• Aucun résultat trouvé

Temporal changes in groundwater quality of the Saloum coastal aquifer

N/A
N/A
Protected

Academic year: 2021

Partager "Temporal changes in groundwater quality of the Saloum coastal aquifer"

Copied!
20
0
0

Texte intégral

(1)

JournalofHydrology:RegionalStudies9(2017)163–182

ContentslistsavailableatScienceDirect

Journal

of

Hydrology:

Regional

Studies

jou rn a l h om ep a ge :w w w . e l s e v i e r . c o m / l o c a t e / e j r h

Temporal

changes

in

groundwater

quality

of

the

Saloum

coastal

aquifer

Ndeye

Maguette

Dieng

a,c,∗

,

Philippe

Orban

a

,

Joel

Otten

a

,

Christine

Stumpp

b

,

Serigne

Faye

c

,

Alain

Dassargues

a

aHydrogeology&EnvironmentalGeologyDptArGEnCo,Aquapole,UniversityofLiège,4000Liège,Belgium

bInstituteofGroundwaterEcology,HelmholtzZentrumMünchen,IngolstädterLandstrasse1,D-85764Neuherberg,Germany

cDepartmentofGeologyFST,UniversityofCheikhAntaDiop,Dakar,Senegal

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received27April2016

Receivedinrevisedform7December2016

Accepted10December2016

Keywords:

Groundwatersalinization

Selforganizingmaps

Geochemicalprocesses

Environmentalisotopes

Salouminverseestuary

a

b

s

t

r

a

c

t

Studyregion:GroundwaterinthesouthernpartoftheSaloumBasininSenegal.

Studyfocus:TheSaloumestuaryisahypersalineand‘inverse’estuarywherethesalinityof riverwaterincreasesintheupstreamdirection.Thisregionisproblematicinthatdueto theunderlainsuperficialContinentalTerminalaquiferborderedbythehypersaline estu-aryconstitutestheuniquefreshgroundwaterreservoirforwatersupplyforitsestimated 466,000residentslivingin18ruraldistricts(belongingtotheregionsofFatick,Kaolack andKaffrine).ThisisofhighvaluegiventhatthedeepMaastrichtianaquifer(200–300m depth)issaline.Thisstudyaimstodescribeandunderstandtemporalchangesinthe chem-icalandisotopiccompositionsofgroundwater,thegeochemicalprocessesandespecially thegroundwatersalinization.

Newhydrologicalinsightsfortheregion:Theanalyticaldatawerediscriminatedinto3groups onthebasisofthewatertypes.Na-Cl,Ca-ClandCa-SO4richwatersderivedfromsaline waterintrusionatthevicinityoftheSaloumRiveraccompaniedbyionexchangereactions andpollutiondominatethefirstgroup.Thesecondgrouplocatedmainlyinthecentre andeasternpartsoftheregionisfeaturedfreshgroundwaterofCa-HCO3derivedfrom calcitedissolutionreactions.ThethirdgroupofNa-HCO3typeandlessmineralizedindicates fresheningprocessesbyrecentlyinfiltratingrainwaters.Slightseasonalchemicalvariations areobservedduetonewinfiltratingwaterreachingthewatertable.

Highvariationinrainfallbetweenthe2referenceyears(2003and2012)alsochanges chemicalpatternsinthegroundwater.Chemicalevolutionofthegroundwateris geographi-callyobservedandisduetoacombinationofdilutionbyrecharge,anthropiccontamination andseawaterintrusion.Theresultsofenvironmentalisotopes(␦18O,2H)comparedwith thelocalmeteoriclineindicatethatthegroundwaterhasbeenaffectedbyevaporation pro-cessesbeforeandduringinfiltration.Theresultsalsoclearlyindicatemixingwithsaltwater andanevolutiontowardsrelativefresheningbetween2003and2012insomewellsnear theSaloumRiver.

©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

∗ Correspondingauthorat:DepartmentofGeology–FST,UniversityofCheikhAntaDiop,Dakar,SenegalandHydrogeology&EnvironmentalGeology

–DptArGEnCo,Aquapole,UniversityofLiège,4000,Liège,Belgium..

