• Aucun résultat trouvé

Coccolithophore blooms in the Bay of Biscay: Results from the PEACE project

N/A
N/A
Protected

Academic year: 2021

Partager "Coccolithophore blooms in the Bay of Biscay: Results from the PEACE project"

Copied!
33
0
0

Texte intégral

(1)

Coccolithophore blooms in the northern

Bay of Biscay: results from PEACE

project

Jérôme Harlay

Unité d’océanographie Chimique

Université de Liège

(2)

Co-authorship

• Alberto Borges, Bruno Delille, Kim Suykens (ULg, Belgium)

• Lei Chou, Caroline De Bodt (ULB, Belgium)

• Koen Sabbe, Nicolas Van Oostende (UGent, Belgium)

• Anja Engel, Judith Piontek, Corinna Borchard (AWI, Germany)

ROLE OF PELAGIC CALCIFICATION AND

EXPORT OF CARBONATE PRODUCTION

IN CLIMATE CHANGE

(2005-2009)

(3)

Outline

• Introduction

– Pelagic Calcification

– Coccolithophores

– Problematic

– Objectives

• Material and Methods

– Study site

– Pelagic processes

– Benthic processes

• Results

• Synthesis

• Conclusions

(4)

Balch

et al.

, 2007 – DSR II

Coccolithophores

(Balch

et al

., 2007)

~1600 10

12

g C yr

-1

Foraminifera (Langer

et al.

, 1997)

~162 10

12

g C yr

-1

Pteropods (Honjo, 1981)

~160 10

12

g C yr

-1

Coral Reefs (Vescei, 2004) ~90 10

12

g C yr

-1

Benthic Molluscs, Echinoderms… ?

They are the main contributors to

contemporary biogenic CaCO

3

precipitation

Estimates of global calcification rates

(5)

Coccolithophores

play a key role in the biogeochemical cycle of the

world Ocean:

- Primary producers:

- Key role in total alkalinity (TA) distribution:

- CaCO

3

ballasts particulate organic carbon (POC) and participates to

the biological pump that removes CO

2

from the surface ocean to the

ocean interior.

O

H

CO

CaCO

Ca

HCO

3

2

3

2

2

2

+

+

+

+

(

2

) (

106

3

)

16

3

4

2

2

4

2

3

2

16

17

122

138

106

CO

+

NO

+

H

PO

+

H

+

+

H

O

CH

O

NH

H

PO

+

O

Coccolithophores

(6)

Problematic

How important are pelagic calcifiers in the biogeochemical C cycle?

• “Carbonate rocks” is the most important reservoir of C on Earth

Berner, 1998

• CaCO

3

production is a biotic process

• Ocean acidification and Global

Warming will affect the distribution

and the abundance of the pelagic

calcifiers.

(7)

Objectives

PEACE project: 3 cruises in the Bay of Biscay (May-June

2006; 2007 and 2008) :

Objectives: ecosystem dynamics and

bentho-pelagic coupling during

coccolithophore blooms

ROLE OF PELAGIC CALCIFICATION AND

EXPORT OF CARBONATE PRODUCTION

IN CLIMATE CHANGE

(2005-2009)

Belgian Federal Science Policy Office

Understanding the functioning and characteristics of

coccolithophore blooms

is of crucial importance to

(8)

Outline

• Introduction

– Pelagic Calcification

– Coccolithophores

– Problematic

– Objectives

• Material and Methods

– Study site

– Pelagic processes

– Benthic processes

• Results

• Synthesis

• Conclusions

(9)

Material and Methods

200

100

0

400

0

200

0

12 °W

10 °W

8 °W

6 °W

4 °W

48 °N

50 °N

52 °N

1

2

3

4

5

6

7

8

2

FR

U.K.

IR

Study site: Northern Bay of Biscay

NE Altantic Ocean

(10)

Pelagic Processes

Pelagic Measurements (2006):

-

14

C-Primary production

-

14

C-Calcification

- O

2

-based Dark Community Respiration

- DSi, PO

4

-

HPLC pigments (Chemtax re-analysis)

- POC, PIC

-Total Alkalinity, pCO

2

-

3

[H]-Thy Bacterial Production

Working hypothesis:

the thermal stratification favours the blooming of

Coccolithophores at the continental margin.

