DXjnokšYzlam`SkrXH`olg`Sk'~šX^ ›D`oa v dcX v lJ~bachjld}~H- no`Ÿac~šXj^ lgd v Xdmlkrac˜gXHY;Xj`Sk lV no`oX|ol v k‘aiX’Y nbdckram|bdcachjlkrac˜gX  t‚nbXdmheS`ot‚nbXPI

(129) .

(130). n€‚?ƒ„B %†.

(131) ƒ. ¥.  N  . Definition. radical:℘(R) 1: Apply (!Build_Predicate ? x:R , ∃ m:M , ∃ n:nat , m*x ^ n ∈ I)..  `|DXjnbk~šXj^ Y;eJ`Sk v X v dcXjp dcXjYzY;Xjpp•nbac˜lg`Sk‘p9I. Lemma (included_radical). I ⊂ radical. 1: Red. Lemma (radical_increasing). I ⊂ J ⇒ (radical I M) ⊂ (radical J M).. 'kpra { Xjp‘kheSYzY nbk•lkrai“zI M. Lemma (radical_multiplicative). ∀ R:cring , ∀ M:multiplicative part of R , ∀ I:ideal(R) , ∀ x:(radical I M) , ∀ y:R , x*y ∈ (radical I M).. =@@. u eSn v dcX v lJ~bachjld v Xjdclgkr ai“ lV dml|}l v kracX’Y nodik‘ac|bdcamhlk‘ai˜JXY;am`bamY;lgdiX XjktSnoXd.- eJ``begk‘X preSnopz¥P.°¦H§ oeS`$l¤lJnop•praI. ;< / 1 /0:. . ; 9 : = ( /  A]?. Lemma (radical_propre). √I = full(R) ⇒ I = full(R). Lemma (radical_to_natural_def). ∀ x:R , x ∈ √I ⇒ ∃ n:nat , x ^ n ∈ I. Lemma (natural_def_to_radical). ∀ x:R , (∃ n:nat , x ^ n ∈ I) ⇒ x ∈ √I.. 4y=eWq j%ketjgyi. !d !d. lve6` q%y =e6`. + p Tp + ]o p. vi_i. Š ˆ ”­ ”¬ Š ­ ‹ ŠSˆ ¯ F¯ b]­ p”¬ + d.h- eJU YzlgsbY;ac`k‘X/n}lgdc~b`ol¤X!`b~bXjXHeS`;lg`on$Yz`šdiXjl^ebX k hjU l; XjkrdL^ YzeSXHn™prlwxkk‘eJacnon t‚`v nbp X!lJ˜‚~b`oamX!l`bXjhdmlJl¤eJn$`oYzp‘t‚aclg~šnbh Xa^ v v `be X Xv ž hu eS>eS`Jn k‘aiv XH `SY;D k~9acY;tS- nonHX `v- nohlJ`7Xj`oham`b~šabXjXHeJ^ lJl`;ndL|}Yz ;XHnbl }¡bk©~Ham~š-Y;noX^ `7lg›Ddª`bam D~ša tSv XH^ nolnoX,dL`bYzXd- eJlgl`7`}¡b`baml¤Y;XjlJprlgeSn d nb dc˜gebXHh~b`SlX k d ; JXk©9~ - no`bX| v Xjnb˜JX9~ - n}`bachaikbX*^ ~bXHp

(132) am~šXH^ lgn‚¡zY;l¡bacYzlgnb_ ¡ I‚pr a X

(133) k  p‘eJ`Sk©~oXjn‚¡zac~šXj^ lJn‚¡;Yzl¡bamYzlgn‚¡   . . .

(134).

(135). sutvsxw.

(136) ¦. Q¦. $¥

(137) ¦j§. ƒ5.  

(138)             ! " # %$ & ' (  . ~oX ; }lgdie v p

(139). . ž. Definition. let is_local be the function defined by , for all R:cring , ∀ m1,m2:maximal ideal of R , m1=m2. Definition. a local_ring is a structure with the following components: lr_ring: a commutative ring (coercion) lr_maximal_ideal: a maximal ideal of R lr_prop: of type is_local(lr_ring). v v ; v Sep‘Xj`Yl@´'sbdcXHsDX|}XjXHhp‘eeg`oamv•~o`v lgXH`S~9p‘k

