• Aucun résultat trouvé

Transitory powder flow dynamics during emptying of a continuous mixer

N/A
N/A
Protected

Academic year: 2021

Partager "Transitory powder flow dynamics during emptying of a continuous mixer"

Copied!
10
0
0

Texte intégral

(1)

HAL Id: hal-00876515

https://hal.archives-ouvertes.fr/hal-00876515

Submitted on 24 Oct 2013

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Transitory powder flow dynamics during emptying of a

continuous mixer

Chawki Ammarcha, Cendrine Gatumel, Jean-Louis Dirion, Michel Cabassud,

Vadim Mizonov, Henri Berthiaux

To cite this version:

Chawki Ammarcha, Cendrine Gatumel, Jean-Louis Dirion, Michel Cabassud, Vadim Mizonov, et al..

Transitory powder flow dynamics during emptying of a continuous mixer. Chemical Engineering and

Processing: Process Intensification, Elsevier, 2013, vol. 65, pp.68-75. �10.1016/j.cep.2012.12.004�.

�hal-00876515�

(2)

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 9910

To link to this article : DOI:10.1016/j.cep.2012.12.004

URL :

http://dx.doi.org/10.1016/j.cep.2012.12.004

To cite this version :

Ammarcha, Chawki and Gatumel, Cendrine and Dirion,

Jean-Louis and Cabassud, Michel and Mizonov, Vadim and Berthiaux,

Henri

Transitory powder flow dynamics during emptying of a

continuous mixer.

(2013) Chemical Engineering and Processing :

Process Intensification, vol. 65 . pp. 68-75. ISSN 0255-2701

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes.diff.inp-toulouse.fr

(3)

Transitory

powder

flow

dynamics

during

emptying

of

a

continuous

mixer

C.

Ammarcha

a

, C.

Gatumel

a

, J.L.

Dirion

a

,

M.

Cabassud

b

,

V.

Mizonov

c

,

H.

Berthiaux

a,

aCentreRAPSODEE,FRECNRS,EcoledesMinesd’Albi-Carmaux,CampusJarlard,routedeTeillet,81000Albi,France bLaboratoiredeGénieChimique,UMR5503CNRS-INPT-UPS,BP1301,5ruePaulinTalabot,31106Toulouse,France cIvanovoStatePowerEngineeringUniversity,DepartmentofAppliedMathematics,Rabfakoskaya34,153003Ivanovo,Russia

Keywords: Semi-batchmixing Powder Markovchain Transitoryregime

a

b

s

t

r

a

c

t

Thisarticleinvestigatestheemptyingprocessofacontinuouspowdermixer,frombothexperimental andmodellingpointsofview.TheapparatususedinthisworkisapilotscalecommercialmixerGericke GCM500,forwhichaspecificexperimentalprotocolhasbeendevelopedtodeterminetheholdupin themixerandtherealoutflow.Wedemonstratethatthedynamicsoftheprocessisgovernedbythe rotationalspeedofthestirrer,asitfixescharacteristicvaluesofthehold-upweight,suchasathreshold hold-upweight.ThisisintegratedintoaMarkovchainmatrixrepresentationthatcanpredictthe evo-lutionofthehold-upweight,aswellasthatoftheoutflowrateduringemptyingthemixer.Depending ontheadvancementoftheprocess,theMarkovchainmustbeconsideredasnon-homogeneous.The comparisonofmodelresultswithexperimentaldatanotusedintheestimationprocedureofthe param-eterscontributestovalidatingtheviabilityofthismodel.Inparticular,wereportresultsobtainedwhen emptyingthemixeratvariablerotationalspeed,throughstepchanges.

1. Aquickstate-of-the-art

Themixingofsolidsisacommonoperationinseveral indus-trialapplications.Itfrequentlyrepresentsacrucialunitoperationin manyindustries(foodstuffs,cosmetics,ceramics,detergents, pow-deredmetals,plastics,drugs,etc.).Whilemixersareoperatedeither inbatchorincontinuousmodeforindustrialapplications,itis cur-renttoseesuchmachinesoperatinginsemi-batchmodeduring limitedperiodsoftime,eitherbecausethefeedhasbeenstopped while keeping a continuous withdrawal, or conversely keeping acontinuousfeedwitha blockedoutlet.Thishasbeenrecently pointed out by Berthiauxet al. [4], who studiedthe impactof feedingperturbationsonmixturequalityforanOTCdrug.Because loss-in-weightfeedersloosetheirregularitywhenthemassof pow-derinthehopperbecomeslessthanapproximately15–20%ofits apparentvolume,the fillingperiod of thefeedersresultsin an importantsourceofmixtureheterogeneity. Itwassuggestedto stopthefeederswhenfillingandoperatethecontinuousmixerin semi-batchmode,atleastnottodisturbthefollowingoperations liketabletting.Anotherexampleoftheimportanceofsemi-batch modeintheindustryisthedischargeofbatchblendersattheend ofoperation.Duringemptying,thebatchmixeristherefore trans-formedintoasemi-batchsystem.Inthecaseofbatchconvective mixers,itisworthnotingthatoperatorswillruntheengineathigh

∗ Correspondingauthor.Tel.:+33563493144.