DIATOMS

COCCOLITHOPHORES

DINOFLAGELLATES

Turbulence

N,

P,

Ch

l-a

Low

High

Lo

w

H

igh

Succession

Margalef’s Mandala (1997)

Succession

We applied an original approach based on the Margalef’s Mandala.

“A shift towards oligotrophy is accompanied by

a change in the relative dominance of

(11)

Ben

Benthic Processes

- biogeochemical water-sediment fluxes (O

2

, TA, NO

3

-

)

- FO

2

: Benthic respiration rate

- FTA*:

corrected for:

- nitrification/denitrification :

- aerobic OM remineralisation:

- sediment characteristics (grain size, chlorophyll-a

(Chl-a), POC and PIC content)

Water sampled above the bottom at depths between

208 and 4460 m)

(12)

Outline

• Introduction

– Pelagic Calcification

– Coccolithophores

– Problematic

– Objectives

• Material and Methods

– Study site

– Pelagic processes

– Benthic processes

• Results

• Synthesis

• Conclusions

(13)

0.2

0.4

0.8

2

5

0.08

1

2

3

4

5

6

7

8

2006/06/05

1

2

3

4

6

7

8

2006/06/05

5

6 W

8 W

12 W

10 W

14 W

14 W

12 W

10 W

8 W

6 W

a

52

51

50

49

48

47

b

6 W

8 W

12 W

10 W

14 W

52

51

50

49

48

47

1

3

4

5

6

7

8

2006/06/05

c

2

SST

Chl-a

Reflectance

4000 m

200 m

Internal

waves

mixing

Advection

Satellite images

(14)

The onset of the coccolithophore bloom (L

wn

(555)) coincides

with a

warming

(SST) and a

shoaling of the mixed layer depth

after the first peak of Chl-a in early April

0

50

100

150

200

M

LD

[

m

]

J

F

M

A

M

J

J

A

S

J

F

M

A

M

J

J

A

S

0

1

2

3

4

5

10

12

14

16

18

20

22

C

hl

-a

[

µ

g

L

-1

]

SST

[

°C

]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

L

w

n

(

555)

[

m

W

cm

-2

µm

-1

sr

-1

]

Chl-a

L

wn

(555)

SST

MLD

Time series

Data from:

GIOVANNI (Lwn (555), Chl-a)

GODIVA (Grid for Ocean Diagnostics, Interactive Visualisation and Analysis) (MLD)

Reynolds et al. (2002) (SST)

(15)

0

20

40

60

80

100

120

140

160

10.5

11.5

12.5

13.5

14.5

T [°C]

d

e

p

th

[

m

]

2

1

5

4 3 4b 1b 8 7 6

The vertical profiles of temperature

exhibit a warming over the shelf,

compared to the station located on

the shelf-break (in grey).

Environmental Settings

200 1000 4000 2000

12 °W

10 °W

8 °W

6 °W

4 °W

48 °N

50 °N

52 °N

1

2

3

4

5

6

7

8

2

FR

U.K.

IR

(16)

0

20

40

60

80

100

120

140

160

1026.8

1026.9

1027

1027.1

1027.2

density

d

e

p

th

(

m)

We used the

density gradient

to build a

stratification index

as an indicator for

the preferential niche of coccolithophores to characterize the status of the

different stations regarding the

bloom development

.

(17)

0

20

40

60

80

100

120

140

160

1026.8

1026.9

1027

1027.1

1027.2

density

d

e

p

th

(

m)

Stratification

index

Higher index corresponds to

more stratified conditions

We used the

density gradient

to build a

stratification index

as an indicator for

the preferential niche of coccolithophores to characterize the status of the

different stations regarding the

bloom development

.

(18)

0

20

40

60

80

100

120

140

160

1026.8

1026.9

1027

1027.1

1027.2

density

d

e

p

th

(

m)

Stratification

index

Higher index corresponds to

more stratified conditions

We used the

density gradient

to build a

stratification index

as an indicator for

the preferential niche of coccolithophores to characterize the status of the

different stations regarding of

bloom development

.

