• Aucun résultat trouvé

Total connectivity: a marker of dynamical functional connectivity applied to consciousness

N/A
N/A
Protected

Academic year: 2021

Partager "Total connectivity: a marker of dynamical functional connectivity applied to consciousness"

Copied!
1
0
0

Texte intégral

(1)

Abstract

 

R.Liégeois

1

,  C.Phillips

2

,  M.  Ali  Bahri

2

,  S.Laureys

2

 &  R.Sepulchre

1,3  

1  Department of Electrical Engineering and Computer Science, University of Liège, Belgium  

2  Cyclotron Research Centre, University of Liège, Belgium

3 Department of Engineering, Trumpington Street, University of Cambridge, Cambridge, United Kingdom

The  correla=on  between  two  =me  series  depends  on  their  phase-­‐logging.  In  fMRI  =me   series  such  spurious  delays  can  arise  from  a  different  hemodynamic  response  func=on   [2]  leading  to  a  significant  decrease  in  the  sta$c  correla=on  ρ:  

           

Figure  1:  (Le))  Two  highly  correlated  signals.  (Right)  If  one  of  the  signals  is  delayed  (for  

example   due   to   a   different   hemodynamic   response   func=on   in   the   case   of   fMRI   =me   series),  correla=on  drops  down.  

Ques6ons:  

①   How  can  we  measure  FC  in  order  to  avoid  the  caveat  presented  in  Figure  1  ?   ②   What  is  the  corresponding  underlying  model  ?  

③   What  is  the  interpreta=on  of  the  markers  of  FC  proposed  here  ?  

è We   show   that   FC   can   be   comprehensively   characterized   by   an   ensemble   of   three   markers:   σs   d   ,and   δ,   taking   into   account   the   sta$c   and   dynamic   contribu=ons   of   connec=vity.  We  define  this  set  as  the  total  connec6vity  (TC)  and  show  its  applica=on   on  fMRI  data  coming  from  pa=ents  undergoing  four  different  states  of  consciousness:  

 

Figure  2:  Average  and  StD  values  of  the  three  markers  of  TC  in  four  different  states  of  

consciousness  and  in  four  networks.    

 

 

Highlights

 

Methods  and  Answers

 

Take-­‐home  Messages

 

REFERENCES  

[1]  Hutchison,  R.M.  et  al.  (2013),  ‘Dynamic  func=onal  connec=vity:  Promise,  issues,  and  interpreta=ons’,  Neuroimage,  vol.  80,  pp.  360–78.  [2]  

Marrelec,   G.   et   al.   (2009),   ‘Robust   Bayesian   es=ma=on   of   the   hemodynamic   response   func=on   in   event-­‐related   BOLD   fMRI   using   basic   physiological  

informa=on.  Human  Brain  Mapping,  Wiley-­‐Blackwell,  2003,  19  (1),  pp.  1-­‐17.  [3]  Boveroux,  P.  et  al.  (2010),  ‘Breakdown  of  within-­‐  and  between-­‐network  

res=ng  state  fMRI  connec=vity  during  propofol-­‐induced  loss  of  consciousness’,  Anesthesiology,  vol.  113,  pp.  1038–53.  [4]  Avven=,  E.  et  al.  (2011).  ‘ARMA  

iden=fica=on  of  graphical  models’,  IEEE  Trans.  Automat.  Contr,  vol.  58,  pp.  1167–78.  

ACKNOWLEDGEMENTS   &   SPONSORS  

-­‐   This   paper   presents   research   results   of   the   Belgian   Network   DYSCO   (Dynamical   Systems,   Control,   and  

Op=miza=on),  funded  by  the  Interuniversity  Alrac=on  Poles  Programme  ini=ated  by  the  Belgian  Science  Policy  Office.  

Total  connec=vity:  a  marker  of  dynamical  func=onal  connec=vity  applied  to  consciousness    

C

YCLOTRON

 R

ESEARCH

 C

ENTRE

   |  

hlp://www.cyclotron.ulg.ac.be    

|  Raphaël  Liégeois  |  

R.Liegeois@ulg.ac.be

 

fMRI  data  

Data  was  collected  from  19  healthy  volunteers.  The  subjects  underwent  four  states  of   consciousness:  wakefulness  (W1),  mild  seda=on  (S1),  deep  seda=on  (S2)  and  subsequent   recovery   of   consciousness   (W2).   The   preprocessing   includes   0.007-­‐0.1Hz   bandpass   filtering  and  global  signal  regression.  Representa=ve  seeds  of  four  res=ng  state  networks   (Default  Mode,  Execu=ve  Control,  Visual  and  Auditory  networks)  were  then  selected  [3].  

Auto-­‐regressive  (AR)  models  

AR  models  assume  that  each  =me  sample  can  be  expressed  from  p  previous  samples:    

 

where  X(t)  is  a  vector  of  size  (1×n)  encoding  the  n  variables  at  =me  t,  Ai  is  a  (n×n)  matrix   encoding  the  contribu=on  of  X(t−i)  to  X(t),  p  is  the  order  of  the  AR(p)  model,  ε(t)∼N(0,Σ)   is  gaussian  white  noise.  

Following  [4]  we  iden=fy  the  AR(1)  model  corresponding  to  the  fMRI  =me  series  which   results  in  an  es=mated  power  spectral  density  (PSD):  

   

where  Rk  are  the  es=mated  covariance  lags.  R0  encodes  the  classical  sta$c  connec=vity   (no  lag)  whereas  R1  captures  the  dynamical  proper=es  of  connec=vity.    

Total  connec6vity  

In  order  to  exploit  the  informa=on  contained  in  R0  and  R1,  we  define  three  markers  of   connec=vity  within  each  network:    

•  σs  is  the  average  classical  sta=c  connec=vity  in  the  network,  computed  as  the  mean  of   the  off-­‐diagonal  terms  of  R0.    