(140) |D-xXj^eJ|bh `odmv no~a v pFv X,XJk• Jlnoh`~Xjdck‘l;~oX lJv `bY;`oX/pX p‘`bnbt‚eJœznbk a,k!XšXH^ h`b~bXjeJXj|D˜g`}XjXjh`odiXeS~o|olJt‚|}`SnbkšXHX Y;|olJXjkrp`SXjdk |}lgeSdc`}ne `bv Xjp˜glJ~begn X a v dcl/d- lgXH~š`oprX^ k`o›DXjdc`beblgachkrn@aclgeJXjd `;}`7 o~btSXXjknopFXjprXHp‘a p‘kr|}ac;VeJlg>2`ŸhXHhpF: eJlgYz`oY;/0`b: XjXdXjn}^=p ` @ D ; v vŸV amlJ`o`oh`bdcnXHlgv X/n²dcdclze‚hj~bleSd `o`š|oXj^ nbX,amp•~btSX/nHd- -acacdš~šYzXj^ lglJdL`oY;t‚lnb¡bX@acYzdml¶l~bdLeS~}`olg`š`oXjp ^ X@dmlz~bXŸ~'X^ d.›5- am`b~šaiXH^k‘laieSd©`$Yz~olXj¡‚pamYzlJ`ol`bdD‘Xjž lJn‚¡Ÿ` dceb~bheglgacknb¡_~oeJI `oh Xj`}`beJ`ohX l . . Definition. a local_ring is a structure with the following components: lr_ring: a commutative ring (coercion) lr_prop: of type is_local(lr_ring). v v v•v v v cdt‚XjnoYzlJMšY;`Skr` Xjai›p hXj^ eSXpk;`Jp‘k | n XHv v eS|o|k‘l eJv noakrXjac^ pXgkbXH µ^dip/XHeJp `~bamXŸ~š`bXHd.X7^ -lgn}n‚|}`b¡eSact‚n YznbX$ll_¡bac~šam|}Y;Xjlg^ lgp lJd©n‚|}Yz¡ l l~bdi¡bXX acYz ~blgžX$d'u ~9d -l ac- no~šv `Xj^ Xlg¡blJd©Xj`oYzYz`blXj|b¡blJdcXgacnYz  didclgebX$dšhklg9~ U d - Xno^ e ` vXjV~blJY;X`o˜ `bX¤v XHeJtSlg`Snon kaŸdcXHXjeb^ `²`bheSl“Q`od l µhackQXŸXjk Xj t‚k dcnbXjv XXp v v “”d.e- Xjv `oYzp‘XjlgYdiampbsbX’^ diX/lam~b`oXHp‘p'aIam`S˜gX p‘acsodiXHp©~9- no`7lg`o`bXHlgn¤dcebhlgd5XHprkšdcXheJYz|bdXj^ Y;Xj`Sk•la X*~oXp‘eJ`Ÿac~šXj^ ld5Yzl¡bacYzlgd5XHprk Lemma (local_ring_invertibles). ∀ R:local_ring , ∀ M:maximal ideal of R , invertible(R) = ¬M.. z ` ‘ p  X b ~ J e o ` o `  X S t } n g l o ` ; ~ Xj Y;X dcl,|DeJp•p‘acsbacdcaikbX!^ ~bXh U egamp‘a v no`;am~šXH^ ldoYzl¡bamY;lgdo~olg`}p

(141) no`zlg`o`oXjlgn;|DeJn v Y  v v v ~šXj^ Y;eJ`Sk X ~bXHp| eJ|DeJp‘aik‘aieS`opj ‚l™˜JXjh’d- l¡baceJY;X,p‘noai˜lg`SkHI. Axiom ex_maximal_ideal: ∀ R:cring , ∀ I:ideal(R) , I is a proper ideal ⇒ ∃ M:maximal ideal of R , I ⊂ M.. lV ˜™lgdiXHn v ~olJ`op B00>( ; ca dµ|}X v Y;Xjk~9-xXj^ `beS`ohX v d.- X¡bacp‘krXH`ohX,~bX,d.- ac~šXj^ ld  o|olJp!~bX/diXheJ`op‘k v nba v XD‘ž . . n€‚?ƒ„B %†.

(142) Zg†. ¥.  N  . _Š ± ¬ ¯ ± p ‹ Š8ˆ Š+ Œ + p Š ˆ ±Go Šb p Š ¯ ¬  ²Š + +µŠ Œ‰± ¬ ¯ ± v v v v eS`$h eJ`$Yz|}Y;XHXjnb`okšhlgX,die|ol p'v ~šhXeJ^ ›D`o`bp‘ka v nbdcX’a v dcX/ebdchX/ldchameJpbXYz^ ~H|b- dnoXj^ `$Y;lgXH`J`ok•`olXja lgv X/n@~bXjX`ŸŸhn}`¤eSac~šYzXj^ Ylgd5X,| |olXjY;v k‘aiacX,X Yzhnbdik‘eJacYz|odiY;amhX’lgkrlgac˜g`}X=`bXjI lJn¤diebhjldI   . n. .

(143). .

(144).

(145).

(146).

(147). Let R be a commutative ring. Let p be a prime ideal of R. Definition. mp_compl_prime:multiplicative part of R 1: Apply (!Build_multiplicative_part R ¬p).. yO- am~šXH^ ldLYzl¡bamY;lgdL~on7diebhjldcacpbX*^ XHprk!XH`$“Qlackšd.- Xj`op‘XjYsbdiX~oXjpš“ v lghk‘aieS`op krXdmp!t‚nbX.

