• Aucun résultat trouvé

Sensitivity of Xenon dual-phase time projection chambers to rare event searches

N/A
N/A
Protected

Academic year: 2021

Partager "Sensitivity of Xenon dual-phase time projection chambers to rare event searches"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02292255

https://hal.archives-ouvertes.fr/hal-02292255

Submitted on 19 Sep 2019

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Sensitivity of Xenon dual-phase time projection chambers to rare event searches

Maxime Pierre

To cite this version:

Maxime Pierre. Sensitivity of Xenon dual-phase time projection chambers to rare event searches. 25ème Congrès Général de la Société Française de Physique, Jul 2019, Nantes, France. �hal-02292255�

(2)

Sensitivity of Xenon dual-phase time projection chambers to rare event searches

Subatech, UMR 6457 CNRS, IMT Atlantique, Université de Nantes, 4 rue Alfred Kastler, Nantes

maxime.pierre@etu.univ-nantes.fr

Maxime Pierre

2- Working Principle

1-Rare-events search

4-DARWIN

Dark Matter

Neutrinoless double beta decay 0

𝛖𝜷𝜷

3- Evolution & Results

Current best limit on WIMP-nucleon

cross-section achieved by XENON1T [1]

Sensitive to other rare event searches:

First Observation of the double electron

capture of 124Xe with XENON1T [2]:

!

• ! analysis in progress for XENON1T

T

1/22νECEC

= 1.8 × 10

22

y

0νββ

S1 signal: Scintillation S2 signal: Ionisation

S1+S2 = 3D reconstruction

S1 & S2 = Energy reconstruction

S1/S2 = NR vs ER discrimination

Dark Matter evidences: Astrophysics and

cosmological evidences indicate a missing mass that counts for 25% of the total mass of the universe.

Best candidate: Weakly Interacting Massive Particle

(WIMP)

Massive, neutral particle Non-baryonic matter

Weakly interactive with baryonic matter and

itself

Stable particle

Neutrinos nature: Dirac or

Majorana particles ?

Experimental signature:

Electronic recoil

Energy deposition of the two

emitted electrons: Q-value of

the process = 2457 keV

Observable: 0𝛖𝜷𝜷 Half-life

Cylindrical dual-phase TPC : 2.6 m

diameter and 2.6 m height

40 tons active volume of LXe

Two arrays of PMTs (top and bottom) Muon and neutron veto systems

DARWIN will be sensitive to explore the

WIMP parameter space down to the

irreducible background from neutrinos (neutrino floor) [3]

If dark matter is observed DARWIN will

be able to constrain its mass and its cross-section

Baseline Design

0

𝛖𝜷𝜷

Sensitivity

Sketch of the DARWIN detector.

DM Sensitivity

χ

χ + N ⟶ χ + N

θ

Nucleus

Nuclear recoil energy < 100 keV

After 10 years of exposure:

! 0𝛖𝜷𝜷 dedicated experiments: 136Xe abundance ≥ 90% DM dedicated experiments: natural abundance of 136Xe = 8.9% 136Xe enrichement studied

S

= 3.0 × 10

27

y

Nuclear recoil (NR) Electronic recoil (ER)

Detector requirements:

Large target mass, to

increase probability of interaction/decay

Background suppression,

using shielding, radiopure

materials, modelization of the expected backgrounds

• WIMP

• Neutrons

• 𝜶-, 𝜷-, 𝛾- decay • Electrons

References

[1] XENON Collaboration, Dark Matter search results from a one Tonne x Year exposure of XENON1T, in Phys. Rev. Lett. 121, 111302 (2018) [2] XENON Collaboration, First observation of two-neutrino double electron capture in 124Xe with XENON1T, in Nature, 568, p.532-535 (2019)

[3] J. Aalbers et al, DARWIN: towards the ultimate Dark Matter detector, in Journal of Cosmology and Astroparticle Physics, 017-017 (2016)

¯ν e -e -¯ν 2𝛖𝛃𝛃 0𝛖𝛃𝛃 e -e -1 T0ν 1/2 = |mββ| 2 . |M|2 . G(Q, Z)

S

=

ln(2)

×

N

a

×

ϵ

×

enr

σ

CL

×

M

molar

bkg

exposure

index

×

ΔE

Phase-space factor Effective Majorana mass

Nuclear matrix element (NME)

Direct detection:

Observable: WIMP-Nucleus

cross-section and WIMP mass

• Physical constants and confidence level factor

• Studied isotope properties such as its abundance

• Detector characteristics: detection efficiency,

energy resolution, exposure

Références

Documents relatifs

We propose an adaptive rare event simulation method based on reversible shaking transformations on path space to estimate rare event statistics arising in different financial

We have shown that the sampling distribution based on information projection made our IS simulation efficient to estimate the rare event probabilities which satisfy a large

In order to disentangle the mother particle of the electromagnetic shower it is possible use two handles in the charge readout analysis: first of all, a shower generated by an

Figure 9: Results of the simulation based on the experimental setup: Angular resolutions versus track length in horizontal and vertical for the helium mixture and the isobutane.

لوﻷا ﻞﺼﻔﻟا : ﻲﻓ ءادﻷا ﻢﻴﻴﻘﺗو ﻲﻟﺎﻤﻟا ﻞﻴﻠﺤﺘﻟا لﻮﺣ ﺔﻣﺎﻋ ﻢﻴﻫﺎﻔﻣ ﺔﺴﺳﺆﻤﻟا ﺪﻴﻬﻤﺗ : ﱪﺘﻌﻳ وﺮﺿو (لﺎﳌا ﲑﻴﺴﺘﻟا) ﺔﻴﻟﺎﳌا ةرادﻹا ﻊﻴﺿاﻮﻣ ﻦﻣ مﺎﻫ عﻮﺿﻮﻣ ﱄﺎﳌا ﻞﻴﻠﺤﺘﻟا

Au cours de cette étude, nous avons principalement analysé la réponse électrique du capteur en fonction de la température et de la pression d'oxygène. Ces conditions de travail qui

In this paper we present the issues identified in the context of METIS, a French national project aiming to provide a software solution for reconstructing large and

generating function ~g+f+!+ The elemen- tary theory of branching processes leads to precise bounds of f M and to a precise confidence interval that we can compare to the