•  σd   is   the   average   dynamic   connec=vity   which   measures   how   each   region   is   dynamically   connected   to   each   other,   and   is   computed   as   the   mean   of   the   off-­‐ diagonal  terms  of  R1.    

•  δ  is  a  measure  of  the  dynamics  driving  a  =me  course  based  on  the  influence  that  each   of  the  n  regions  has  on  itself,  or  internal  memory.  It  is  computed  as  the  mean  of  the   diagonal  terms  of  R1.  

X(t) =

A

i

i=1 p

X(t − i) +

ε

(t)

Using  an  auto-­‐regressive  model  of  fMRI  =me  series,  we  show  that  total  connec6vity  provides  a  comprehensive  descrip=on  of  sta=c  and  dynamic  proper=es  of  FC:  

 

è

The  classical  sta=c  connec=vity  is  a  par=al  measure  of  connec=vity,  

è

Having  a  decrease  in  sta=c  connec=vity  σ

s

 could  be  compensated  by  an  increase  in  dynamic  connec=vity  σ

d

 (as  in  the  EXN,  see  Figure  2)  meaning  that                          

Time Time

Synchronized signals delayed Unsynchronized signals

W1 S1 S2 W2 0 0.1 0.2 0.3 W1 S1 S2 W2 0 0.1 0.2 s d W1 S1 S2 W2 0 0.2 0.4 0.6 DMN EXN AUD VIS

State of consciousness

Φ =

R

k k=[0,1]

exp( jk

θ

) →

0 = R * +R * 0 2 0 0 2 0 0 2 0 1

Answers  to  the  ques6ons  

①  σs,   σd,   and   δ   are   complementary   measures   of  

connec=vity   forming   what   we   define   as   total  

connec6vity   (TC).   Figure   3   shows   that   TC   does  

not  disappear  if  a  signal  is  delayed.    

②  AR  models  are  basic  dynamical  models  allowing   to  capture  sta=c  and  dynamical  contribu=ons  of   connec=vity.   Time   series   are   considered   as   the   realiza=on   of   one   random   process   instead   of   a   collec=on  of  realiza=ons  of  random  variables.  

③  -­‐  σs    can  be  considered  as  the  sta=c  contribu=on   of   connec=vity.   In   Figure   2   we   observe   a   decrease   of   this   marker   during   S2   for  

consciousness-­‐related   networks   (DMN,   EXN).            

-­‐   σd   can   be   considered   as   the   dynamic  

contribu=on   of   connec=vity.   Figure   2   shows   an   increase  of  this  marker  during  S2,  meaning  that   connec=vity   does   not   disappear   but   is   ‘shi•ed’   during  this  state.                          

0.25 0.5 0.75 1 δ σ d σs 0.25 0.5 0.75 1 δ σ d σ s 0.25 0.5 0.75 1 δ σ d σ s 0.25 0.5 0.75 1 δ σd σs Time Time Time Time

Correla!on in structured signals

«Delayed correla!on» in structured signals

Correla!on in noise

«Delayed correla!on» in noise

Figure  3:  Total  connec=vity  in  four  

different  and  representa=ve  cases.    

-­‐   δ   measures   temporal   consistency,   or   coherence   of   =me   series   and   can   be   used   to   disentangle  noise  from  ‘structured’  signals.  

In  the  last  years  func=onal  connec=vity  (FC)  has  become  one  of  the  most  popular  tools   to   explore   and   characterize   informa=on   contained   in   fMRI   =me   series.   The   classical   hypothesis  on  FC  consists  of  considering  it  as  constant  (or  sta$c)  over  the  whole  fMRI   =me  series.  However,  it  has  been  emphasized  recently  that  FC  should  be  treated  as  a   dynamical  quan=ty,  for  example  by  using  sliding  windows  of  the  fMRI  =me  courses  in   order  to  compute  a  dynamical  FC  [1].  

We  propose  a  comprehensive  marker  of  FC  based  on  an  auto-­‐regressive  (AR)  model  of   fMRI   =me   series   capturing   its   sta$c   and   dynamic   proper=es.   We   call   it   total  

connec6vity   and   we   illustrate   the   benefits   of   our   approach   on   data   of   pa=ents  

undergoing  four  different  states  of  consciousness.      

Références

Documents relatifs

désigner toute personne de civilisation britannique, de langue anglaise, toute institution considérée comme caractéristique de la Grande Bretagne ou des Etats-Unis. Cet

We showed that (1) the shape of a dose-incidence curve is dominated by the distribution of tolerance of individuals in the given population and that (2) good fit of a cumulative

Recently, the authors of [7] rely on two degenerate methods for solving the classical Fredholm integral equation of the second kind, based on (left and right) partial approxi-

7 - دورُط : دورط ىلإ نومتني نلايع نب سيق نب مهف نب ناندع نب دعس نب رازن نب رضم نب ، ُس اولصو عبارلا نرقلا يف فو و يداولا ةنيدم اترمع نيتيساسأ نيتليبق

histoire de nationalism algérien. - ةيبرعلاب عجارملا : مىا نمف يا بأ روتكدلا بتك ي ت يتلا و للها دعس مساقلا ةميق ربتع ل ولوانت ام للاخ نم تايصخشلا و

Unité de recherche INRIA Sophia Antipolis 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex France Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC

Keywords Domain decomposition · Optimized boundary conditions · Navier Stokes equations · Schwarz Alternating Method.. PACS 65N55

We propose several secure WSN protocols for revocations and renewal of cryptographic keys in the network based on symmetric encryption and elliptic curve cryptography (ECC).. For