E-mailaddresses:henri.berthiaux@mines-albi.fr,henri.berthiaux@mines-albi.fr

(H.Berthiaux).

speedtoacceleratetheemptyingprocesswithoutpaying atten-tiontotheeffectthisprocedurecanhaveonmixturequality.Inthe pharmaceuticalindustry,thisisallthemoreimportantbecauseof the“principleofreconciliation”statingthateachportionofeach materialshouldbetrackedfromitsenteringintothesystemtoits leaving.

IfweexcludethepaperbySudahetal.[13],veryfewstudieshave beenpublishedconcerningtheemptyingprocessofamixerandits effectonblendhomogeneityorpowderflow.Moregenerally, con-tinuousprocessingofpowdershasneverbeenextensivelystudied fromtheviewpointoftransitoryregimephasesthatarecurrently takingplaceduringemptying,startingordosagemodechanging. Thisisallthemoreastonishingthatthediscretenatureofgranular medialogicallyinducestransitorymotionandtransitoryflow.

Behaviour of granular materials in mixers or in other pro-cess equipment,is still poorly understood from a fundamental standpoint, as it is hardly possible to portray perfectly all the detailsoftheprocessinamathematicalformandinareasonable time.However,somedynamicmodelsarepresentinthechemical engineeringliterature,tryingtoexplainanddescribegloballythe processratherthanintofulldetails.Markovchainspertaintothis system’sapproachtoolbox.

Twocasesareunderlinedbehindthetermmixingandmustbe distinguishedwhendealingwithmodelsofanytype:bulkparticle flowandtransportinanytypeofvessel,includinginmixers; mix-ing/blendingofvariousflowsrelatedtodifferenttypesofparticle [3].SeveralresearchersusedtheMarkovchaintheorytodescribe “pure”powderflowpatternsinmixers.Some40yearsago,Inoue andYamaguchi[8]describedthegeneralflowpatternofglassbeads

(4)

insideabatchtumblermixer.Asinglecolouredbeadwasadded anditspositionwasrecordedateverytransition(revolutionofthe mixer).Theexperimentaldatawereusedtodeterminethe transi-tionmatrix,andservedtoderiveatwodimensionalhomogeneous Markovchainmodel.Morerecently,Aounetal.[1]appliedthistype ofmodelforalaboratoryhoopmixer,whichwasdividedinto33 elementarycells(11axialcompartmentsthatwereinturn sepa-ratedinto3radialcells).Theexperimentaldataallowedtoderive thetransitionmatrixandservedagaintodiagnosetheflow pat-ternofcouscousparticlesinthevessel.OtherexamplesofMarkov chainsforthedescriptionofpowderflowinmixerscanbefoundin Chenetal.[5]andLaiandFan[9].

Attheverysametime,otherresearchersweremodellingthe mixingofdifferentparticulateflows,principallybinarymixtures.At theendoftheseventies,FanandShin[7]studiedthebinarymixing processofsphericalluciteparticleswithtwodifferentparticlesize inatumblermixerdividedinto10sectionsofequalvolume.They linkedthetransitionprobabilitiesofaMarkovchaintothediffusion coefficientandthedriftvelocity.Thetransitionmatrixwas deter-minedexperimentallyandallowedtodescribetheconcentration profilesforeachsystem.Morerecently,atwo-dimensionalmodel oftheflowandmixingofparticulatesolidshasbeendevelopedon thebasisoftheMarkovchaintheoryforanalternatelyrevolving staticmixer[12].Thismodelrepresentedthedistributionof com-ponentduringmixingoperation,in bothverticalandhorizontal directions.Severalsimulationswereperformedtoinvestigatethe effectoftheinitialloadingofthecomponents,andtheeffectofthe valuesofthetransitionprobabilities.Otherexamplesarepublished inOyamaandAgaki[11],WangandFan[14]orWangandFan[15]. Inthepresentarticle,wewillconcentrateonstudyingthe dis-chargeprocessofacontinuouspilot-scaleconvectivemixer.We willfocusontheeffectoftheinitialpowdermass,aswellasonthe rotationalspeedofthestirrerwhileemptyingthemixeronboththe hold-upweightofa“pure”bulkmaterialanditsoutletflowrate. Thisisapreliminarytoabetterunderstandingofthedynamicsof blenddischarginganditsimpactonmixturehomogeneity.Wewill alsoinvestigatetheeffectofstepvariationsintherotational stir-rer’sspeedduringemptyingofthemixer.Allthiswillbeintegrated intoaMarkovchainasatoolforpredictionofhold-upweightand outflowratefromoperatingvariablesvaluesandvariability.