Pelagic: Results

Example: Integrated Chl-a concentration

0.0

0.2

0.4

0.6

0.8

0

40

80

120

160

2

1

4

1b

4b 7

8

5

r²=0.62

stratification degree (kg m

-3

)

C

hl

-a

(

m

g m

-2

)

Stratification index

Slope-stations

Good mixing

Shelf-stations

(19)

0.0

0.2

0.4

0.6

0.8

0.00

0.04

0.08

0.12

0.16

2

1

4

1b

4b

7 8

5

r²=0.56

∆ρ

100m-3m

[kg m

-3

]

PO

4

[

µ

m

ol

L

-1

]

0.0

0.2

0.4

0.6

0.8

0.0

0.5

1.0

1.5

2.0

2

1

4

1b

4b

7

8

5

∆ρ

100m-3m

[kg m

-3

]

D

S

i [

µ

m

o

l L

-1

]

Pelagic: Results

The availability of PO

4

decreased with increasing

stratification.

DSi remained at limiting

concentration for diatom’s

growth (< 2.0 µmol L

-1

)

(20)

Pelagic: Results

0.0

0.2

0.4

0.6

0.8

0

10

20

30

40

50

2

1 4

1b

4b 7

8

∆ρ

100m-3m

[kg m

-3

]

%

C

hl

-a

D

ia

tom

s

0.0

0.2

0.4

0.6

0.8

0

10

20

30

40

50

2

1

4

1b

4b

7

8

r²=0.30

∆ρ

100m-3m

[kg m

-3

]

%

C

hl

-a

C

oc

c

o.

0.0

0.2

0.4

0.6

0.8

0

5

10

15

20

25

2

1

4

1b

4b

7

8

r²=0.28

∆ρ

100m-3m

[kg m

-3

]

%

C

hl

-a

D

inof

l.

The relative proportion

of diatoms was unrelated

to stratification

(21)

Pelagic: Results

The relative proportion

of diatoms was unrelated

to stratification

The relative proportion

of coccolithophores

decreased while

dinoflagellates

increased with

stratification

Agreement with the

Mandala

0.0

0.2

0.4

0.6

0.8

0

10

20

30

40

50

2

1 4

1b

4b 7

8

∆ρ

100m-3m

[kg m

-3

]

%

C

hl

-a

D

ia

tom

s

0.0

0.2

0.4

0.6

0.8

0

10

20

30

40

50

2

1

4

1b

4b

7

8

r²=0.30

∆ρ

100m-3m

[kg m

-3

]

%

C

hl

-a

C

oc

c

o.

0.0

0.2

0.4

0.6

0.8

0

5

10

15

20

25

2

1

4

1b

4b

7

8

r²=0.28

∆ρ

100m-3m

[kg m

-3

]

%

C

hl

-a

D

inof

l.

(22)

Pelagic: Results

0

100

200

5

2

1

4

1b

4b

7

8

r²=0.22

PP (

m

m

o

l C

m

-2

d

-1

)

0

20

40

60

2

5

1

4

1b

4b

7

8

r²=0.32

CAL

(

m

m

o

l C m

-2

d

-1

)

0.0

0.2

0.4

0.6

0.8

0

50

100

150

2

1

4

1b

4b

7

8

r²=0.45

∆ρ

100m-3m

[kg m

-3

]

DCR (

m

m

o

l C m

-2

d

-1

)

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

5

2

1

4

1b

4b

7

8

r²=0.73

∆ρ

100-10

[kg m

-3

]

CAL

:P

P

Shelf-break/Shelf

If one excludes the

stations located on

the

shelf-break

, the

CAL:PP ratio increases

with increasing

stratification over

the

shelf

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

2

1 4

1b

4b

7

8

r²=0.45

∆ρ

100m-3m

[kg m

-3

]

PI

C

:PO

C

An increase of the

process ratio

associated to a

decrease of the

standing-stock ratio

would indicate the

export of PIC to the

(23)

Pelagic: Results

0

100

200

5

2

1

4

1b

4b

7

8

r²=0.22

PP (

m

m

o

l C

m

-2

d

-1

)

0

20

40

60

2

5

1

4

1b

4b

7

8

r²=0.32

CAL

(

m

m

o

l C m

-2

d

-1

)

0.0

0.2

0.4

0.6

0.8

0

50

100

150

2

1

4

1b

4b

7

8

r²=0.45

∆ρ

100m-3m

[kg m

-3

]

DCR (

m

m

o

l C m

-2

d

-1

)

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

5

2

1

4

1b

4b

7

8

r²=0.73

∆ρ

100-10

[kg m

-3

]