E-mailaddresses:nmdieng@doct.ulg.ac.be,ndeye81.dieng@ucad.edu.sn,diengmaguette@yahoo.fr,mdmaguettedieng@gmail.com(N.M.Dieng).

http://dx.doi.org/10.1016/j.ejrh.2016.12.082

2214-5818/©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

(2)

164 N.M.Diengetal./JournalofHydrology:RegionalStudies9(2017)163–182

Introduction

TheContinentalTerminal(CT)aquiferisauniquefreshwaterreservoir,whichsupportsvariouswaterneedsintheSaloum regionlocatedmid-WestofSenegal.Unfortunately,thisresourceisthreatenedbysaltwaterintrusionderivedfromboththe oceaninthewesternpartandfromthehypersalineSaloumRiverwhichlimitsthesysteminthenorthernpart.TheSaloum hydrologicsystemisatide-influencedinverseestuaryinwhichhighevaporationratescombinedwithlowflowinthis contextofflattopographyresultinsaltdepositionandhighsalinityofthesurfacewaterbody.AsdefinedbyPritchard (1967),ininverseorhypersalineestuarysystems,thesalinityoftheriverwatersubstantiallyexceedsseawatersalinity. Thispatternisgovernedbythenetlossoffreshwaterusuallyresultingfromanexcessofevaporationoverrunoffand precipitation.Thesesystems,forwhichsalinityincreasesupstreamfromtherivermouthtowardsinlandregions,occur mostlyinaridorsemi-aridpartsoftheworld(Largieretal.,1997),suchasAustralia(Wolanski,1986)andWestAfrica (Barusseauetal.,1985;Diop,1986;PageandCiteau,1990;SavenijeandPagès,1992;RiddandStieglitz2002;Mikhailovand Isupova,2008).Therefore,groundwatersalinizationintheseareasiscloselylinkedtodirectsaltwaterintrusionandhigh evaporation.PreviousstudiesinAustraliaevidencedgroundwatercontaminationprocessesthroughestuarinesaltwater intrusionintheSwan-CanningEstuary(SmithandTurner,2001)andinthePioneerValley,NorthernQueensland(Werner andLockington,2004).IntheSaloumregion,Noël(1975)thenDiluca(1976)investigatedthegeometry,flowregime,and chemicalcharacteristicsofgroundwaterintheCTaquifer.Salinitypatternandassociatedgeochemicalprocessesusingbasic ionchemistryweredescribedbyFayeetal.(2001,2003,2004,2009,2010).Theresultspointedoutthatthegroundwater resourceisconstrainedbytheoccurrenceofmoderatetohighsalinityinthenorthern(neartheSaloumRiver)andwestern (coastalarea)partsoftheaquifer.There,manyshallowwellshavebeenimpactedbytheoccurrenceofsalinewater.Further investigationsweredonebyFayeetal.(2004)usingminorelements(B,Br,Sr)andisotopicindicatorstogetherwithsome majorionsforconstrainingsource,andrelativeageandsorption/desorptionreactionsrelatedtorefresheningandsalinization processes.Inthislatterstudy,boronconcentrations(7–650␮g/L)weretestedagainstthebinarymixingmodel.Results showedsalinizationprocessesareevidencedbyBsorptionandNadepletionwhentheSaloumRiverwaterintrudesthe aquifer(salinization)inthenorthernpartoftheregion.Conversely,BdesorptionandNaenrichmentoccurasthefresh groundwaterflushingdisplacesthesalinegroundwatersinthecoastalstrip(refreshening).Inthecentralzonewhereancient intrusionprevailed,theprocessoffresheningofthesalinegroundwaterwasindicatedbythechangesinmajorionchemistry aswellasBdesorptionandNaenrichment.TherelativelystableisotopeandtritiumcontentsoftheCTaquiferindicatedthat groundwaterisderivedfromrecentprecipitationandmixingwithrecentlyinfiltratingwatersandevaporationcontribute tothechangesinisotopicsignature.

Therefore,salinisationconstitutesamajorissueintheSaloumregionduetothefactthatpotabledrinkingwaterneeds relysolelyontheCTgroundwaterresourcegiventhatthedeepMaastrichtianaquifer(200–300m)exhibitshighchloride contents(500–1000mg/L)andsomehazardouselements,suchasfluorideandboron,whichreachconcentrationsof2–4 and1–2mg/L,respectively(Travi,1988).Therefore,theCTaquiferrepresentsauniqueaccessiblefreshwaterresourceinthe region.

