• Aucun résultat trouvé

Techniques avancées de commande, d’observation et de diagnostic robustes dédiées à la machine synchrone basée sur le modèle Takagi-Sugeno

N/A
N/A
Protected

Academic year: 2021

Partager "Techniques avancées de commande, d’observation et de diagnostic robustes dédiées à la machine synchrone basée sur le modèle Takagi-Sugeno"

Copied!
5
0
0

Texte intégral

(1)

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

Université de Hamma Lakhdar –El Oued Faculté de Technologie

Département de génie électrique

Mémoire présenté par: HAMIDANI Bilal

En vue de l’obtention du diplôme de doctorat en LMD Filière: Electrotechnique

Option: Optimisation et gestion d’énergie

Soutenu le : 18/09/2019

Devant le jury composé de:

Nom et Prénom Grade Affiliation Position

BEN ATTOUS Djilani Professeur Université d’El Oued Président

ALLAG Abdelkrim Professeur Université d’El Oued Encadreur

BETKA Achour Professeur Université de Biskra Examinateur

ALLOUI Lotfi Professeur Université de Biskra Examinateur

KHENE Mohamed Lotfi Professeur Université de Biskra Examinateur

CHEMSA Ali MCA Université d’El Oued Examinateur

2018/2019

Techniques avancées de commande, d’observation et

de diagnostic robustes dédiées à la machine synchrone

(2)

VII

Table of contents

Abstract ………... II Acknowledgment ……… V Dedication………. VI Table of contents ………. VII List of figures ……….. XI Nomenclatures and Abbreviations ……… XV

CHAPTER

I

General Introduction

1.1. General introduction ……… 1 1.2. Outlines ……… 3 1.3. List of publications ………... 5

CHAPTER

II

Controllers and Observers Design Based on MVT and T-S Fuzzy

Models

2.1. Takagi-sugeno fuzzy model and parallel distributed compensation ……… 9

2.1.1. Takagi-sugeno fuzzy model ………. 9

2.1.2. Construction of fuzzy model ……… 11

2.1.2.1. Sector nonlinearity ……….. 12

2.1.2.2. Parallel distributed compensation ……… 17

2.1.3. Stable controller design via iterative procedure ……… 18

2.2. Fuzzy observer design ………. 19

2.2.1. Fuzzy observer ………... 20

2.3. Designs of observers and controller based on MVT ……… 21

2.3.1. Problem statement ……….. 21

2.3.2. MVT observers Design ……….. 23

(3)

VIII

2.3.2.2. Scalar MVT ……….. 23

2.3.2.3. MVT for a vector function ………... 24

2.3.2.4. Modified MVT for a vector function (sector nonlinearity transformation). 25 2.3.3. Stability analysis ……… 28

2.3.4. MVT controllers Design ……… 28

2.3.4.1. Stability analysis ……….. 29

CHAPTER

III

Permanent Magnet Synchronous Machines

3.1. Introduction ……….. 32

3.2. Steady-state machine modeling of PMSM ………... 33

3.3. Dynamic modeling of the PMSM machine ……….. 36

3.3.1. Mechanical equation ……….. 39

CHAPTER

IV

Advanced Control and Observation Techniques Based on the

MVT Applied to the PMSM Drives

4.1. Introduction ………. 41

4.2. Extended observer based controller design: a PMSM drive application …………. 41

4.2.1. Extended dynamics model of PMSM ……… 41

4.2.2. Problem statement ……….. 43

4.2.3. Observer based controller case ……….. 43

4.2.4. Augmented state feedback controller ………. 44

4.2.5. Stability analysis ……… 45

4.2.6. Simulation results ……….. 46

4.2.7. Conclusion ………. 51

4.3. PI-MVT controller for PMSM application ……….. 52

4.3.1. Controller design ……… 52

(4)