CAL

:P

P

Shelf-break/Shelf

The CAL:PP ratio

increases with

increasing

stratification over

the

shelf

if one

excludes the stations

located on the

slope

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

2

1 4

1b

4b

7

8

r²=0.45

∆ρ

100m-3m

[kg m

-3

]

PI

C

:PO

C

An increase of the

process ratio

associated to a

decrease of the

standing-stock ratio

would indicate the

export of PIC to the

(24)

Pelagic: Results

0

100

200

5

2

1

4

1b

4b

7

8

r²=0.22

PP (

m

m

o

l C

m

-2

d

-1

)

0

20

40

60

2

5

1

4

1b

4b

7

8

r²=0.32

CAL

(

m

m

o

l C m

-2

d

-1

)

0.0

0.2

0.4

0.6

0.8

0

50

100

150

2

1

4

1b

4b

7

8

r²=0.45

∆ρ

100m-3m

[kg m

-3

]

DCR (

m

m

o

l C m

-2

d

-1

)

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

5

2

1

4

1b

4b

7

8

r²=0.73

∆ρ

100-10

[kg m

-3

]

CAL

:P

P

Shelf-break/Shelf

The CAL:PP ratio

increases with

increasing

stratification over

the

shelf

if one

excludes the stations

located on the

shelf-break

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

2

1 4

1b

4b

7

8

r²=0.45

∆ρ

100m-3m

[kg m

-3

]

PI

C

:PO

C

An increase of the

process ratio

associated to a

decrease of the

standing-stock ratio

would indicate the

(25)

Trophic status of the bloom

(2006)

If PP=GPP:

Au

tot

rop

hy

H

et

er

ot

rop

hy

2

1

7

4

4bis

1bis

8

Pelagic: Results

200 1000 4000 2000

12 °W

10 °W

8 °W

6 °W

4 °W

48 °N

50 °N

52 °N

1

2

3

4

5

6

7

8

2

FR

U.K.

IR

r

2

= 0.98

0.0

0.5

1.0

1.5

2.0

2.5

0

50

100

150

200

GPP [mmol C m

-2

d

-1

]

G

PP:D

C

R

0

20

40

60

80

100

120

140

BP

[

mmo

l C m

-2

d

-1

]

GPP:DCR

BP

(26)

Pelagic: Synthesis

(Frankignoulle

et al. , 1994)

Net CO

2

flux = f

PP

+f

CAL

+f

DCR

NCP (net community production) = PP-DCR

Aphotic C demand = Respiration in the aphotic

zone

O

2

:C for Resp. = 1:1

7

.

0

CaCO

CO

3

2

=

=

ψ

Stations

Rate measurements (mmol C m

-2

d

-1

)

CO

2

fluxes (mmol CO

2

m

-2

d

-1

)

C fluxes (mmol C m

-2

d

-1

)

14

C prim.

Prod. (PP)

14

C calcif.

(CAL)

(DCR)

Resp.

f

PP

f

CAL

f

DCR

Net CO

2

flux based

on

metabolic

rates

Net CO

2

flux based

on

measured

pCO

2

NCP

Aphotic C

demand

2

180.0

51.4

81.3

-180.0

30.9

81.3

-67.9

-11.4

98.7

89.0

1

79.3

7.5

73.7

-79.3

4.5

73.7

-1.0

-17.8

5.5

98.2

7(HR)

75.1

36.1

81.4

-75.1

21.7

81.4

28.0

-10.2

-6.4

35.1

4(HR)

54.0

12.9

78.9

-54.0

7.8

78.9

32.6

-13.4

-24.9

66.9

1bis

59.2

15.8

103.5

-59.2

9.5

103.5

53.8

-16.1

-44.4

159.0

4bis(HR)

54.6

12.5

101.2

-54.6

7.5

101.2

54.1

-10.7

-46.6

168.5

8(HR)

35.5

13.3

104.3

-35.5

8.0

104.3

76.8

-8.5

-68.8

72.3

Our approach has some caveats:

- Steady state is assumed

- No dissolved C production nor

C-overconsumption products are

included

(27)