Despiteofthesevaluableresults,temporal(bothseasonalandlongterm)effectswerenotadressed.Therefore,thepresent studyaimsatreassessingthegroundwaterqualitychangesoftheCTaquiferinthelightofthenewconstraints(e.g.changes inclimaticconditionsandpumpingconstraints),andthenewgroundwaterflowpatternconfiguration.Specifically,this studyintendsto:(1)identifyseasonalvariationsinthechemicalpatternsinrelationtogeochemicalreactionsanddilution usingstatisticaltools,suchasSelfOrganizingMaps(SOMs),and(2)assessthetemporaltrendofgroundwaterchemistry andsalinizationusingchemicalandisotopicgroundwatercompositions.

2. Studyarea

2.1. Locationandgeomorphology

ThestudyareaislocatedinthewesternpartofSenegalandcoversthesouthernpartoftheSaloumhydrologicBasin exceptforthemangrovesystem.Thesurfaceareaisapproximately3380km2 (Fig.1)andislimitedtotheNorthbythe SaloumRiver,totheWestbythemangroveareaandtotheSouthandEastbytheGambiaRivercatchment.

Thegeomorphologicsettingwhichconsistsofagentlyslopingplainthatextendstowardthecoastisincisedbyanetwork ofdepressionswhere temporarystreamsdrainrun-offwaterduringtherainyseason.Adigitalelevationmodel(±4m precision)thatwascreatedfromtopographicalmaps(1:50,000)andmeasuredpointsshowselevationsrangingfrom−1m intheWestandtheNorth(nearthemangrovesandtheSaloumRiver)to+50mintheSouthandEasttowardstheplateau zoneborderedbytheGambianBasin(Fig.1).InthenorthernandwesternregionsalongtheSaloumRiverandthecoast, respectively,asuccessionofhighareas(10–30m)anddepressions(0–10m)formsthelandscape.

Landuse/landcoverofthestudyareawereinvestigatedusingOctober2010Landsatimage(ETM)andlineardiscriminant classifier(LDC)supervisedclassificationmethod(Diengetal.,2014).Surfacefeaturesgeneratedcompriserainfedagricultural crops(52%),naturalvegetation(40%)(composedofsavannah,woodedpark,bushlandandshrubsteppetrees),dispersed habitationspredominantlyvillages(3.5%),saltybarrensoilslocallycalled“tanne”(2%),surfacewaterbodies(1.5%)and mangroveecosystemareas(1%).

(3)

N.M.Diengetal./JournalofHydrology:RegionalStudies9(2017)163–182 165

Fig.1. Locationoftheinvestigatedareaandmonitoringnetwork.Thedarklineindicatesthelocationofthecross-sectionA-A’presentedinFig.2.

2.2. Climate

Theclimateoftheregionistropicalwithtwodistinctseasons:adryseasonfromNovembertoMayandarainyseason fromJunetoOctober.Theaverageannualrainfallfrom1960to2012variedfrom750mminthesouthernpartofthebasinat Niorostationto615mminthenorthernpartatKaolackstationwithaSouth-Northdecreasinggradient.Therainfallrecord (Fig.3)atKaolackstationcomparedtothemeanreference1960–1990showsahumidperiodfrom1928to1971followed byadryerperiodfrom1971totheendofthe1990s,whichoccurredthroughmostoftheSahelzone.InsomeSub-Saharan countries,suchasthestudyarea,thisdryperiodwasfollowedbyprogressivelywetteryears(LebelandAli,2009).

Availableclimaticdata(i.e.,precipitation,temperature,relativehumidity,insulation,andwindspeed)fortheperiodfrom 1981to2012collectedfromtheSenegalNationalMeteorologicalAgencyattheKaolackandNioroweatherstationsshow thattheaverageannualtemperaturerangesfrom28to29◦C.Theaverageannualpotentialandactualevapotranspiration valuescalculatedusingthePenmanmethod(Allenetal.,1998)are2030and552mm/yrrespectively.