2. Experimentalset-upsandmethods

TheexperimentswereperformedinaGerickeGCM500 continu-ouspilotscalepowdermixer,whichcanberuneitherincontinuous, batchorsemi-batchmode.Thismixerisequippedwiththree loss-in-weightfeederstoensureaverypreciseandregulardosage.In thiswork,allexperimentswereperformedinsemi-batchmode, whichmeansthatparticleshavebeeninitiallyplacedintheblender andfeederswerenotused.Attheoutletofthemixeran analyti-calbalanceisplacedtomeasuretheoutflowmass inrealtime. Thisbalancecommunicateswithacomputerthroughaserialport RS232wehaveconfiguredintheMatlabControlToolbox. There-forealldataaremeasuredandsavedinrealtime.Experimentshave beenperformedwithfoodproducts,namelycouscousparticles.Full descriptionofequipmentandpowderusedcanbeseeninMarikh etal.[10]andinFig.1a.Themixeritselfisahemi-cylindricaltankof 50cmlong,16.5cmheightand20cmdiameter.Particlemotionis duetothestirringactionofthemobile,sothismixercanbe classi-fiedintothecategoryofconvectivemixers.Thestirrerisconstituted of14rectangularpaddlesinclinedata45◦angleandinstalledona framesupportinganinternalscrew.Thedimensionsofthisframe are45cmlengthand18cmwidth.Thescrewisplacedatthecentre oftheframeandallowsaconvectiveaxialmotionoftheparticles insidethevessel.

Theoutletofthemixerconsistsinagatevalvewhoseposition playsanimportantroleasitdeterminesthesectionthroughwhich particleshavetoflowoutoftheapparatus.Ifthissectionisreduced, theholdupinthemixerwillbehigherforfixedconditions,asless particlesareallowedtoexitfromthemixer.Inthepresentwork,all experimentshavebeenperformedwiththeoutletgatevalveatthe maximumofopening.Insemi-batchmode,theholdupweightM1 isafunctioninfluencedaprioribythestirrer’sspeedofrotationNm andtheinitialloadingmass(seeFig.1b).Inthisstudytheeffectof thesevariablesontheholdupM1willbeexaminedforthefollowing ranges:

–fivevaluesoftherotationalspeedofthemobileNm,whichcan beexpressedbythefrequencyoftheengine,N:10,20,30,40and 50Hz;

– threeinitialmassesintroduced4,6and8kg.

TherelationshipbetweentherotationalspeedofthemobileNm andthefrequencyoftheengineisgivenby:Nm(rpm)=2.6N(Hz).

3. Markovchainmodellingofthesemi-batchprocess 3.1. Generalarchitectureofthemodel

The essenceof a Markov chain model is that ifthe present statesofa systemareknown—forexamplethepowdermassin eachstate—andiftheprobabilities—forexampleflowrateratios—to transittoanyotherstatesarealsogiven,thenthefuturestateof thesystemcanbepredicted.Whenprobabilitiesareunchanged,the chainissaidtobehomogeneousandasimplematrixrelationcan bederivedtolinkthefuturestatestotheinitialstate.Conversely, time-dependentorstate-dependentprobabilitieswillresultina step-by-stepcalculationofthestatesofthesystem.

Whenappliedtomixing,thegeneralprinciplelaysindividinga vesselintoncells(Fig.2),orstatesofthesystem,andtoexaminethe possibletransitionsofaparticleproperty(massorconcentrationin akeycomponent)betweeneachcellsduringafixedtimeinterval 1t.

LetthepropertyunderobservationbethemassMn(t)of parti-clesincellnattimet,andletM(t)bethevectorofelementsMn(t). Aftereachtransition,aparticlecantransittoanothercellandthe observedpropertycanchangeineachcell.Thisissummarisedbya (n×n)matrixP(t)oftransitionprobabilities,thepj,k(t) correspond-ingtothetransitionfromstatektostatejattimet.Ifweassume thattransitionscanonlyoccurfromonecelltoaneighbouringcell, thefuturestateM(t+1t)canbepredictedbythefollowingmatrix equation: M(t+1t)=P(t)M(t) (1) P(t)=

P1,1(t) P1,2(t) .... .... 0 0 0 P2,1(t) P2,2(t) ··· ··· 0 0 0 0 P3,2(t) ··· ··· 0 0 0 ··· ··· ··· 0 ··· ··· ··· ··· ··· Pi−1,i(t) Pi,i(t) Pi+1,i(t) ··· ··· ··· ··· ··· ··· ··· ··· ··· 0 0 ··· ··· ··· Pn−2,n−1(t) 0 0 0 ··· ··· ··· Pn−1,n−1(t) 0 0 0 ··· ··· 0 Pn,n−1(t) 1

Therepresentationofthisprocedureundermatrixform,givesa practicaldescriptionandaneasyhandlingoftheprocessdynamics

(5)

Fig.1. GerickeGCM500equipmentshowingthestirringmobile(a).Generalprocessvariables(b).

Fig.2.GeneralMarkovchainrepresentationofthesemi-batchoperationofthemixer,includingaflowmodelinsidethemixer.

whatevertheregimeconsidered:batch,continuous,semi-batch, multiplestagedfeed,transitoryfeed,etc.Fulldescriptionof blend-ing modelling using Markov chains is detailed in thework by Berthiauxetal.[2].