IX

4.3.1.3.Augmented feedback regulator (PI) ……… 53

4.3.2. Experimental results ………... 54

4.4. Conclusion ………... 58

CHAPTER

V

Robust Extended

𝑯

Observer and Controller Based on the MVT

Approach Applied to the PMSM Drive

5.1.Introduction ……… 59

5.2.Robust extended 𝑀𝑉𝑇_𝐻∞ observer design ………... 59

5.2.1. Problem declaration ………... 59

5.2.2. Extension for 𝐻∞ performance ……….. 61

5.2.3. Stability analysis ……… 61

5.3.Open loop field oriented control of the PMSM ……….. 63

5.4.Simulation results and discussion ………... 64

5.5.Robust 𝑃𝐼_𝑀𝑉𝑇_𝐻∞ controller design ………... 72

5.5.1. Stability analysis ……… 72

5.5.2. Simulation results ……….. 73

5.6. Conclusion 78

CHAPTER

VI

Fault Detection and Diagnosis Based on Extended MVT Observer

Applied to the PMSM

6.1. Introduction and general diagnosis ……….. 80

6.2. Fault specification of PMSM drives ……… 82

6.2.1. Stator winding faults ……….. 82

6.2.2. Open phase, phase to ground, line to line, line to line to ground faults ………. 82

6.2.3. Unbalanced voltage fault ………... 83

6.2.4. Demagnetization fault ……… 84

6.2.5. Eccentricity fault ……… 85

(5)

X

6.3.1. Fault detection with parity relations ……….. 87

6.3.2. Fault detection with diagnostic observers ……….. 88

6.3.3. Fault detection with parameter estimation ………. 89

6.4. Modeling of the MSAP machine in the presence of stator faults ……… 90

6.4.1. Model based on a "healthy" MSAP structure ……… 90

6.4.2. Model based on a "faulty" PMSM structure ……….. 91

6.5. Estimation of the extended MVT Observer on the identification models ………... 97

6.5.1. Model based on a "healthy" MSAP structure ……… 97

6.5.2. Model based on a "faulty" MSAP structure ………... 97

6.6. Construction and evaluation of indicators of presence of inter-turn short-circuits .. 99

6.6.1. Principle of construction of the indicators ………. 99

6.6.1.1. Model “healthy” ………. 99

6.6.1.2. Model “faulty” ………... 103

6.6.2. Evaluation of the indicators ………... 105

6.6.2.1. Robustness Analysis ……… 105

A. Variation of the electric frequency ……… 105

B. Variation of power ………. 108 6.7. Conclusion ………... 110

CHAPTER

VII

General Conclusion

7.1. General conclusion ………... 115 7.2. Future works ………. 117

Appendixes

Appendix A: Park and Clarke transformation ………. 118

Appendix B: Evaluation of Indicators ………. 122

Références

Documents relatifs

Causal MSO Sets Generation for the FCS System Once the set of sensors to achieve maximum diagnosis specification is known and their corresponding equations are introduced in the

The main contribution of this paper is to propose a method for fault diagnosis of nonlinear systems described by TS models with measurable and unmeasurable premise variables using

Observer based actuator fault tolerant control for nonlinear Takagi-Sugeno systems : an LMI approach.. Dalil Ichalal, Benoît Marx, José Ragot,

Unknown input proportional multiple-integral observer design for linear descriptor systems: application to state and fault estimation.. Leith D.J.,

In the section 4.2 a procedure to design a stabilising output feedback controller when the decision variables depend on the state variables estimated by the T-S observer is

Indeed, if the actuator fault isolation problem is considered, constructing a bank of observers in order to isolate faults is not possible because if the i th input is used as a

To improve the classification accuracy for bearing fault prediction, Firefly Algorithm (FFA) is employed to simultaneously optimize the SVM kernel function parameter and the

Outre les avantages offerts par le modèle T-S, le modèle à variables de décision non mesurables permet d’avoir une représentation exacte d’un modèle non linéaire exprimé sous