• Aucun résultat trouvé

Direct numerical simulation of flexible molecules and data-driven molecular conformation

N/A
N/A
Protected

Academic year: 2021

Partager "Direct numerical simulation of flexible molecules and data-driven molecular conformation"

Copied!
12
0
0

Texte intégral

(1)

Science Arts & Métiers (SAM)

is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in:

https://sam.ensam.eu

Handle ID: .

http://hdl.handle.net/10985/18396

To cite this version :

Amine AMMAR, Francisco CHINESTA - Direct numerical simulation of flexible molecules and

datadriven molecular conformation Comptes Rendus Mecanique Vol. 347, n°11, p.743753

-2019

Any correspondence concerning this service should be sent to the repository

Administrator :

archiveouverte@ensam.eu

(2)

Direct

numerical

simulation

of

flexible

molecules

and

data-driven

molecular

conformation

Amine

Ammar

a

,

,

Francisco

Chinesta

b

aLAMPA@ArtsetMétiersParisTech,2,boulevardduRonceray,BP93525,49035Angerscedex01,France

bESIGroupChair@PIMM,ArtsetMétiersInstituteofTechnology,CNRS,CNAM,HESAMUniversity,151boulevarddel’Hôpital,75013Paris, France

a

b

s

t

r

a

c

t

Keywords:

Flexiblemolecules Directnumericalsimulation Moleculardynamics Suspension Deep-learning

The present work aims at performing a molecular dynamics modeling of suspensions composedofflexiblelinearmolecules.Moleculesarerepresentedbyaseriesofconnected beads,whosedynamicsisgovernedbythreepotentials:theextensionpotentialaffecting theelongationofsegmentsconnectingconsecutivebeads,theonegoverningthemolecule bendingandfinallytheLennard-Jonesdescribingtheinteractionofnon-consecutivebeads. Apopulationofnon-interactingmoleculesissimulatedinelongationandshearflowsfor different flow and molecule parameters. The flow-induced conformation is analyzed in the different considered situations. Finally a model for predicting the evolution ofthe populationconformationwillbeobtainedbyusingdeep-learning.

1. Introduction

Polymersandviscoelasticfluidscanbedescribed atdifferentscales,deeplydiscussedinmanybooks,amongthem [1] [2]. The molecularscale (see [3] [4] and the referencestherein) precedesthe one ofkinetic theory wherethemolecules individualityisreplacedbyascalardistributionfunction–DF–involvingaseriesofconformationalcoordinates[2].Most ofkinetic theory modelsrepresentmolecules asmulti-bead-rod ormulti-bead-springs idealizations,usually coarsenedby using theend-to-end vector to reduce thedimensionality ofthe conformational space[5]. The resulting modelswere in generalsolvednumericallybyusingBrownianandstochasticnumericaltechniquesforcircumventingtheso-calledcurseof dimensionalitythatthehigh-dimensionalityoftheconformationspaceentails[6] [7].

In[8] and[9] authorsconsiderGaussianchainscombinedwiththeLangevinequationforbetteraccountforthemolecular conformation.Worksattainingtheatomicscalearequitescare,beingtheresultingmodelsdifficulttoextendtolargerscales [10–14].

The presentworkaims atperforming a moleculardynamics modelingofsuspensions composedof flexiblemolecules. Suchadescriptionscalehasasmainadvantagethefinerepresentationofthemolecularconfigurations,finerthantheones attainablewhenusingcoarserdescriptions(e.g.kinetictheorydescriptions).Themaindrawbackwhenusingtheseextremely finedescriptions concerns thecomputational cost.However, tohaveaccessto therealbehavior andevaluate thevalidity of coarserdescriptions, high fidelitysimulations atthe finestscale seems compulsory. Moreover, assoon as an accurate approximationofthemicroscopicphysicsisattainedandavailable,itcouldbethenintroducedintocoarserdescriptions.

*

Correspondingauthor.

