• Aucun résultat trouvé

Computational homogenization of cellular materials with propagation of instabilities through the scales

N/A
N/A
Protected

Academic year: 2021

Partager "Computational homogenization of cellular materials with propagation of instabilities through the scales"

Copied!
1
0
0

Texte intégral

(1)

EMMC14 - European Mechanics of Materials Conference 2014 Gothenburg August 27-29, 2014

Computational homogenization of cellular materials with

propagation of instabilities through the scales

Van-Dung Nguyen, Ludovic Noels

University of Liege (ULg), Department of Aerospace and Mechanical Engineering Computational & Multiscale Mechanics of Materials

Chemin des Chevreuils 1, B-4000 Liège, Belgium emails: {Vandung.Nguyen,L.Noels}@ulg.ac.be

The aim of this work is to develop an efficient multi–scale finite element framework to capture the buckling instabilities in cellular materials.

As a classical multi–scale computational homogenization scheme looses accuracy with the apparition of the macroscopic localizations resulting from the micro–buckling, the second–order multi–scale computational homogenization scheme1

is considered. This second–order computa-tional framework is herein enhanced with the following novelties so that it can be used for cellular materials.

First, at the microscopic scale, the periodic boundary condition is used because of its ef-ficiency. As the meshes generated from cellular materials exhibit a large void part on the boundaries and are not conforming in general, the classical enforcement based on the match-ing nodes cannot be applied. A new method based on the polynomial interpolation2

without the requirement of the matching mesh condition on opposite boundaries of the representative volume element (RVE) is developed.

Next, in order to solve the underlying macroscopic Mindlin strain gradient continuum of this second–order scheme by the displacement–based finite element framework, the treatment of high order terms is based on the discontinuous Galerkin (DG) method to weakly impose the C1-continuity3

.

Finally, as the instability phenomena are considered at both scales of the cellular materials, the path following technique is adopted to solve both the macroscopic and microscopic problems4

. The micro–buckling leading to the macroscopic localization and the size effect phenomena can be captured within the proposed framework. In particular it is shown that results are not dependent on the mesh size at the macroscopic scale during the softening response, and that they agree well with the direct numerical simulations.

✵ ✷ ✹ ✻ ✽ ✶ ✵ ✵ ✵✁ ✶ ✶✁ ✷ ✷✁ ✸ ✸✁ ✲❉✴ ✂✄☎✆ ❋ ② ✝ ✞ ✟ ✠ ✡ ☛ ☞ ✌✍✎✎ ✶✏✶✲✑ ✒✑ ✓✔ ✕✖✗✘✕✙✵ ✶✏✶✲✑ ✒✑ ✓✔ ✕✖✗✘✕✙✶ ✶✏✶✲✑ ✒✑ ✓✔ ✕✖✗✘✕✙✷

Figure 1: Compression of a honeycomb structure. (a) Full numerical simulation (b) Second–order multi–scale simulation. (c) Comparison of results for different macro–mesh sizes.

1

V. G. Kouznetsova, M. G. D. Geers,W. A. M. Brekelmans, Comput. Meth. in Appl. Mech. and Eng., 193, 5525, (2004)

2

V.-D. Nguyen, E. Béchet, C. Geuzaine, L. Noels, Comput. Mat. Sci., 55, 390, (2012)

3

V.-D. Nguyen, G. Becker, L. Noels, Comput. Meth. in Appl. Mech. and Eng., 260, 63, (2013)

4

Figure

Figure 1: Compression of a honeycomb structure. (a) Full numerical simulation (b) Second–order multi–scale simulation

Références

Documents relatifs

the z axis is reflected compared to the system used for the decay of particle B (it must point in the direction of C momentum in the A rest frame), but the x axis is kept the

Machinerie, accessoires, équipement, tuyaux et réservoirs pleins autres que ceux mentionnés ci-dessus (voir l'annexe A). 2 10 Copyright © NRC 1941 - 2019 World Rights

Il est évident que l'on ne peut comparer les autoroutes de notre pays avec celles que nous utilisons dans d'autres pays d'Europe, mais il y aurait quand même quelques centaines

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

The example of crystalline/amorphous metallic composites is typical (Figure 2.2d): the flow stress of the amorphous phases is strongly dependent on both the strain rate and

The constant tensor E ij is the average strain applied to the unit cell and v is a periodic fluctuation, meaning that it takes the same value at homologous points ( x − , x + ) of

Wave propagation in the framework of strain gradient continua: the example of hexachiral materials.. Giuseppe Rosi, Nicolas Auffray,

Keywords: multifluid flows; level-set method; high-order finite elements; Navier-Stokes