2.3. Hydrology

ThehydrologicsystemoftheregionismainlycomposedbytheSaloumRiveranditstwotributaries,theBandialaand DiombossrRivers.TheNemaRiver,whichistheonlyperennialfreshwaterstream,flowstowardstheBandialaRiver(Fig.1). Itreceivesagroundwaterbaseflowofbetween0.012and0.03m3/sduringthedryandrainyseasons,respectively(Ngom, 2000).Downstreamtheseriversandstreams,smallseawatercreekslocallycalled“bolons”occurinadditiontothelarge low-lyingestuarybearingtidalwetlands,andthemangroveecosystem.Asdiscussedpreviously,theSaloumestuaryisaninverse estuary.MeasurementsdataduringthedryseasonshowedthatthesalinityoftheSaloumRiverincreasesfrom36.7g/Lat themouthtomorethan90g/latKaolack(located120kmfromthemouth)(Diop,1986).PageandCiteau(1990)usingdata recordrevealedthatsalinityoftheSaloumRiverishighlysensitivetoclimatevariationswithagradientofapproximately 1.3g/lperyearbetween1950and1986(Fig.3).ThisobservationisinaccordancewithworksofSavenijeandPagès(1992) inwesternAfricaninverseestuarieswhichevidencedsharpincreaseinsalinitygradientsduringtheSaheldroughtsinthe 1960s.

2.4. Geologicalandhydrogeologicalcontext

ThestudyareabelongstotheSenegalese-Mauritaniansedimentarybasin,whichisthelargestcoastalbasininnorthwest AfricaandbearsformationsfromtheCretaceoustotheQuaternary(Bellion,1987).Thegeologicalcontextoftheregion

(4)

166 N.M.Diengetal./JournalofHydrology:RegionalStudies9(2017)163–182

Fig.2.CrosssectionofthestudyareashowingthegeologicalformationandthepiezometriclevelofCTgroundwater(crosssectionindicatedinFig.1).

hasbeenstudiedusinglithologicalinformationfromboreholesandhand-dugwellsinadditiontoregionalpreviousstudies (Lappartient,1985;LePriolandDieng,1985)andarecentregionalgeologicalmap(1:500000)(Rogeretal.,2009).TheCT formations,whicharethefocusofthisstudy,arepresentthroughouttheregionandarecoveredbyathinandyounger Quaternarysandlayerandlocallybyalluvialdepositsintheriverplains.Theseformationsoverlietheimperviousmarl/clay Eoceneformations.

TheCTsedimentsaredetritalmarineCenozoic(Oligo-MiocenetoPliocene)originandshowevidenceofintenseferralitic alterationduringthelateMiocene,includingferruginousconcretions(Lappartient,1985;ConradandLappartient,1987). Theyarelaterallyandverticallyheterogeneousandcontaindiscontinuousinterbeddedsandstone,sandyclay,clayeysand,silt andclay(Noël,1975;Lappartient,1985;ConradandLappartient,1987)(Fig.2).Locally,claysandstonebedsandferruginous crustsarepresentatthetopoftheformations.Kaoliniteformsthecementinthenon-ferruginoussandstoneandsand sedimentsandrepresentsthedominantclaymineral.Goethiteispredominantandformsthecementofthequartzgrainsin theferruginoussandstonehorizon.Tracequantitiesofillitehavebeenidentifiedwhileintheeasternpartoftheregion,the quartzgrainsarecoatedbycalcite(Lappartient,1985).