(3)

Fig. 1. Molecule schema.

When describingfinely moleculesasa seriesofconnectedbeads,thewholemolecular conformationstronglydepends on thechoiceofthepotentialsusedforderiving theforcestobe introducedintothemotionequation atthebeadslevel. Different potentials are in general considered: (i) the one describing the extension of the inter-beads segment; (ii) the one describing themolecule bending mechanism,that is expressedateach beadfromits two neighbors;andfinally (iii) the weak interaction (Lennard-Jones) between non-neighborbeads. The evaluation of the population conformation with respecttothedifferentavailablechoiceofpotentialsandinparticulartheirintensityisofmajorinteresttobetterdescribe rheological features. Inthepresentwork andwithoutloss ofgeneralityof theproposed methodologywe considerdilute suspensions,thatallowsneglectingtheinteractionofbeadsbelongingtodifferentmolecules.

Our modelassumes linearmolecules composed ofbeads atwhich, other than the potentialsjustdiscussed, also acts Brownian events representingthe action ofthe moleculesof solventin which themolecule is assumedbe immersed. A population ofnon-interacting molecules is simulated in elongation and shear flows for different flow and molecule pa-rameters. The flow-induced conformation is analyzed in the different considered situations and some statistical outputs extracted.

Finally a modelfor predicting theevolution of the populationconformation willbe obtainedby using deep-learning, deeplyusedinavarietyofapplications,assystemcontrol[15,16] anddynamicalsystems[17] forcitingfew.

2. Fine-scalediscretesimulation

Thefinescalesimulationisperformedbyrepresentingthemoleculeasaseriesofconnectedbeadswhereforcesapply, thelastderivedfromdifferentpotentialsaswellasthebombardmentofsolventmolecules.

Aspreviously discussedweareconsideringthreedifferentpotentialsresponsibleofthreedifferentdeformation mecha-nisms:theLennard-Jonespotential VLJ isusedtodescribetheinter-beadsinteractions (ofnon-neighborbeads), andother

two potentials, VE and VB,are used to describe the molecule segments elongationsand chainbending respectively, see

Fig.1.

Thus,thetotalpotentialreads

V

=

M



j=1 N−1



i=1 ViE,i+1;j

+

M



j=1 N−1



i=2 ViB1,i,i+1;j

+

M



j=1 N



i=1 N



k=1 ViLJ,k;j

χ

ik;j (1)

where

M

isthenumberofmoleculesinthepopulation, j referstothemoleculechaininthatpopulation,andi referstothe consideredbeadcomposingit,i

=

1

,

. . . ,

N

(with

N

thenumberofbeadscomposingthemolecularchain).Finallywedefine acharacteristicfunctionfordescribingthebeaddirectneighborhood:

χ

ik

=

1 if

|

i

k

|

>

1 and

χ

ik

=

0 if

|

i

k

|

1

TheLennard-Jonespotentialreads

ViLJ,k

=

4

ε



σ

dik



12



σ

dik



6



(2)

withdik

= ||

xk

xi

||

thedistancebetweenbeads

B

i and

B

k,located atpositions xi andxk respectively, and



and

σ

the twousualparametersinvolvedintheLennard-Jonespotential.

Theelongationpotentialisgivenby

ViE,i+1

=

KE 2



1

di j deq



2 (3)

wheredeq istheequilibriumdistancebetweentwosuccessivebeads,distanceatwhichthepotentialreachesits minimum

(andconsequentlytheassociatedforcevanishes).Inthepreviousexpression KE reflectsthepotentialintensity.

Thebendingpotentialbetweenthreesuccessivebeads

ViB1,i,i+1

=

KB 2



θ

i−1,i,i+1

− θ

eq



2 (4)

(4)

where

θ

i−1,i,i+1 istheangledefinedbyvectorsjoiningbeads i

1

,

i andi

,

i

+

1 with

θ

eq theangleatequilibrium. Inour

studyweconsider

θ

eq

=

70

.