(148). . I. Definition. localize_prime_maximal:maximal ideal of localize(mp_compl_prime) 1: Vinyl x:localize(mp_compl_prime) , x1 ∈ p..  `Y;eJ`Sk v X,ldce v p tSnH- acdWXjp‘k!diXp‘XjnodWac~šXj^ ldWYzl¡bamYzldL~on7dce‚hjldcacpoXW^ I. Lemma (local_prime_proof1). ∀ m1:maximal ideal of localize(mp_compl_prime) , m1=localize_prime_maximal.. hX,tSnoaW“Qlack~on7diebhjldcacpbX’^ n}`7lJ`o`bXHlgn$diebhlgdI. Definition. localize_prime:local_ring 1: Apply !Build_local_ring(localize(mp_compl_prime)).. >&)( 

(149)    ! "$#  . edgf. . ent<vwl gyijgl ePkFkyEj&Hwl le  `!i lrkche &l tzycyq%ygOj $`!l  + p Tp +. Š ˆ ”­ ”¬  eJaik

(150) no`Xjp•|olghX'k‘eJ|Degdcegfgamt‚nbXgž u eJn v ~šX^ ›D`ba v dcl`begk‘aieS` ~bX | v X^ “Qlgacp•hXHlgnp•n v  eS` ~beJaik~9- lgsDe v ~ ~š| XU ^ ›Dacp•`oY;a v Xjdmpl, hlgkb Xj^ fg; e v ac"XD

(151) EUXj`S k Sv XF~b~bXHeSn‚`J¡$keSdcXjnbp

(152) ˜gXeJvs‚k•wxp Xjk‘Xjp

(153) p‘k*p‘eJp‘`Segkack!dcXjdiXpeSp‘acnb`o˜gfgX dcvXk•krpeS`$~bXheJ `S JkrXXHk

(154) `olg~b`SeSk!`Sk

(155) d.- dam`™- Xjwx`}XHprhXHkrY aceJsb`dcXhjlg~b`bXjeSp©`bYamtSe nov X E   p‘a ¤ DpreJaik .d - XH`oprXHY sbdcX,˜‚ac~oXgž    +Š o Š‚ p Š  Š p ;Š‚ˆ Š -De v Y;lgdiamp‘X v .d - XH`oprXHY sbdcX~bXHp!eJs‚wxXjk‘p`oX|}eSprX|olJp~bX| v eJsod XHV Y;Xjpj SacdBp - lfgack!~bX,dmlzkreJ|DegdcegfJaiX/XjdidcX E Y XH Y;Xgž  lamp |DeJn v d - Xj`op‘XjYsbdcX$~bXHpY;e v | U amp•YXHp dcl¶~bacp•hnokraceJ` p•n v .d - ac`ohdcn}praceJ` Xj^ ˜gXH`Jk•nbXdcdcXŸ~b\X  .  . . . . . . . sutvsxw.

(156) ¦. Q¦. $¥

(157) ¦j§. Zoƒ.  

(158)             ! " # %$ & ' (  . ~}~šlgXj^ h`oacpp‘aieS`ŸY p•n X ^ v v acd.kr- Xzam`olhkrdmnok‘Xjp‘`SaieSkr`aceJI`LžWyl| v XjY;a XV v X am~'X^ X;Xjp‘k,~bX¤prX¤~beS`o`bX v Xj`|ol v lgY XjV k v X no`bXz“”eS`ohk‘aieS`8~bX      d.h - U eJeg`¶aiV/¡|DlgD©Xj`ono~opšk/XdcX$~šd- Xjam^ =¥`ohhac ~bdm >noX p‘?v ai eSh`7eJ`o~o;p‘X k ¥

(159) v ~bno¦ Xjhnbkrac¡7˜g Xj@eSY;nb˜gXHQ`JX¦ vk k•Up; hA X- XHk*pr|Dk%@E X BlV v E Y;C~o( aXv k* X~bp•dXlg- X`oh¡bp/eJam`}prnbk‘prk‘Xjk ai`ovdcamnbhprXaX v v X/9~ dc- ~HXzno-`blJkrXacnbX kkrv vXjpXjdidcp*XX’¡oeJ“”hs‚eJdmwxno`oXjphk‘krp!eJaceJn¶XH`Ÿ` dp‘- vlaclgfJ¡bac`bacp‘eJaieJ›}Y;`oX’`}X;t‚lg~}nb`Sn X k |}l v hlJpž  `|DXjnbk~beS`oh,Bp - XH`$p‘X v ˜‚a v |DeJn v ~šX^ ›D`oa v   ; 

(160) D‘ž v v ~k‘oaiegXHacp'Gk ´'H~ X Xj-k nokrv kr`$X!X7~oXjp‘lJ`}|š`oprXj^XHphY a¨dm›Dl,sbhjdc|blX’dck‘n}9`aieS|o- `8Xjl p‘v k lk

(161) |o~b~blgXjXHpšp©n‚~š¡hlgXH^ p~'hamXjh^~op•eJlgl™`osb˜p‘dclgamX~'`SXHk‘X ^ lg`@v Xjfg^ fX'XHXjp^h`šž5eSX yµ^Yzv XŸlgYdª| žXyXHn}XY`¤p‘aclXjX h¡beJaieSXj`oY;p‘~@k X Xjt‚p‘hjnbkšl XŸvt‚9nh.d - Xj-amX`okrdck‘hdiX¤X’dcno“”eJp‘eJsbac`oeJdcac`;hfgkrXXjaceJ`Sv ` k Xj^ v fJX~bnbX@~bdca XH~šXV n‚v Xj^ ¡;XjhY;ac|op‘aiXjl eS`Sv ` kE lvV XH^ prk eJv l™dcno˜solgdiaiXHdcdipX v laml™pb˜gXj^ XHY;h¤Xj~b`SXjk’pl™˜JhjlgXjhp,˜‚¥