Hydrogeologically,theCTformationsareconsideredasunconfinedaquiferwhichthicknessincreasesfromNNW(less than50m)toSSE(approximately100m)andfromWest(lessthan50m)toEast(approximately100m)(Fig.2).Theaquifer reservoirliesonanirregularandimperviousEocenesubstratecomposedofmarlandlimestonecoveredbyclay(Fig.2)(Lyand Aglanda,1991;Sarr,1995).Thehydraulicconductivityandstoragecoefficientvaluesobtainedfrompumpingtestdataunder depthaveragedconditionsrangefrom0.5to8.6×10−4m/sandfrom0.5to21×10−2,respectively(Diluca,1976). Thirty-oneboreholeswithpumpingratesbetween10and45m3/handnumeroustraditionalwellsareusedforthewatersupply inthisregionandtotalwithdrawalisestimatedat8000m3/day.Groundwaterrechargeoccursmainlythroughrainwater infiltration.Computedvaluesusingchloridemassbalance(CMB)method(chlorideprofilesatdifferentsitesobtainedduring thecourseofthisstudyandnotshownhere)intheunsaturatedzone,andhydrologicalbudget(ETocomputedbyPenman formula)arevariableandrangefrom17to100mm/yearandfrom19to130mm/year,respectively.Theserechargevalues aresimilartothoseobtainedbyEdmundsandGaye(1994)(11–108mm/year)usingthesameCMBmethod.Thespatial variabilityislikelytobeduetolocalvariationsinsoiltypeandtexture(notablyclaycontents)andtovegetationcover.The CMBapproachuncertaintiesinourcontextcanbelinkedtopotentialClcontributionfromothersourcessuchassaltwater intrusionoranthropogenicinput.Watertablemeasurementswereobtainedduringthe2012campaignsinMay(endofdry season)andinNovember(endofrainyseason).TheywereconvertedtoheadvaluesthroughanaccurateDGPStopographic surveyofthesamplingsites.ItallowstoreassessgroundwaterflowpatternsshowninFig.4forthedryseason.Asimilarflow patternisobtainedfortherainyseason(notshownhere).Head(h)distributionfeaturesthreegroundwatermoundslocated inthenorthwest(9.8≤h≤11.7m),inthesouthwestalongtheupstreampartoftheNemaRiver(25.3≤h≤26.6m),andin theNorth(13.2≤h≤16m).AmarkeddepressionisobservedNorthandparalleltotheSaloumRiver,wherethemeasured

(5)

N.M.Diengetal./JournalofHydrology:RegionalStudies9(2017)163–182 167

Fig.3. InterannualvariationoftheSaloumRiversalinity(inred)andofthemeanannualrainfallmeasuredatKaolacklocalityfrom1927to2012modified

fromPageandCiteau(1990).

Fig.4.GroundwaterpiezometricmapintheCTaquiferduringthedryseasonof2012.

headsarebelowmeansealevel(aslowas−4m).Thislatterdepressionisacommonfeatureinmanyunconfinedaquifers insub-SaharanAfrica,suchasinTrarza/Mauritania,inYaere/NorthCameroon,inGondo,Nara,andAzaouad/Mali,andin Kadzell/Niger(Archambault,1960;Degallier,1962;Aranyossyetal.,1989;Ndiayeetal.,1993;Favreauetal.,2002;Ngounou Ngatchaetal.,2007;Koussoube,2010).IsotopicstudiesperformedinMali(Aranyossyetal.,1989),Niger(Favreauetal., 2002)andSenegal(Ndiayeetal.,1993)suggestthatthecombinedeffectsofhighevapotranspirationandlowhorizontal permeabilityarethemaincausesofthistypeofpiezometricdepressionssincepumpingratesintheseareaarelow.

(6)

168 N.M.Diengetal./JournalofHydrology:RegionalStudies9(2017)163–182

Fig.5.Rechargemapandpunctualobservedseasonalchangesinpiezometricheads.

Basedonthisconfiguration,severalgroundwaterflowpatternscanbedepicted:

−fromthenorthwestandnorthernmoundstowardstheseaandtheSaloumRiver,wheretheheadvaluesdecreasenear theshorebutarestillpositive;

−fromthesouthwestmoundinalldirections;occurrenceofthegroundwatermoundinthezonesustainstheNema Riverflowduringlowstageperiod(Ngom,2000);

−fromtheSaloumRiverandthesouthernmoundtothepiezometricdepression.

Theseasonalandlongtermheadvariationsobtainedfrom2012(dryandrainyseason)and1973datasetsmayreflect seasonalrechargeandinterannualevolution,respectively.Seasonalheadvariationsrecordedin2012rangefrom0.1to2.8m withthehighestvaluelocatedfarfromthepumpingareainazoneofrelativehighrecharge(>50mm).Thelowestvalueof headvariationisobservednearthepumpingareainazoneofrelativelowrecharge(<30m)(Fig.5).

Comparisonofthe2012headvalueswithheadsmeasuredduringpre-developmentanddriestperiodof1973infew referencepointsshowwatertablerisefrom0.7to6.8m(mean4.2m)(Fig.6).Thisisobserveddespitethepumpingfrom morethan100boreholesandnumerousdugwellssincetheearly70s.Thislongtermwatertableriseprobablyreflects sensitivityofthesystemtoclimateandespeciallytoannualrainfall(440and847mmrespectivelyin1973and2012).