Asaforementioned,themixeris usuallydividedinto several cells.Inthepresentrepresentation,wewillonlyconcentrateona generalframeformodellingabletogiveinformationonthe“black box”behaviourofthemixerunderunsteadyconditions,andusea simplifiedMarkovchainmodelwithonlytwocells.Thisfirstmodel willbeimplementedinthefuturetoenterintomoredetailsofthe flowstructure,uptotheleveloftheparticlesthroughdistinct ele-mentmodelling(DEM),givingthenrisetoahybridmodelsuchas theonerecentlydevelopedbyDoucetetal.[6].

Thefirstcellrepresentsthewholemixer,thelevelof discreti-sationbeingthewholeapparatus.The secondcellis theoutlet of the mixer, acting as an absorbingstate. This cell is shown, for example,in Fig.3 as thelast cellon theright.If a particle reachestheabsorbingstate,itstaysinitforever,i.e.,pii=1exists

forthisstate.Inourcase,theabsorbingstateisjoinedtothechain artificially.

LetM1bethemassofparticlesinmixer(orincell1),andM2the massofparticlesintheabsorbingstate(orincell2).Thetransition ofaparticlefromstate1tostate2willobeytothegeneralMarkov chainrelation: M1(t+1t) M2(t+1t)

!

= p11(t) p12(t) p21(t) p22(t)

!

× M1(t) M2(t)

!

= 1−p21(t) 0 p21(t) 1

!

× M1(t) M2(t)

!

(2)

InordertorepresenttheemptyingprocessthroughEq.(2),itis necessarytoknowtheinitialloadingmassM1(0).Astheabsorbing statedoesnotcontainparticlesinitially,thenM2(0)isequaltozero. Beforerunningthechain,wemustalsoidentifythevalueofp21.This

(6)

Fig.3.SimplifiedMakovchainrepresentationoftheemptyingprocessofthemixer.

canbedonebythefollowingstep-by-stepprocedure: P21(t+1t)= M2(t+M1t)−M2(t)

1(t)

= [M1(0)−M1(t+1t)]M −[M1(0)−M1(t)] 1(t)

(3)

3.2. Implementingthemodelfromexperimentalresults

AsstatedbyEq.(3),p21(t)canbedeterminedfromthe experi-mentalresultsofM1(t).Fig.4givesanexampleoftheexperimental resultsobtainedatN=20Hzfortheevolutionofthehold-upweight incell1(mixer)fordifferentinitialweight.P21isalsopresentedin thesamegraphforatransitiontime1t=1.6s.Thistransitiontime hasbeenarbitrarilyfixedafterseveraltries,toensureasufficient resolutionofthemodel.Twoothersimilarexamplesareshown inFig.5forhigherrotationalspeeds.Itcanbeseenthatthe ini-tialmassM1(0)donotaffecttheresultofprobabilityp21,which meansthatthedynamicsofemptyingofthemixeronlydependson therotationalspeed.Whenexaminingtheseresults,wecandefine threeregimesofprobabilitycorrespondingtothecurrentholdup weightinthemixer.Thereexistsaminimumholdupbelowwhich

nopowdercanflowoutofthemixer,andathresholdvalueabove whichp21isconstant(andequalsp21max).LetMminandMthreshold bethesecharacteristicholdups.Intermsoftransitionprobability, wehave

for M1>Mthreshold, p21=p21max (4) and for M1<Mmin, p21=0 (5) WhenM1 ishigherthanMthreshold,thevalueofp21isstablewith time,sothattheMarkovchainisa timehomogeneouschainor aMarkovchainswithtime-homogeneoustransitionprobabilities. ThetransitionmatrixPalwaysremainsthesameateachstep,so thek-steptransitionprobabilitycanbecomputedasthek’thpower ofthetransitionmatrix,Pk.

WhenthemassM1islowerthanMthresholdandhigherthanMmin, theprobabilityP21increasesalmostlinearlywithhold-upweight M1:

for Mmin<M1<Mthreshold, p21(t)=aM1(t)+b0 (6) Inthiscase,theprobabilityoftransitioninasinglestepfromstate 1tostate2dependsontheparticlemassinstate1,whichmakes thetransitionstime-dependentthroughitsstate-dependency.The

Fig.4.ExperimentalevolutionofM1andp21duringemptyingofthemixer(N=20Hz).

(7)

Fig.6.EvidenceofalinearrelationbetweenparameteraandN(a);relationbetweenMminandN(b).

Markovchainisthereforenothomogeneous,andstatesmustbe calculatedstep-by-step.However,this isfarfrombeinga prob-lemfromacomputationalpointofview.AsfarasM1isinferiorto Mthreshold,thenewprobabilityp21(t)dependsonlyontheprevious calculationofthestatesthroughM1(t)andbothparameters(aand b)oflinearEq.(6).