5◦ (thatcorrespondstotheanglebetweentwoconsecutivecarbone-carbonebonds).Again,the

potentialintensityisdescribedfromKB.

The force applyingat each bead related to thesethree molecule deformation mechanisms results from the potential derivativeaccordingto

FIi

= −

V

xi

(5)

Therearetwootherforcesactingonthebead.First,theonerelatedtothefluiddragFDi.Letv

(

x

)

bethefluidvelocityat positionx,assumedunperturbedbytherodspresence,thedragforcereads

FiD

= ξ(

v

(

xi

)

− ˙

xi

)

(6)

wherexi

˙

denotesthevelocityofbead

B

i.

FinallyaBrownianforceisalsoconsideredemulatingthesolventbombardment,andisexpressedfrom

FBrowi

=

2D dt Wi (7)

whereD denotesthediffusioncoefficient,dt thecalculationtimestepandWiarandomvariablewithzeromeanandunit standarddeviation.

Thelinearmomentumbalanceinvolvingbead

B

ireads

Fi

=

FDi

+

FiI

+

FBrowi

=

m ai (8)

withtheparticleaccelerationai

=

ddtx˙i

=

d2x

i

dt2.

Asecond-ordertimeintegrationschemeisconsidered,consistingof

ani+1

=

Fni m xni+1

=

xni

+ ˙

xni

t

+

12ai

(

t

)(

t

)

2

˙

xni+1

= ˙

xni

+

12

ani

+

ani+1



t (9)

wherethesuperscriptn referstothetimestep,tn

=

n

t.

Priortoproceedwiththetimeintegration,equationsarerewrittenindimensionlessform,byconsideringascharacteristic variables – length:

σ

– energy:

ε

– mass:m – velocity:

ε

/

m – acceleration:

ε

/(

m

σ

)

– time:

σ

m

/

ε

– diffusion:

σ

−3



5 m

whichallowswritingthedimensionlessmodelinwhich,forthesakeofclarity,wedonotchangethenotationfor designat-ingthedimensionlessvariables.

Thus,weobtain

ViLJ,j

=

4



d1 i j



12

1 di j



6



ViE,i+1

=

KˆE 2

1

di j deq



2 VB i−1,i,i+1

=

ˆ KB 2

i−1,i,i+1

− θ

eq

)

2 FiI

= −

xV i FiD

= ˆξ(

v

(

xi

)

− ˙

xi

)

FBrowi

=



2D

ˆ

dt W



i Fi

=

ai (10) whereK

ˆ

E

=

Kε ,E K

ˆ

B

=

Kε ,B

ˆξ = ξ√

ε

m

/

σ

,D

ˆ

=

D

σ

3



m 5 anddt



=

dt σ



 m.

(5)

Fig. 2. Initial conformation and its evolution when subjected to elongation. 3. Results

Inthe numericalresultsreportedinthepresentsection weassumedasequilibriumdistancebetweentwoconsecutive beadstheoneassociatedwiththeLennard-Jones(dimensionless)potential,i.e.deq

=

21/6.Inordertoavoidlargefluctuations

ofthemoleculelengthweassumeaquitelargeelongationstiffness K

ˆ

E

=

10000 andabendingpotential K

ˆ

B

=

1000.

Inordertoderiverheologicalproperties(basedonthemolecularconformation),alargeenoughpopulationofmolecules must be considered, allowing one to compute accurate statistics. In the cases reported in the present paper

M

=

1000 chainsinvolving

N

beads,

N

=

100,andconsequently99 inter-beadsegments areconsidered.Inallcasesthedimensionless diffusionanddragcoefficientswereassumedtakingunitvalues.