3. Materialsandmethods

3.1. Fieldcampaignsandlaboratoryprotocols

Tocompletetheexistingdataset(includingthedataacquiredin2003),twofieldcampaignswereconductedinMay2012 (endofthedryseason)andNovember2012(endoftherainyseason).Themeasuredandsamplednetworkcomprises forty-fourgroundwatersamplingpoints(composedof5boreholes,35hand-dugwellsand4piezometers)inadditiontothree surfacewatersamplingsitesalongtheSaloumRiver(atFoundiougne(FL1),Lindiane(FL2)andKaolack(FL3))(Fig.1).Prior tosampling,depthtowatertableandphysicochemicalparameterssuchaspH,electricalconductivity(EC)andtemperature (T)weremeasuredinthefieldateachsiteusingamulti-parameterprobe.Thegroundwatersampleswerecollectedafter purgingthepiezometerswhilewellsandboreholesusedforwatersupplydidnotneedtobepurgedbecausetheywere pumpedcontinuously.

Forchemicalanalyses,asetoftwosampleswascollectedforeachpointandsubsequentlyfilteredthrough0.45␮m membranesintopolyethylenebottles.OneacidifiedtoapHlessthan2usinghighpurityHNO3forcationanalysis,andthe otheronenotacidifiedforanionanalysis.

Forstableisotopeanalysesofoxygen(18O)andhydrogen(2H),selectedpointsofthenetworkandthethreeSaloumRiver pointsweresampledduringthewetseasonandtightlysealedin1-lpolyethylenebottleswithoutfiltered.

(7)

N.M.Diengetal./JournalofHydrology:RegionalStudies9(2017)163–182 169

Fig.6. DifferencesbetweenpiezometriclevelsmeasuredinNovember1973andNovember2012in16wells.

Recordsofmeasuredquantityofrainand2012rainwatersampleswerecollectedfrom7climaticstations,namelyKaolack (K),Nioro(N),WakhNgouna(W),Foundiougne(F),Djilor(D),Sokone(S)andToubacouta(T).

Thechemicalanalysesformajorions(Ca2+,Na+,Mg2+,K+,Cl,HCO3,SO42−andNO3)wereperformedusing stan-dardmethodsofflameatomicabsorption,potentiometric,andtitrationattheLiegeUniversityHydrogeologyLaboratory (Belgium).TheEnvironmentalisotopeanalyseswereperformedattheHelmholtzZentrumMünchen,Instituteof Ground-waterEcology(Neuherberg/Germany)usingdual-inletmassspectrometry(Coplen,1988)andresultsareexpressedinthe conventional␦-permil(␦‰)notationwithreferencetotheViennaStandardMeanOceanicWater(VSMOW)withprecisions of±0.1‰for␦18Oand±1‰for2H.

3.2. Dataanalysisandmultivariatestatisticalanalysis

Whiletheelectricalconductivity(EC)isroutinelyusedtomeasurethemineralisationofwater,conventionalmethods involvingmajorand minorionsanalysis,ionicratios,and isotopicmethodsareusedinassessinggroundwaterquality (Ghesquièreetal.,2015;Nicolinietal.,2016)andtheinteractionbetweenfreshwaterandsalinewater(Magaritzetal., 1981;Mercado,1985;Kimetal.,2003).