ParameteraonlydependsontherotationalspeedNasitcan beseeninFig.6a,andthesecondparameterbcanbecalculated forM1=Mminasb=−a×Mmin.Inturn,MminhasbeenrelatedtoN throughapowerlaw,asindicatedinFig.6b.Thepowerhasbeen identifiedtobeclosedto0.5,sothatweconsideredthisvalueas beenfixedandrecalculatetheotherparametervaluesk1andk2:

a=k1×N (7)

b=−a×Mmin=−k1×k2N0.5 (8) Inthisnon-linearregime,theemptyingprocessofthemixer there-forevarieswiththehold-upweightandtherotational speedof themobilethroughthefollowinggeneralrelationshipthatincludes twoconstantsdeterminedformthewholesetofexperimentaldata: p21(t)=k1N



M1(t)−√k2 N



(9) Itmustbeemphasizedthatthislatterequationmakesthe over-allMarkovchainnon-homogeneous,asthetransitionprobability dependsonthestateofthesystem.Ifthereisnoapriori obvi-ousphysicalexplanationforthis, itis clearthat fromaprocess standpoint,thisbehaviourmustbeknowntomonitortheprocess. IfM1ishighertoMthreshold,theprobabilityp21becomessteady andcanbelinearlyrelatedtoN,asshowninFig.7a:

p21max=k3×N (10)

Finally,thethresholdmassMthresholdcanbedeterminedfromthe aboveprocedureandlinkedtotherotationalspeed:

a×Mthreshold+b=p21max (11) k1×N×Mthreshold+(−k1×N×k2×N0.5)=k3×N (12) Mthreshold= (k3+k1×k2×N 0.5) k1 (13)

4. Resultsanddiscussion

Despitethefactthattheabovemodelhasbeendevelopedusing ageneralframework,itcontainsunknownparametersthathave beenfoundfromtheexperimentsdescribedintheprevious sec-tion.Inthissection,wewilltestthevalidityofthisprocedureby eitherconsideringtheabilityofthemodeltodescribesecondary variables,suchasoutflowrate,oroperatethemixerunder condi-tionsfarfromthoseunderwhichparametershavebeenobtained, likeduringstep-likeperturbations.

4.1. Predictingoutletflowrateduringemptying

Fortheproductselected,e.g.,afree-flowingmaterial,the rota-tionalspeedofthestirrercompletelydefinesthedynamicsofthe emptyingprocessofthemixerbyfixingthevalueofthe thresh-oldhold-upweight.Belowthisvalue,anon-homogeneouschain canbeemployed.Aboveit,ahomogeneouschaingivestheruleof semi-batchprocessing.Thisprocedurealsogivesfullaccesstothe evolutionoftheoutletflowrateQout,throughthefollowing:

Qout(t)= M2(t+1t)1t−M2(t) (14) As M2(t+1t)=M2(t)+p21(t)×M1(t) (15)

Qoutcanthenbelinkedtop21:

Qout(t)= p211t(t)×M1(t) (16) Anexampleofcomparisonbetweenexperimentalresultsofthe flow rate,obtainedby Eq.(14),and modelsimulation formthe MarkovchainrepresentationisshowninFig.8fordifferent rota-tionalspeedsofthestirrer.Thedifferentflowregimes,depending onthe value ofthe actualhold-up weightas compared to the thresholdvalue,areagainpointedout:

–ForM1>Mthreshold

Qout(t)= p211tmaxM1(t) (17)

Qout(t)= k31t×NM1(t) (18)

(8)

0 20 40 60 80 100 120 140 0 50 100 150 200 250 300 350 400 M1(g) Qout kg/h) c 0 50 100 150 200 250 300 350 400 0 200 400 600 800 1000 1200 1400 M1(g) Qout model: 10Hz Qout exp: 10Hz Qout model: 20Hz Qout exp: 20Hz Qout model: 30Hz Qout exp:30Hz Qout model:35Hz Qout exp: 35Hz Qout moedel: 40Hz Qout exp: 40Hz Qout (kg/h) c 0 20 40 60 80 100 120 140 0 50 100 150 200 250 300 350 400 M1(g) Qout kg/h) c 0 50 100 150 200 250 300 350 400 0 200 400 600 800 1000 1200 1400 M1(g) Qout model: 10Hz Qout exp: 10Hz Qout model: 20Hz Qout exp: 20Hz Qout model: 30Hz Qout exp:30Hz Qout model:35Hz Qout exp: 35Hz Qout moedel: 40Hz Qout exp: 40Hz Qout (kg/h) c

Fig.8.ComparisonofsimulatedandmeasuredoutflowrateaccordingtoretainedmassM1.

–ForMmin<M1<Mthreshold

Qout(t)=p211t(t)M1(t) (19)

Qout(t)=k11t×N

#

M21(t)−Mmin×M1(t)



(20) Inthislattercase,asthetransitionprobabilitychangeslinearlywith M1,theoutflowrateincreaseswiththehold-upweightaccording toasecondorderpolynomiallaw.

4.2. Predictingtheeffectofstep-likeperturbations

Thepredictabilityofthemodelcanbebetterdemonstratedif itsresultsareplottedagainstdatathathavenotbeenusedinthe determinationofitsparameters.Inthislastpart,wewillcompare modelresultsandexperimentaldataobtainedwhenemptyingthe mixerthroughnegativeorpositivestepsontherotationalspeed, asitmaybethecaseintheindustry.