Twosimplerheologicalflowswereaddressed,elongationalandsimpleshearflows,bothexpressedfromthe dimension-lesseffectivestrainrate



˙

,leadingtothefollowingdimensionlessvelocityfields:

– elongationalflow, v

=

vvxy vz

⎠ =

˙

x

1 2



˙

y

1 2

z

˙

(11)

– simpleshearflow,

v

=

vvxy vz

⎠ =

z

˙

0 0

(12)

wherethreevaluesof



˙

willbeevaluated:(i)



˙

=

5;(ii)



˙

=

1,and(iii)



˙

=

0

.

2.

Theinitialstateconsistsofthe

M

=

1000moleculesgeneratedrandomly.Forthatpurposethefirstbeadofeachchainis placeatpointx1.Thenthesecondbeadisrandomlyplacedatpointx2 byensuring



x2

x1



=

deq.The thirdbeadisplace

atpointx3ensuringnowthetwoconditions:(i)



x3

x2



=

deqand(ii)L



12L23

= θ

eq,withLi,i+1

=

xi+1

xi.Theprocedure continuesuntilplacingthefinalbead.

Byproceedinglikethis,thereistheriskthatbeadsinthesamemoleculeapproachtoomuch.Thus,beforeapplyingthe flow,themoleculespopulationissubjectedtotheLennard-Jonespotentialtoensurethefulfillmentoftheexcludedvolume. Fig.2depictstheinitialmoleculeconformationandthen,theonethatresultsfromitselongation.

(6)

3.1. Casestudies

Inwhatfollowsdifferentanalysesareperformedbyvaryingtheflowanditsintensity(elongationandsimpleshear,with

˙



=

5 and



˙

=

0

.

2).Eachsimulationleadstoafigurecomposedof8subfigures,each onerepresenting(toptobottom,left toright):

– representation ofthe molecules population wherethe molecule barycentre is placed at theorigin ofthe coordinate system;

– averageofthedifferentmoleculesegmentsjoiningconsecutivebeads(from1to

N

1); – theorientationtensorcalculatedbydefining

uij,i+1

=

L j i,i+1



Lij,i+1



(13)

where j referstheconsideredmoleculeinthepopulation, j

=

1

,

. . . ,

M,

andi theconsideredbead,i

=

1

,

. . . ,

N

1,from whichtheorientationtensorwrites

S

=

1

M

M



j=1 N−1



i=1 uij,i+1

uij,i+1 (14)

– theconformationtensorC computedfromtheend-to-endvectorL1j,N accordingto

C

=

1

M

M



j=1 L1j,N

L1j,N (15)

– the distributionofuij,i+1 ontheunit sphere(notedasDFinthefigure),eachvector beingassociatedwithaGaussian distributionforsmoothingtherepresentation;

– asimilarrepresentationbutnowconcerningonlytheend-to-endvectorsu1j,N; – averageofthesegmentsofallmoleculeswiththeassociatedstandarddeviation;

– averageofsegmentslocatedatthemoleculeendsandatthecenterwiththeirassociatedstandarddeviations.

3.2. Discussion

Figs.3and4concernelongation.Itcanbenoticedthatcentralsegmentsareveryelongated,withafinallengththatat highelongationdoublestheoneofsegmentslocatedatthemoleculesextremities.Whendecreasingtheelongationintensity central segments become lessextended,andthe end-to-end conformationremains alignedwiththe elongation, however the segments orientation distribution exhibits a particular annular distribution whose radius depends on the elongation intensity.

Figs.5and6concernshearflow.Segmentshaveapproximatelythesamelengthatthealmoststeadystate.Anovershoot is noticed at the central segments during the transient regime. At highshear rates the distribution concentrate at two regions(4bysymmetry)thatattenuateswhendecreasingtheshearrate.

3.3. Derivingamodeloftheconformationevolution

Asdiscussedintheintroductionsection directnumericalsimulations areveryexpensivefromthecomputationalpoint ofview,andinthatcaseequationsdescribingtheconformationevolutiondepending ontheconformationandtheapplied flowkinematicsseemspreferable.