(162) am¦H~b§Xj Lp Yz; ~olglJacp/`op,|šXH^dcXŸ`bamsbhlJdiXHp,p e lŸV n²V dcl$acd'dcH` eJ-`bq²fSnblX |oXjlgkpt‚acnb`oX;hdcn}d- preJac`8eJ` `bXz heJ `}pr; am~ XV "v X D1wrlJY;zlgD‘ac  phXHlg` p Yz lgk U XH; ^ Yz l kramt‚DFnbeSXj`pjž ~buegaceJk!n |ov l ~šv X^X›D¡‚`bXHaYzv |bdml²diX,h~beSamY;p‘kram|D`beJfJp‘nbackrX acv eJ`–t‚no~olXk v Y;X,ehlJv |p!U pracXjp•diY;eS`ŸXjp dcXj p!~o>a /*X ;^ v Xj `S"k‘XjDp  |}eS p‘p‘am sbai;dcac kbXH ^  p!9~ D - amF` E hdcn}praceJ`7~bX ~olg`op Xjk  ~olg`op ž    o Š‚ˆ ¯ p F¯ oT­ p”¬ +µ‹ , v ; V v K v U V vv ; p‘|DXeJk‘p•8e p‘02mac~bsbegX¤dck X’~bX~}eSlgpr`J`oeJk,dcpšnodcXjdckrX$paceJ¥=X` ^ d Xj^ GY;~o?nbXH `JX k•p,l zpr³ eS¥

(163) `S`o¦ k,~  diXXH^ p  @| a v Xjp‘Q¦hnb ˜JeUXj!pjA  Wack kr eS@D/nbBkrhXHCeJ(p8`o p‘X^ amfSprlk‘e XdcXjn@V pjl LdiXHht‚pšeSnb| `oX vprXHam~šnbX ˜g^  XHX p'@p‘eJžF`S´'k  Xj~bhXja

(164) pšXj eJ

(165) p‘sbkDwxk‘XeJhk‘eJpšnbYzk heSY;lV YzX“QYlgdiaiXXk dcsoXjaipXH` lJnbl_V k v p‘Xjl¶pjž ~'³ X^ ac›5`o`bp‘aia}k‘t‚aieSnb` dX ‰Yzlp‘kegU ackXj^ YzeJn;lk‘`baceJt‚`;nbX amIµ`oh~odmlJno`op

(166) p~}dclgX$`op| v¢dXjY;ml/acX p‘v |šXjh^ hlga¨p ›DhjhlX$k‘aip‘eSX `v l~bX no` p‘am `bfg; dcXk‘  eJ`WD µh~}e lgv‘v `oXjp p•|Dd -eJlg`onb~ k vv lX d.- Xj`op‘XjYsbdiX/˜‚am~bXgž. Parameter (incl_dec). ∀ U,V:open of X , { U ⊂ V }+{ ¬U ⊂ V }. . . . . . .

(167). . . . . . Let U, V be open of X . Definition. a prf_included is a structure with the following components: prf_included_prf: of type U ⊂ V (coercion). Definition. let eq_triv be the function defined by , for all t1,t2:prf_included , True (its type is prf_included ⇒ prf_included ⇒ Prop). Lemma (eq_triv_equiv). eq_triv is an equivalence.. Definition. let HomTop be the set Build_Setoid(eq_triv_equiv).. n€‚?ƒ„B %†.