Fig.9 reports theresults obtainedwhile changing instanta-neouslytherotationalspeedfrom20to40Hzduringanemptying process.Asitcanbeobserved,thepredictionofbothoutflowrate

Qout and holdupweightM1 isexcellentwhencomparedtothe experimentaldata.Thestepinrotationalspeedinducesajumpin flowrate,butalightdecreaseinhold-up.Thisisvalidated experi-mentallyforawiderangeofrotationalspeedofthestirrerdevice (10–50Hz),notreportedhereforclarity.Anotherexampleof com-parisonisshowninFig.10,forwhichanegativestepchangeinthe rotationalspeedfrom35to15Hzhasbeenperformed.Thesame conclusionscanbedrawnonthemodel’sperformance.

The evolution of the outflow rate with the hold up weigh M1 during thesetwotypes ofperturbationis shownin Fig.11. The lines predicted by the model with or without perturba-tion are also figured to better illustrate the effect of the step changes.

Thetransitionprobabilities,usedinthesesimulations,are deter-minedfromtheempiricalequations(4)–(6),andarerepresentedin Fig.12forthepositivestep.Inthisgraph,wecandifferentiatethree phasesdependingonNandM1(seeFig.13forarepresentationin termsofoutflowrate):

• Initially,Nisfixedat20Hz.Inthiscase,asthehold-upweightin themixerM1ishigherthanMthreshold,thevalueofp21isstable

(a)

(b)

0 100 200 300 400 500 600 700 800 900 1000 0 20 40 60 80 100 Temps(s) 0 10 20 30 40 50 Qout model: 20_40Hz Qout exp: 20_40Hz N(Hz) Qout (kg/h) N 20Hz 40Hz 0 1000 2000 3000 4000 5000 6000 0 20 40 60 80 100 Temps (s) 0 10 20 30 M1 model:20_40Hz M1exp: 20_40Hz N (Hz) M1 ( N (H 20Hz 40Hz 0 100 200 300 400 500 600 700 800 900 1000 0 20 40 60 80 100 Temps(s) 0 10 20 30 40 50 Qout model: 20_40Hz Qout exp: 20_40Hz N(Hz) Qout (kg/h) N 20Hz 40Hz 0 1000 2000 3000 4000 5000 6000 0 20 40 60 80 100 Temps (s) 0 10 20 30 40 50 M1 model:20_40Hz M1exp: 20_40Hz N (Hz) M1 (g) N (Hz) 20Hz 40Hz

Fig.9.Comparisonofsimulatedandmeasuredresultsduringemptyingwithapositivestepchangeinrotationalspeed(N=20–40Hz).Effectontheoutflowrate(a)andon theholdupweight(b).

(9)

0 100 200 300 400 500 600 700 800 900 1000 0 20 40 60 80 100 120 140 0 10 20 30 40 50 Qout model: 35_15Hz Qout exp: 35_15Hz N(Hz) Qout (kg/h) (kg/h) N (Hz) 35Hz 15Hz 1000 2000 3000 4000 5000 6000 0 20 40 60 80 100 0 10 20 30 40 50 M1 model:35_15Hz M1exp: 35_15Hz N (Hz) M1 (g) N (Hz) 35Hz 15Hz 0 100 200 300 400 500 600 700 800 900 1000

(a)

(b)

0 20 40 60 80 100 120 140 Temps(s) 0 10 20 30 40 50 Qout model: 35_15Hz Qout exp: 35_15Hz N(Hz) Qout (kg/h) (kg/h) N (Hz) 35Hz 15Hz 0 1000 2000 3000 4000 5000 6000 0 20 40 60 80 100 Temps (s) 0 10 20 30 40 50 M1 model:35_15Hz M1exp: 35_15Hz N (Hz) M1 (g) N (Hz) 35Hz 15Hz

Fig.10. Comparisonofsimulatedandmeasuredresultsduringemptyingwithanegativestepchangeinrotationalspeed(N=35–15Hz).Effectontheoutflowrate(a)and ontheholdupweight(b).

(a)

(b)

0 200 400 600 800 1000 1200 1400 0 500 1000 1500 2000 2500 3000 3500 4000 M1 (g)0 10 20 30 40 Qout model: 35Hz Qout model: 15Hz Qout model: 35_15Hz Qout exp: 35_15Hz N(Hz) Qout (kg/h) N(Hz) 35Hz 15Hz 0 200 400 600 800 1000 1200 1400 0 1000 2000 3000 4000 5000 M1 (g) 0 10 20 30 40 Qout model: 40Hz Qout model: 20Hz Qout model: 20_40Hz Qout exp: 20_40Hz N(Hz) Qout (kg/h) N(Hz) 40Hz 20Hz 0 200 400 600 800 1000 1200 1400 0 500 1000 1500 2000 2500 3000 3500 4000 M1 (g)0 10 20 30 40 Qout model: 35Hz Qout model: 15Hz Qout model: 35_15Hz Qout exp: 35_15Hz N(Hz) Qout (kg/h) N(Hz) 35Hz 15Hz 0 200 400 600 800 1000 1200 1400 0 1000 2000 3000 4000 5000 M1 (g) 0 10 20 30 40 Qout model: 40Hz Qout model: 20Hz Qout model: 20_40Hz Qout exp: 20_40Hz N(Hz) Qout (kg/h) N(Hz) 40Hz 20Hz

Fig.11.Evolutionoftheoutflowrateaccordingtohold-upweightafterapositive(a)andoranegative(b)stepchangeinrotationalspeedN.