Asthiskindofmodelisquitedifficulttoobtain,hereweproposeusingdeep-learningtechniquesforthatpurpose.The conformationevolutionisassumedevolvingaccordingto

dC

dt

=

f

(

C

,

v

)

(16)

withthevelocitygradientgivenby

v

=

v11

v12 0 0

v11 2 0 0 0

v11 2

(17)

(7)

Fig. 3. Elongation at˙=5.

Weelaboratedaneuralnetwork–NN–involvingtwohiddenlayersof20neurons,beingtheinputsthe6components ofthe(symmetric)conformationtensorandthetwocomponentsofthevelocitygradient

v11and

v12,beingtheoutputs

thesixcomponentsoftimederivativeoftheconformationtensor.

Werestricttomoleculescomposedof20beads,i.e.

N

=

20,withthelowerbendingstiffness K

ˆ

R

=

100.600flowinduced

conformations aresimulatedbychoosingrandomlyboth gradientofvelocitycomponents,accordingwiththe 101.4−0.5), where

ω

isarandomvariableuniformlydistributedintheinterval

[

0

,

1

]

.Thischoiceallowsensuringvaluesoftheeffective strainrateintheinterval

(

0

.

2

,

5

)

,coveredalmostuniformlyinthelogarithmicscale.

(8)

Fig. 4. Elongation at˙=0.2.

When theneural network extractthe internal weights,the solutionis computedagainfordifferentvalues ofvelocity gradient,randomly chosen,inorder tocomparethe directnumericalsolutionwiththeneural-network predictions.Fig.7 comparesboth conformationpredictions.The conformationalpredictions arequalitativelyinagreementwiththeones de-rivedfromdirectnumericalsimulations,howeverquantitativelysomegapsarenoticed.Forreducingthem,differentroutes exist: consideralternative networks, increasing thenumber ofhidden layers orthe numberof nodes(neurons) inthose layers.However,thosechoicesaredetrimentalwithrespecttothetrainingefficiency.AdeepercomprehensionofNNseems necessaryforbetterrepresentingthesubjacentphysics,tobetterperformpredictionswhilekeepingasreducedaspossible

(9)

Fig. 5. Shear at˙=5.

the trainingneeds (it isimportanttonote thatdirect numericalsimulationsthat servefortraining theNNareextremely expensivefromthecomputationalviewpoint).

4. Conclusion

In this paper, we proposed a direct numerical simulation of a suspension of non-interacting flexible molecules, and evaluated theflowinduced conformation.Simulationsprovethattheconformationcanexhibitunexpectedfeatures,asthe annulardistributionofthemolecularsegmentsorientation.

(10)

Fig. 6. Shear at˙=0.2.

Thesecondcontributionofthepresentworkconcernsthederivationofanevolutionequationfortheso-called conforma-tiontensor,that isexpecteddescribingtherheologicalfindings,byusingartificialintelligencetechniques,andinparticular deep-learning.Ithasbeenprovedthatthelearnedmodelallowsderivingveryaccuratepredictionsforflowsdifferingfrom theonesconsideredinthelearningstage(neuralnetworkconstruction).

The obtentionof richerexpressions of theconformation evolutionin generaltransient andcomplexflows, as well as the conformation / flow kinematics coupling through an adequate constitutive equation, constitute the main works in progress.

(11)

Fig. 7. Comparing direct numerical solutions (left) and neural-network based prediction (right). Acknowledgements

TheauthorsgratefullyacknowledgetheANR(“Agencenationaledelarecherche”,France)foritssupportthroughproject AAPG2018DataBEST.

References

[1]C.Binetruy,F.Chinesta,R.Keunings,FlowsinPolymers,ReinforcedPolymersandComposites.AMultiscaleApproach,SpringerBriefs,Springer,2015.

[2]F.Chinesta,E.Abisset,AJourneyAroundtheDifferentScalesInvolvedintheDescriptionofMatterandComplexSystems,SpringerBriefs,Springer, 2017.