(168) ZJZ. ¥.  N  . ´ ' j X r k r k

(169) X ” “ g e m a gE—ha  lgn}hno`/l¡baceJY;X

(170) `9- Xjp‘kL`šXH^ hXjp•p•la v XJ •Xjkµp‘XjnbdmpWdcXjpLhjlgpWp‘aifS`ba¨›5hlk‘a¨“QpµY;lgk U Xj^ Yzlk‘act‚nbXHYXH`Sk  p V h|DXjeJn‚p‘¡8ackraceeJn`@~b X/XH~bprXHk,n‚sb¡ŸacXjY;`8e amv `o| hU dmamnop‘pY;~oXjlJp'`oeJp`Ÿ  ~bµegac~okšeghac˜geJXj`o`Sp‘kk v Xnb k a vv X–X’noXj^ k‘` noXj~b^ daXj^XH^ Y;pž Xju `Sk©l v ~bX X¡b; XHY;!|o%diXJ L( |}eS n v @ ~šX^ l;V›D`b|oa l v v krdmla v h~HeS- Y'no` E Xj^ dXj^ Y;Xj>`SkzpreS~bnoX p ;diXHp !U %q‚>|D( egk UWXHV prXH@ p Xk¤ ~9- no`)XkX^ dXH^ Y XH`S k;~b DX hX,; t‚nbaL%Xjp‘k!( amY;Y–XH^@ ~b amlhk- Xjž p‘k lV ~oa v X7n}`bX_| v Xjnb˜JX7~bX . . . . . . . . !yi tzlA`fi@k &yiOt0ie _e_ijHePiOt?k l9t chi wl Je6j%k&lve6`. ed c. . U eJacp‘a5~oX*“”e v YzldcamprX v dcXjpš| v X^ “Qlamp•hXjlJVn‚¡zXv k'“Qv lamp‘hXjlgnb¡ lV ˜v ldcXjn v v ~olg`}p©dmlhjlkbX^ fJe v aiX*´ {  , \ $ `. l h  ~o| Xjv Xp¶^ “QllJam`op‘h`bXjXHlJlgn‚n‚¡ ¡ lV heSk‘Y;eJnbYk‘X¶nbk‘hlglgkrkbai“QXj^ pfgž e v acX ``bX |ol|}v XHhnbX¶k t‚l n9- |eJ` aie q a;nb|okrlgacdip¶amp‘X¶fXH^ d.`'-xXj^X ^ fJlgldidcacamkbprXX^ ~bXH~opŸlJ`op‘p Xkre1¥02m¦H~b§ Xjpjždml‰ d/`bp‘eJn‚krœ¤aceJkŸ`h~bXX E |Dt‚nbXj`}Xjdi~odcX¤lg`Slgk*nb~bk v X Xzv hXHlgY;kbXj|o^ fgdclJe hv XacX v ~b~oeSlg`J`ok/p*dc`bXjegp/k veSX s‚wx~oXXk•˜gp,Xj|}dieSXH|onb|D˜gXjXHY;`Jk Xj`SXj k!k v dcX;X hY;e‚egX vk*h·hX^ dX˜g^ X ´ v p{ diXH, p/\ prXj|okre1l 02cv ~bhXHXjp/dcnb|}a eSn`bX v eJ`9sb- amk‘Y;Xj`b|Da e v v krdclX `op‘k egv krnoaceJhk‘` n v ~bXjX_p!9~| v- lgX^ `}“Ql`bamXjp‘lJhXjn‚lJ¡Ÿn–am`oh~oe nbv‘v ackrXjXHp•p|D }eJt‚`onb~oaLlJ~o`SkrXXg˜ žFv eSy `Sl kŸXpr^ XH˜‚nbac~odiX XjYzv XjY;p‘k Xjv `Samhk krXaceJk v` X/hlgeS~o`olJh|bX kbv Xj^`opjXž diXHp@p‘|šXj^ ha¨›Dhjlk‘aieS`opz~bXjp `‰| v X^ “Qlgacp•hXHlgn 9~ - lJ`o`bXHlgn‚¡¢heSY;Ynbk‘lgkrai“QpŸp•n v n}`¢Xjp•|olghXkreS|}eJdieJfgamtSnoX ]Xjp‘kŸno` “”eS`ohk‘Xjn v hk•leJk‘`Sa¨k“Qpjv l™ž ˜l v aclJ`Sk~bX dml$hjlkbX^ fJe v aiX ; %>(  /  @ ~olJ`op’dcl$hlkbX^ fJe v aiX´ {  , \>~bXHp/lg`o`bXHlgn‚¡_heJYzY Fn E yXjp;“”eJ`}hkrXHn v p;heJ`Sk v l™˜l v aclJ`Sk‘pXH`Sk v X7~bXHn‚¡ hjlkbX^ fge v acXjp Xjk p‘eJ`Skz~šX^ ›D`backzheJYzY;X7~}lg`op 3  ³f 587  ·Xj`_p‘X~beS`o`olJ`Jkno`bXzlg|o|odiamhlgkraceJ`Xj`Sk v XdiXHp*eSs‚wxXk•p*Xjkno`oXlgnok v X Xj`Sk v XdiXHp’Y;e v | U amp•YXHp  p•lk‘acpr“Qlamp•lg`Skš~oXjn‚¡| v eS| v aXj^ kbXH^ @p I  ;   D    oXjk  ;  HD   ; HD  ; D‘ž

(171) .

(172) . . . .   .

(173). . . .  . Definition. a functor is a structure with the following components: fctr_ob: a function of type Ob(C1) ⇒ Ob(C2) (coercion) fctr_morph: of type ∀ a,b:Ob(C1) , (a → b) ∼→ (fctr_ob(a) → fctr_ob(b)) im_of_id_prf: of type ∀ a:Ob(C1) , (fctr_morph a a)(Ida) = Idfctr_ob(a) distrib_prf: of type ∀ a,b,c:C1 , ∀ fa:a → b , ∀ fb:b → c , (fctr_morph a c)(fb o fa) = ((fctr_morph b c)(fb) o (fctr_morph a b)(fa)). 'k eJ`|}XHnbk ›D`olgdiXHY;Xj`SkŸXj^ h v a v XWI M. Definition. let CRpresheaf be (Cfunctor Top_cat(X) CRING).. v X^ “Qlgacp•hXHlgn v -7U lJp‘p‘ebhacX

(174) ~beJ`oh l*V h U lgt‚nb; XeSnb˜gX v k ~b;X no`,lg`o; `oXjlgn  ; 4D‘v  HXUk l*V h U lgt‚nbXv am`ohv dmnFE   ` | p‘aceJ`   no`Y;e | acp•Y;X ~H- lJ`o`bXjlJn‚¡   

(175) D=I  

(176) D  4D‘ ~back

(177) Y;e | amp‘Y;X ~bX XHprk amh E . . . . . . . . . sutvsxw.