(a)

(b)

0 200 400 600 800 1000 1200 1400 0 500 1000 1500 2000 2500 3000 3500 4000 M1 (g) 0 10 20 30 40 Qout model: 35Hz Qout model: 15Hz Qout model: 35_15Hz Qout exp: 35_15Hz N(Hz) Qout (kg/h) N(Hz) 35Hz 15Hz 0 200 400 600 800 1000 1200 1400 0 1000 2000 3000 4000 5000 M1 (g) 0 10 20 30 40 Qout model: 40Hz Qout model: 20Hz Qout model: 20_40Hz Qout exp: 20_40Hz N(Hz) Qout (kg/h) N(Hz) 40Hz 20Hz 0 200 400 600 800 1000 1200 1400 0 500 1000 1500 2000 2500 3000 3500 4000 M1 (g) 0 10 20 30 40 Qout model: 35Hz Qout model: 15Hz Qout model: 35_15Hz Qout exp: 35_15Hz N(Hz) Qout (kg/h) N(Hz) 35Hz 15Hz 0 200 400 600 800 1000 1200 1400 0 1000 2000 3000 4000 5000 M1 (g) 0 10 20 30 40 Qout model: 40Hz Qout model: 20Hz Qout model: 20_40Hz Qout exp: 20_40Hz N(Hz) Qout (kg/h) N(Hz) 40Hz 20Hz

Fig.12.Comparisonofsimulatedandmeasuredvaluesofp21duringtheemptyingprocessafterapositivestepchangeinrotationalspeedN,onthebasisoftimechange(a) orhold-upchange(b).

(p21max=0.07),andthecorrespondingoutflowratechanges lin-earlywithM1accordingtoEq.(18).

• ThenextphasebeginswhenNchangesfrom20to40Hz,att=40s. Immediatelyafterthisstepchange,thevalueofp21increasesto remainstable(p21=0.14)aslongasM1ishigherthanMthreshold forthisnewvalueofN.

• Finally,whenM1becomeslowerthanthethresholdmass,the probabilityincreasesalmostlinearlywiththehold-upweight, andtheoutflowratechangeswithM1accordingtoasecondorder polynomialfunction(Eq.(20)).

The resultsobtainedfor thenegative step changein rotational speed,whilenotpresentedherforclarityreasons,alsosupports theparameteridentificationresults,andconfirmsthatthe proba-bilitytoleavethemixerdependsonlyontherotationalspeedand onthecurrentparticlemassinthemixer.Theempiricalcorrelations thathavebeendevelopedinthisworkseemtoberobustenough todescribethedynamicsoftheemptyingprocess,evenwhenit includesastrongvariationontheprocessvariables.Inotherwords, the“history”oftheprocess,doesnotinfluenceitsdynamics,which correspondstotheMarkovproperty.

(10)

0 50 100 150 200 250 300 0 200 400 600 800 1000 1200 1400 1600 M1 (g) 10 20 30 40 50 60 70 Qout model: 20_40Hz Qout exp: 20_40Hz N Qout (kg/h) N(Hz)

Fig.13.Simulatedandmeasuredevolutionoftheoutflowratewiththehold-upweightM1duringapositivestepchangeinrotationalspeedN,focussingonthesmallmasses.

5. Concludingremarks

In this study, we have developed a Markovchain approach torepresentthedynamicsoftheemptyingprocessofa contin-uouspowdermixer.Thechainisonlyheretoprovideageneral frameworkoftheproblem,andincludescorrelationsobtainedfrom experimentaldatafitting.Thetransitionmatrixonlydependson therotationalspeedofthestirrerandthehold-upweight,asthe chaincaneitherbehomogeneousornon-homogeneousduringthe emptyingprocess.Allobtainedfunctionalrelationshipsarebased oninformationgatheredexperimentallyfromcontinuoussystem operatinginsemi-batchmode,andmayservetothebetter under-standingandmodellingofcontinuousregime.

Animportantindustrialissueisconcernedwiththeeventuality ofstoppingthefeedingsystemduringitsfillingtoavoid pertur-bationduetolow-qualitydosage,lettingthemixeroperateinthe meantime.Fromthepresentstudy,itcanbearguedthat,assoonas theholdupweightisabovethethresholdvalue,thechainis homo-geneousandthemixermaystilloperateadequately,butwitha changedoutflowrate.Butiftheholdupweightpassesthislimit,the chainbecomesnon-homogeneous,andthenon-linearcharacterof theemptyingprocessmaygiverisetosomefluctuationsand per-hapshomogeneitylossofthefinalproduct,astransitionmatrices arechangingateverystep.

Thisworkand themethodologypresented alsosuggest that simple emptying experimentscan berun to determinetheset ofgoverningparameters, atleastfor similarmixinggeometries andfree-flowingpowders.Thiswouldsufficetoelaboratea sim-plemodelofglobalbehaviourofacontinuousmixerthatmaybe usefulforaprocessengineer,asafirststep.