Pelagic: Synthesis

GPP = 70 ± 44 mmolC/m²/d

Cal = 34 ± 32 mmol/m²/d

Pelagic respiration = 95 ± 39 mmolC/m²/d

CO2 fluxes C fluxes

Station date Pelagic Calcification

PIC export

GPP 0.7*CAL PCR GPP:PCR NC flux based on Air-sea metabolic rates CO2 Flux

NCP Aphotic Benthic demand

2 1/06/2006 1 31/05/2006 7 7/06/2006 4 2/06/2006 1bis 9/06/2006 4bis 8/06/2006 8 6/06/2006 5 2/06/2006 Average 2006 51 8 36 13 16 13 13 24 22 35 15 14 10 11 10 7 19 15 -180 36 93 1.9 -51 -12 -79 5 81 1.0 7 -13 -75 25 89 0.8 40 -8 -54 9 89 0.6 44 -10 -59 11 121 0.5 73 -13 -55 9 117 0.5 71 -9 -36 9 116 0.3 90 -7 -97 17 -7 -79 15 101 0.8 39 -10 87 118 -2 73 -14 41 -35 74 -62 177 -63 155 -80 42 -24 97 3.8 2.3 7.2 4.7 4.5 11 16/05/2007 9 14/05/2007 2bis 24/05/2007 8 13/05/2007 10 15/05/2007 4 23/05/2007 8bis 21/05/2007 2 10/05/2007 5bis 22/05/2007 5 12/05/2007 7 23/05/2007 Average 2007 65 44 24 82 118 47 59 140 42 10 36 61 -38 26 18 23 11 14 11 10 8 6 8 9 -198 45 78 2.5 -74 -15 -134 31 55 2.4 -48 -11 -96 17 62 1.5 -17 -6 -118 57 117 1.0 57 -12 -56 82 65 0.9 91 -14 -72 33 85 0.8 46 -10 -58 41 96 0.6 79 -14 -54 98 90 0.6 134 -6 -42 30 88 0.5 76 -14 -30 7 90 0.3 67 -14 -41 25 -15 -82 42 83 1.1 41 -12 120 136 79 132 34 122 0.2 102 -9 46 -13 107 -38 -36 87 -46 90 -60 88 152 3 106 6.0 5.8 4.7 5.3 5.7 5.5 1 7/05/2008 9bis 21/05/2008 12 18/05/2008 6 9/05/2008 8 11/05/2008 5bis 22/05/2008 11 14/05/2008 13 20/05/2008 10 13/05/2008 5 10/05/2008 9 12/05/2008 2 8/05/2008 4 23/05/2008 26 67 15 14 21 17 5 24 10 6 31 2 10 30 14 8 7 11 14 7 11 9 5 8 3 9 -154 18 54 2.9 -82 -6 -75 47 68 1.1 39 -8 -43 10 46 0.9 13 -8 -36 10 39 0.9 13 -3 -55 15 62 0.9 22 -8 -72 12 86 0.8 27 -7 -38 4 51 0.7 17 -9 -57 17 87 0.7 46 -9 -45 7 85 0.5 47 -9 -26 4 76 0.3 54 -8 -41 22 174 0.2 155 -10 -16 1 122 0.1 107 -8 -48 7 -6 100 118 8 77 -3 81 -3 84 -7 51 -15 73 -13 52 -30 142 -40 63 -50 61 -134 60 -106 158 6.2 8.4 6.8 4.7 4.1 4.1 5.4 6.5 3.7 7.3 6.6 Average 2008 19 10 -54 13 79 0.8 38 -8 -24 85 5.8 3 year average 34 ± 32 11 ± 11 -70 ± 44 24 ± 22 86 ± 28 0.9 ± 0.7 39 ± 56 -10 ± 3 -15 ± 57 95 ± 39 5.5 ± 1.5

Cruise 1

2006

Cruise 2

2007

Cruise 3

2008

Average values

(2006-2008)

(28)

Benthic results

Characteristic of bottom waters:

Low temperature (10.5-11°C)

O

2

% ~85% -> oxygenated waters

Ω

CAL

3.5

NO

3

-

: 3.9-11 µmol/L

DSi: 1.4-4.7 µmol/L

Chl-a: 0.03-0.58 µg/L

SPM: 0.2-1.5 mg/L

POC: 14-97 µgC/L

PIC: 5-72 µgC/L

Characteristics of surface

sediments:

Visual aspect: recent phytoplankton

deposition

Fine to coarse sandy sediments (median

grain size: 190-285 µm)