(178) ¦. Q¦. $¥

(179) ¦j§. Z).  

(180)             ! " # %$ & ' (  . k‘T aieJeSno`Wkr oXjt‚p nbhX/Xjp!d- eJ`b`7eJk‘`bleJk‘kraieSX `ov lp preS`S kšž |D eJa p• pramsbdcXj p ; l™"˜gD‘XH }hŸeJ¥P`Ÿ‘`o¥

(181) eg¦jkr§ X,lJ ‚nodcXjp‘p$p‘a

(182) XH^ `beJ8`oh·d.-xXj^X^ p dXj^ v Y;XHprXjk‘`SXjk`Sk! lam; `op‘a5dcampr"amsbD dcXj; pjD© oY;~bX lgdi f v ; X4^ dcD‘l ž heJYz|bdcX¡backbX^ f v lg`o~bamp•p‘lJ`Jk‘X~onheb~bXgž u l v X¡bXHY;|odiXJ 5dcX;krX v Y;Xt‚nba

(183) lJ|o|ol v lack*p‘eJnop$¥Pr¥

(184) ¦H§ heJYzY;X=I h; e 70v•8v 9 XH/p‘|D: eJ`}~@Xj`Ÿ“Qlacklgnhe‚~oPX I . . . s|W = s|V|W.. ;;; . !C 00D=( 0 ;;; . !C 00D=( 0. . . . @ ; Z 9E : D(CDT?= : 900 ;T]?1 : 9 0D0 / ? 2 (F(9E@@@20@ @4(0F1@ ;;; . C!"0D=( 0   @ ( 9E@20@@@ N. fe_j k&lve6`    + p Tp +. ed

(185). . Š ˆ ”­ ”¬ `$“Qlamp‘hXjlgn$Xjp‘k!no`| v X^ “Qlgacp•hXHlgn¤˜'X ^ v ai›Dlg`SkšdiXHp~bXHn‚¡$| v eJ| v aX^ kbXj^ pšp‘noai˜lg`Sk‘XjpBI

(186) ‘¦

(187)  F ?      @ ILprav    ; 4D!Xk/; p‘aXjp‘kn}` v XjheJnb˜ v XjY;Xj`Sk*eSnb˜gX v k~bX

(188)  k‘Xd t‚nb5X       lgdie p  &L~olJ`op  4D

(189) ‘¦

(190)  F v ?  v  °¦ C  v   I praeS`²l7v n}`bX@heJdidcXjhkraceJ`9~ -xX^ dXj^ Y;Xj`Sk•p1    ;   D•  v    X^ k‘lJ`Sk kr.eS n™wxeJn ; p7D

(191) nokr` XdLt‚XjnbhX5eJnb ˜ XjY; $ Xj`S=k@&eS‘nbž ˜gX k7~bX  !krXjdcpt‚nbX    "!$#  %& $'!$#¶ldce p@acd/X¡bacp‘krX   o Š‚ˆ ¯ p F¯ oT­ p”¬ +µ‹ Š_± o ™¬ o "pŠ ˆ ­Š ˆ Œ + p ¯ p ­Š ˆ v v v v v v v ~oX.d  - Xj`¤`op‘hXjeJYYzsbY;diXXj~o`oXjhpXeJ|onol ˜gX ~šv Xk‘^ ›Dp!`bt‚a nbaLdcXj~op egack!Xjh˜©eJX ^ nbv ˜ a¨›}XXjvY;dmXjl¤`Sk•| pFv eJeJ| nbv ˜JaXX^ kbk‘X*^ pp•9~ nb- aino˜`blJX*`Jk‘|}=X l I kracX ³ ~b6X M* Jh - Xjp‘k©no`bX|ol k‘aiX . . . .

(192). .

(193). . Definition. let covering_prop be the function defined by , for all P:℘(open of E) , A:℘(E) , ∀ x:E , x ∈ A ⇒ ∃ Pi:open of E , (Pi ∈ P) ∧ (x ∈ Pi). Record Open_covering_of [A:℘(E)]: Type := { Open_covering_setoid: of type ℘(open of E) (coercion); Open_covering_prf: a proof of (covering_prop Open_covering_setoid A) }. Let U be a open of X. Let P be of type Open_covering_of(U). Let s, s’ be of type F(U) . Definition. let equal_over_a_covering be ∀ V:Open_covering_setoid(P) , s|U ∩. n€‚?ƒ„B %†. V. = s’|U ∩ V..