Finally, it may be thought that a number of principles lay-ingbehindpowderblendinginsemi-batchmode,orintransitory regimesingeneral,wouldplayanimportantroleinunderstanding andmodellingthesteady-stateoperationofacontinuoussystem anditsprocesscontrol.Futureworkfromourteamwillbe concen-tratedonthispoint.

References

[1]M. Aoun Habbache, M. Aoun, H. Berthiaux, V. Mizonov, An exper-imental method and a Markov chain model to describe axial and radial mixing in a hoop mixer, Powder Technology 128 (2002) 159–167.

[2]H.Berthiaux,K.Marikh,V.Mizonov,D.Ponomarev,E.Barantzeva,Modelling continuouspowdermixingbymeansofthetheoryofMarkovchains, Particu-lateScienceandTechnology22(2004)379–389.

[3]H.Berthiaux,V.Mizonov,ApplicationofMarkovchainsinparticulateprocess engineering:areview,TheCanadianJournalofChemicalEngineering82(6) (2004)1143–1168.

[4] H.Berthiaux,K.Marikh, C.Gatumel,Continuous mixingof powder mix-tures with pharmaceuticalprocessconstraints,Chemical Engineeringand Processing:ProcessIntensification47(12)(2008)2315–2322.

[5]S.J. Chen, L.T. Fan, C.A. Watson, The mixing of solid particles in a motionless mixer—a stochastic approach, AIChE Journal 18 (5) (1972) 984–989.

[6]J.Doucet,N.Hudon,F.Bertrand,J.Chaouki,Modelingofthemixingof monodis-perseparticlesusingastationaryDEM-basedMarkovprocess,Computersand ChemicalEngineering32(2008)1334–1341.

[7] L.T.Fan,S.H.Shin,Stochasticdiffusionmodelofnon-idealmixinginahorizontal drummixer,ChemicalEngineeringScience34(1979)811–820.

[8]I.Inoue,K.Yamaguchi,Particlemotioninamixer.Mixinginatwo dimen-sional V-type mixer, International Chemical Engineering 10 (3) (1970) 490–497.

[9]F.S.Lai,L.T.Fan,Applicationofdiscretemixingmodeltothestudyofmixingof multicomponentsolidparticles,Industrial&EngineeringChemistry:Process DesignandDevelopment14(4)(1975)403–411.

[10] K.Marikh,H.Berthiaux,V.Mizonov,E.Barantseva,Experimentalstudyofthe stirringconditionstakingplaceinapilotplantcontinuousmixerofparticulate solids,PowderTechnology157(2005)138–143.

[11] Y.Oyama,K.Agaki,Studiesonthemixingofparticulatesolids,KagakuKogaku (Japan)20(1956)148–154.

[12]D.Ponomarev,V.Mizonov,H.Berthiaux,C.Gatumel,J.Gyenis,E.Barantseva,A 2DMarkovchainformodellingpowdermixinginalternatelyrevolvingstatic mixersofSysmix®

type,ChemicalEngineeringandProcessing:Process Inten-sification48(2009)1495–1505.

[13]O.Sudah,D.Coffin-Beach,F.Muzzio,Effectsofblenderrotationalspeedand dischargeonthehomogeneityofcohesiveandfree-flowingmixtures, Interna-tionalJournalofPharmaceutics27(2002)57–68.

[14]R.Wang,L.T.Fan,AxialmixingofgrainsinamotionlessSulzer(Koch)mixer, Industrial&EngineeringChemistry:ProcessDesignandDevelopment15(3) (1976)381–388.

[15]R.Wang,L.T.Fan,Stochasticmodellingofsegregationinamotionlessmixer, ChemicalEngineeringScience32(1977)695–701.

Figure

Fig. 1. Gericke GCM500 equipment showing the stirring mobile (a). General process variables (b).
Fig. 3. Simplified Makov chain representation of the emptying process of the mixer.
Fig. 7. Derivation of correlations between p 21max and N (a), and between threshold hold up and N (b).
Fig. 8. Comparison of simulated and measured outflow rate according to retained mass M 1 .
+3

Références

Documents relatifs

La critique en est tout aussi facilitée : d’une part, la carte n’exprime qu’une relation entre des espaces urbains dispa- rates, église, pont, bâti, espace récupéré pour

We first introduce and solve the constrained termination problem which asks whether there exists an infinite firing sequence starting from s ini which does not.. delete any threads of

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Femtosecond laser, modelocked laser, diode-pumped solid-state laser (DPSSL), optical frequency comb, carrier envelope offset (CEO), self- referencing, phase stabilization,

In the Falck case, the far-sighted family champion of change Alberto Falck—with crucial support of the external CEO Achille Colombo—was able to de-escalate the family business

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

لولأا بابلا ةيناديملا هتاءارجإ و ثحبلا ةيجهنم : 59 - :ةيداصتقلاا عفاودلا ي نكم لا ةيضايرلا ةطشنلأ لغشلا ملاع يف ةيعامجلاو ةيدرفلا ةيدودرملا يف