Chl-a content: 0.01-0.95 µgChl-a/g

Low %OM: 1.4-4.0%

%PIC: 1.5-9.5% (mainly bivalve debris)

(29)

Benthic: Results

Core incubations:

FO

2

: -2.4 to -8.4 mmol/m²/d

FTA*: -1.1 to +3.7 mmol/m²/d

negative values = noise

Average Dissolution rates:

FTA*/2= 0.33 mmol CaCO

3

/m²/d)

Average CaCO

3

dissolution to OC oxidation ratio:

-FTA*/(2xFO

2

)= 0.06 ± 0.09

metabolic driven dissolution of CaCO

3

in sediments underlying bottom waters

highly over-saturated with respect to CaCO

3

(Jahnke and Jahnke, 2004)

Low CaCO

3

dissolution rates compared to other studies

(e.g.) due to high saturation state Ω

CAL

3.5 in the Bay of

Biscay

-14

-12

-10

-8

-6

-4

-2

0

0

1

2

3

4

5

6

7

8

9

this study

Jahnke e t al. (1997)

Jahnke and Jahnke (2000)

Be re lson e t al. (2007)

decreasing

CAL

of bottom waters

Silv e rbe rg e t al. (2000)

FO

2

(mmol O

2

m

-2

d

-1

)

Ca

CO

3

di

s

s

ol

ut

io

n (

m

m

ol

m

-2

d

-1

)

-10

-8

-6

-4

-2

0

0

1

2

3

4

5

FO

2

(mmol O

2

m

-2

d

-1

)

FTA

* (

m

m

ol

m

-2

d

-1

)

From Suykens et al, 2011

(30)

Outline

• Introduction

– Pelagic Calcification

– Coccolithophores

– Problematic

– Objectives

• Material and Methods

– Study site

– Pelagic processes

– Benthic processes

• Results

• Synthesis

• Conclusions

(31)

Synthesis

Average CaCO

3

Dissolution rate = 0.33 ± 0.47 mmol/m²/d

~1% of the Pelagic Calcification (34 ± 32 mmol/m²/d)

Average Benthic respiration: -5.5 ± 1.5 mmol O

2

/m

2

/ d

~8% of the Pelagic Primary production (70 ± 44 mmolC/m²/d)

~6% of the Pelagic respiration in the aphotic zone (95 ± 39 mmolC/m²/d)

Correlation between FTA and FO

2

=> metabolic driven CaCO

3

dissolution in the

sediments

(32)

Conclusions

Bentho-pelagic coupling:

CaCO

3

dissolution:

is a metabolic process that occurs in waters over-saturated with

respect to calcite and

is driven by OM respiration in the sediment

(in contrast to biogenic silica dissolution that is a thermodynamic process)

CaCO

3

dissolution and benthic respiration are low compared to surface

productions

Evidence of a decoupling of calcification by coccolithophores and the

dissolution of CaCO

3

in the sediments.

PIC produced by coccolithophores is either:

stored in the sediments or

exported out of the system (advection)

(33)

Thank you

for your

attention!

Références

Documents relatifs

On mesure donc bien ici les enjeux de l’entrée dans l’écrit pour le public UPE2A - NSA : l’acquisition de compétences techniques est indispensable pour entrer en contact

sont pas négligeables dans un cours de français langue étrangère pour les enfants car elles.. permettent, encore une fois, à ceux-ci d’écouter des structures

Nous avons pensé aux niveaux du Cadre Européen Commun de Référence pour les Langues (CECRL : A1, A2, B1, B2, C1 et C2). L’avantage d’utiliser ces niveaux était double. Dans

Dans ce projet, les comportements morphologiques des adjectifs ont pu être décrits selon un modèle spécifique à cette recherche grâce à une liste de comportements découpant

critique du pouvoir, dévoré par la corruption, et révélant la nature humaine ôtée de tout masque. Dans l’œuvre littéraire de Mahfouz, il s’agit toujours de l’homme, saisi

L’ensemble de ces crit` eres d´ efinit la fonction de fitness qui permet d’´ evaluer et de classer les diff´ erents param´ etrages de notre r´ eseau en fonction de leur adaptation

Effect of high-frequency repetitive transcranial magnetic stimulation on brain excit- ability in severely brain-injured patients in minimally conscious or vegetative state.

Second part: what relations should maintained between tax law and civil law (de lege ferenda). • This part aims to propose a new model