(194) Z. ¥.  N  . v eS| v aXj^ kbX ^ ha>E—v ~bXHp‘vp•nopXjp‘kno`|}V XHn~oa>/*X ^ v Xj`Sk‘X;~bX¤V hXdcdiX¤~beS`o`šXj^ X;~olJ`op/v dml7~šX^ ›D`oaik‘aieS`¶~bXHp“QlampgE y 7 l | h|}Xjl lJv n‚krac¡WXzž~}Mšn `@v XXj/·hXeJk nbeS˜ `v XjY;XjXjp‘k`Sk/Xam~b`JX kšpš)Xkacd©p`9- - l Xjp‘k,|olgp“”Xe k v h·|oXj^ lgY;p Xjl `Sk ac`}p‘achYzdmno|bp,dcXj~oY;lg`}XH`Jp k |ol ; noh` X’t‚v XHnbhX/eJnoY˜ Xj v Y;XjY;XXHp‘`Ja k/ |D“QXjlgnbaikk v v v v v v v Vv v v lg- ~šac`}XH^ s}prae I ~oX ->D•ž·´'Xk‘krXz| eJ| aX^ kbX^ ~'X^ ›5`baiXJ DeS`¶|DXjnbk“”e YzldcamprX dmlŸ| XjY;a X X | eJ| aX^ kbX^ ~bXjp’“Qlgacp•hXHlgn‚¡ . . . Definition. let unicity_presheaf be the function defined by , for all U:open of X , P:Open_covering_of(U) , s,s’:F(U) , (!equal_over_a_covering U P s s’) ⇒ s = s’.. ‚Š ˆ ¯ p F¯ oT­ p”¬ +µ‹ Š_± o ™¬ o "pŠ ˆ ­Š ˆ Š Š‚¯ ¬ ±”±”Šb²Š+ ­ v eJsod XHV Y;X v |}eSv n v dcl$prXHheS`o~bX| v eS| v aXj^ kbX,^ XHprk/~bXzprX;~beJ`o`oX v dcl7heJdidcXjhkraceJ`_~9-rXj^ dXH^ Y;Xj`Sk‘p5  ž  `  y ; X | v ˜JeJno~ lgaik heS`opram~šX ^ X dcX,k—qb|}X,p•nbac˜™lJ`SkI . . o.

(195). .

(196). . Definition. a stick_elt is a structure with the following components: stick_elt_set: a open of X stick_elt_elt: of type F(stick_elt_set). XH~o`_X;“QhlgXa v p‘X¤Xkrnoe1`²02m~bXgprXjž kr e102c`_~oXgl7 L~b|oeJnb`oamp,h~bs}a XHv X@preJt‚ac`8nbX¤|}eSp‘X¤n v ~beJhXj`odc`ol$X ~9v - non}`b`bX¤X k‘X^ XfJdclgdiX@diackbhX^ egdcp‘din XHvhk‘haieSX;`8k—qbh|}- XHXJprž·k,yp‘lŸX@`o~begeJkr`oac`oeJ`8X v ~9no-xX`b^ fSX¤l|odcailkbX,v^ k‘dcailX |o`odcXznop |DXj`onolk k•n X vk Xjv X¤didcX¤hebprX~šv X^ lgX;ai5k krX $dcdcX@ tS no'XdcprdiX¤a ;3|o( l / v hXz t‚^ nb@ Xz*dcXjp/;3(k—qb/ |DXj p^~bX @ ;J Xk:  ;J ^ : @  Xjk,^ ~b@MX * ;J ;J:   :  ^ ^@    @ v  LXHYzp‘|DlXjamhp/kracX˜gdcXdiX E Y;~oeJXH`o`Jh/k |o; lJ0 p!;Hlg( n7/ Y  Xj ^Y;@X,@ XjpbXjk ^ kr1e ; 002c~o;HX ( D‘/ ž  ^ @@  p‘eJ`Skz~baG/*X ^ v XH`Sk‘p ; ;J :  ^ @ Xjk ;J :  ^ @ `9- lg|}|ol v kracXj`o`oXj`Sk { XjYzl v t‚^ nbeJ`op |ol v heS^`J k v X/t‚nbXp‘a ;H(^/   ^ @ *);H( /  v ^ @  beS`$l;Xj`|ol v k‘achjnbdcaiX v d - ac`}hdmnopraceJ` ;3( /  @  ;3( /  @ Xjk ;< :  @ |DXjnbk~beS`oh X k X/˜bnheSY;Y;X,no`£Xj^ dXH^ Y;Xj`Skš~oXk—qb|DX ; 0 ;H( /  ^ @@ ˜Saml;diXHpY;e v | U amp‘Y;XHp!~bX v XHprk v amhk‘aieS`opž  `7~ba v lz~beS`oh/t‚nbX.  Lp‘a ;3( /  ^ @*6;3( /  ^ @ Xk ; ?  rD  ; ?  D   

(197) I  Definition. let equ_stick_elt be the function defined by , for all st1,st2:stick_elt , ∃ proof_equal_sets:st1_SET = st2_SET , st1_ELT = st2_ELT|st1_SET.. sutvsxw.

(198) ¦. Q¦. $¥

(199) ¦j§. Z.  