[3]G.Ianniruberto,G.Marrucci,Flow-inducedorientationandstretchingofentangledpolymers,Philos.Trans.R.Soc.Lond.A361(2003)677–688.

(12)

[5]R.B.Bird,C.F.Curtiss,R.C.Armstrong,O.Hassager,DynamicsofPolymericLiquids,Vol.2:KineticTheory,JohnWiley&Sons,1987.

[6]M.Somasi,B.Khomami,N.J.Woo,J.S.Hur,E.S.G.Shaqfeh,Browniandynamicssimulationsofbead-rodandbead-springchains:numericalalgorithms andcoarse-grainingissues,J.Non-Newton.FluidMech.108 (1–3)(2002)227–255.

[7]G.Venkiteswaran,M.Junk,A QMCapproachfor highdimensionalFokker-Planckequationsmodellingpolymericliquids,Math.Comput.Simul.68 (2005)43–56.

[8]R.Winkler,P.Reineker,L.Harnau,Modelsandequilibriumpropertiesofstiffmolecularchains,J.Chem.Phys.101 (9)(1994)8119–8129.

[9]L. Harnau,R. Winkler, P. Reineker, Dynamicstructure factor ofsemiflexible macromolecules indilute solution,J. Chem. Phys. 104 (16)(1996) 6255–6258.

[10]W.Paul,G.Smith,D.Yoon,Staticanddynamicpropertiesofan-C100H202meltfrommoleculardynamicssimulations,Macromolecules30(1997) 7772–7780.

[11]T.Kreer,J.Baschnagel,M.Mueller,K. Binder,MonteCarlosimulationoflong chainpolymermelts:crossover fromRousetoreptationdynamics, Macromolecules34(2001)1105–1117.

[12]S.Krushev,W.Paul,G.Smith,Theroleofinternalrotationalbarriersinpolymermeltchaindynamics,Macromolecules35(2002)4198–4203.

[13]M.Bulacu,E.vanderGieesen,Effectofbendingandtorsionrigidityonself-diffusioninpolymermelts:amolecular-dynamicsstudy,J.Chem.Phys. 123(2005)114901.

[14]M.O.Steinhauser,Staticanddynamicscalingofsemiflexiblepolymerchains–amoleculardynamicssimulationstudyofsinglechainsandmeltsMech, Time-Depend.Mater.12(2008)291–312.

[15]M.Tanaskovic,L.Fagiano,C.Novara,M.Morari,Data-drivencontrolofnonlinearsystems:anon-linedirectapproach,Automatica75(2017)1–10.

[16]T.Duriez,S.Brunton,B.R.Noack,MachineLearningControl-TamingNonlinearDynamicsandTurbulence,Springer,2017.

Figure

Fig. 2 depicts the initial molecule conformation and then, the one that results from its elongation.
Fig. 3. Elongation at  ˙ = 5.
Fig. 4. Elongation at  ˙ = 0 . 2.
Fig. 5. Shear at  ˙ = 5.
+3

Références

Documents relatifs

Structural data can be obtained for turbostratic layer lattice silicates by using the variation of the doublet-shaped signal observed for water and heavy water

For the ordering, the so-called ELS model [23] is adopted Th~s model is a mean field theory for nematic phases of non-ngid molecules, m which the main parameters are. coefficients

Only -1 % of (dE/dx), needs to be converted into intermolecular potential energy, giving an radial expansion of the order of 10 %, to explain the measured yields. 2

When dealing with small clusters of atoms or with the 76-residue-long protein Ubiquitin, the approach based on the homogeneous deformation hypothesis results robust only when

The first excited states for these molecules (dashed levels in Fig. 1) are the crystal-field split t,, and e, molecular levels derived from the n d atomic level.

The temperature dependence of the generalized frequency distribution of water molecules obtained by both experiment and molecular dynamics demonstrates the accordance

We have presented a new statistical distribution that can model the entire range (i.e. low, medium and extreme val- ues) of bivariate precipitation measurements. This model consists

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des