(200)             ! " # %$ & ' (  . Lemma (equ_stick_equiv). equ_stick_elt is an equivalence. Proof:. Definition. let Stick_elt be the set Build_Setoid(equ_stick_equiv).. v ;32=  :   :  20@ Xk’p !dcXk‘X v YX a ž eS`¶`beJkrX;preSnopŸ¥P‘¥

(201) ¦j§ p dcX k‘X Y;X v ; ; =  :  XHp‘^ Xh vv l7a  v X,dc`bldmXl@~o“”eJ|eJ`oacv p!eJ`š|d.X^ - vX¤Xja`oX^9~ p‘kbXj-X^noY`b~bsbX@X diX v|oXHl hv eJk‘diaidcX XjY;2 Xj`S( kj/ ž’~o `bXjp7X;~bXjX ^~bdeJXj^Y;`}1`'XjX^`SXk‘p*~o X~b: Xv Xjdml;h µeJ“”~9die dc-XjnoY;Y`bXHXŸX `J|k v ; Xj 2no1˜g X¤t‚= nb]?X¤4 dD - XjDš`}/ ~špr XXH^ / ›DY `bsbac? kdcX@ }XHeJ~b` `Xjp ¥|DXjeJ¦Hnb§nFkDE ˜JX v k‘p¤!?lJ p‘ p‘ eb ha Xj^ p! “”e v Y; X_ sb  acXj!`¢ ž no` v XjheJnb˜ v XjY;Xj`Sk¤~bX ; ©XkŸ~9- no`bX8| v XHnb˜gX_t‚nbX/ ;   D ;    D   26#H1  :  ;32=  :  2 02 @. . . . . . . . . . . Let U be a open of X. Let P be of type Open_covering_of(U). Let s, s’ be of type F(U) . Definition. let equal_over_intersections be the function defined by , for all Vi,Vj:open of X , si:F(Vi) , sj:F(Vj) , si|Vi ∩. Vj. = sj|Vi ∩. Vj.. Record sticking_data_on [U:open of X]: Type := { st_part: of type Predicate(Stick_elt(F)) (coercion); st_covering_prf: of type ∀ x:U , ∃ st:st_part , x ∈ st_SET; st_prf: of type ∀ U,V:st_part , (equal_over_intersections U_ELT V_ELT) }.. y lz| v eS| v aXj^ kbX’^ ~bX v XHheJdidcXjY;Xj`Sk!p‘X v llgdie v p&I. Definition. let sticking be ∀ U:open of X , ∀ st:sticking_data_on(U) , ∃ s:F(U) , ∀ Si:st , (equal_over_intersections. 'k eJ`|}XHnbk!Xj`b›D`~'X^ ›5`ba v dcXjp “Qlgacp•hXHlgn‚¡Ÿ~H- lJ`o`bXjlJn‚¡$heJYzY nbk•lk‘a¨“QpBI M. n€‚?ƒ„B %†. s Si_ELT)..

(202) Zg„. ¥.  N  . Record CRsheaf [X:topological space]: Type := { pre: a presheaf of commutative rings over X (coercion); unicity_prf: of type ∀ U:open of X , ∀ P:Open_covering_of(U) , ∀ s,s’:U , (unicity_presheaf(P) s s’); sticking_prf: of type sticking(pre) }.. ed. vlvi@m]lrk _ohi?lrklHt m]yichj%kFm]lrk. . Š ²Š‚‹;Š ­ Š‚‹ v X  ~H- no`¤| v X^ “Qlamp‘hXjlJn  Xj`zno`z|}eJac`Sk ; ¤~bX -XHprkd.- XH`op‘XjY v sodiXv ~bXHp

(203) heSno|b; dcXjp “”e v Y–XH;^ p ~H- no` y  l D › s v eS;  nb˜g X  k   h; eS"`SD krDXj`}p•lgpra `Sk ;  Xk* ~9- no `£ Xj^ dXH^ Y;Xj; `S k  ~bX  4

(204) D‘D } t‚nbeJ

(205) kracXj`S kbX/^ |} l D‘ž dml yl¶XjdcprlgeSkrnoaceJ|b` dcXjp•prX@  ~bXHp p‘X4k‘e8D 02mD~bXH p |DX v Y;Xk~bX,~ba v Xjhk‘XjY;Xj`Sk~šX^ ›D`ba v diXHp ›Ds v Xjp ;J /0: 0 (E@ I 

Références

Documents relatifs

Avec sa très faible fécondité et un nombre de décès supérieur aux naissances dans la moitié des pays comme dans de nombreuses régions, l’Union

« La prophétie, ou interprétation et conférence des Écritures se fera par les ministres du Colloque, en l’assemblée où chacun dira la tête découverte ce que Dieu lui

« On ne fait pas que des psychothérapies en clinique/…/On en parlait encore ce matin : est-ce qu’on a le temps de faire des psychothérapies, parce qu’on voit les gens

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

AMC PAPI : Spécificités du contexte torrentiel – Rapport de Phase 1 Page 18 sur 46 Dans le cas des laves torrentielles, on peut résumer les conditions nécessaires au

Gillard, “Combinaison de la DG-FDTD avec un mod` ele de substitution pour un calcul de dosim´ etrie locale dans un probl` eme variable et fortement multi-´ echelle”, dans 18`

Le jugement porté par les femmes lettrées sur leurs soigneurs doit donc être nuancé en fonction de la personnalité de chacune, de la gravité de la maladie,

3.3 Processus d’alimentation d'entrepôt de données : Nous devons extraire, transformer et charger les données à partir des sources précédemment citées, dans l'entrepôt de