Multivariateanalysismethods,suchasFactorAnalysis(FA),PrincipalComponentAnalysis(PCA)andHierarchical Clas-sificationAnalysis(HCA),arealsooftenusedtoidentifymajorgroundwatergroupsandfactorsthataffectthegroundwater chemistryinaquifers(Mudry,1991;Güleretal.,2002;Belkhirietal.,2012;GambleandBabbar-Sebens,2012;Montcoudiol etal.,2015;Ghesquièreetal.,2015;Ibrahimaetal.,2015).However,thesemultivariateanalysesaregenerallybasedon linearprinciples(Mudry,1991;GambleandBabbar-Sebens,2012)andcannotovercomedifficultiesarisingfrombiases duetocomplexityandnon-linearityindatasetsandfromtheinherentcorrelationsbetweenvariables.TheSOMsmethod (Kohonen,1982)appliedhereisanalternativetotheselattermethodstoefficientlydealwithdatasetsthatareruledby complex,non-linearrelationshipsintheanalysisanddiagnosisofdynamicsystems(HongandRosen,2001;Hongetal., 2004;GarciaandShigidi,2006;Peetersetal.,2007;GambleandBabbar-Sebens,2012;Gning,2015).Itallowsclustering asetofhydrochemicaldataintotwoormoreindependentgroups(Kohonen,1995;).Thismethodoutperformstheother statisticaltoolsinthatitcansuccessfully:1)dealwiththenonlinearitiesofthesystem;2)bedevelopedfromdatawithout requiringmechanisticknowledgeofthesystem;3)handlenoisyorirregulardataandbeeasilyandquicklyupdated;and4) interpretandvisualizeinformationfrommultiplevariablesorparameters(Kohonen,2001).

ThecomponentplanesandU-matrixarevisualizationmapsthatuseahexagonaltopologytorepresentthemainoutput results.Thecomponentplanesshowhighandlowvaluesonastandardizedmaptoidentifycorrelationsbetweendifferent parameters.Ultimately,intheSOMsanalysis,allthesecomponentmapsarecombinedtocreateaunifiedmatrix(U-matrix) thatcharacterizestheEuclideandistancesbetweeneachnode(Peetersetal.,2007;GambleandBabbar-Sebens,2012).The

(8)

170 N.M.Diengetal./JournalofHydrology:RegionalStudies9(2017)163–182

clusteringisbasedonavisualinspectionoftheU-matrixwhereclusterscorrespondtodifferenttypesofgroundwater withrespecttothecontributionofeachelement.TheinformationobtainedfromSOMsapplicationcanthenbeusedto highlightwatermineralizationprocessesthatoccurintheaquiferbasedonthedegreeofsalinityandthespatiotemporal hydrogeochemicalvariability.

Inthisstudy,11chemicalvariables(EC,pCO2,pH,Ca2+,Mg2+,Na+,K+,Cl−,HCO3−,SO42−andNO3−)areprocessedusingthe SOMsToolboxoftheMATLABTMcodetofirstinvestigatethevariablesthataffectthesalinityandtheirrelationships.Classical tools,suchasPiperdiagramsandbivariateanalysis,arethenusedtoconfirmtherelationshipsbetweenthevariables.

4. Resultsanddiscussion

4.1. Hydrochemicalcharacteristics

Theresultsfromthein-situphysico-chemicalsurveysand thechemicaland isotopesanalysesofgroundwater, sur-facewater,andseawatersamplesarepresentedinTable1,andthemeanconcentrationsfromtherainwateranalysesare presentedinTable2.Allsampleshaveionicelectricalbalanceslessthan5%,whichconfirmreliableanalyses.

ThesurfacewatersamplesthatwerecollectedatthethreesitesalongtheSaloumRiverhaveaveragepHvaluesfrom7.8 (dryseason)to8.3(wetseason),whichindicateslightlyalkalinecharacteristics.Theaveragesurfacewatertemperatures areclosetotheambienttemperatureandrangebetween28and30◦C.TheECvaluesvaryalongtheriverfrom64,700(dry season)to50,800␮S/cm(wetseason)atFoundiougne(10kmfromthemouth),from91,700(dryseason)to60,400␮S/cm (wetseason)atLindiane(90kmfromthemouth)andfrom89,000(dryseason)to55,200␮S/cmatKaolack(120kmfromthe mouth).TheseresultsshowthatthesalinityoftheSaloumRiversubstantiallyexceedsseawatersalinityvaluesandsupport theinverseestuarycharacteroftheSaloumRiverwithgraduallyupstreamincrease ofsalinity.However,thedecrease observedatKaolackisprobablyduetotheinflowoffreshgroundwaterasshowninthepiezometricmap(Fig.4).

Temperaturesofthegroundwatersamplesrangefrom27.7to30.9◦Candfrom26.4to33◦Cinthedryandwetseasons, respectively.ThepHvaluesvarybetween3.7and7duringthedryseasonandbetween4.6and8.8duringthewetseason. Thelowestacidicvalues(pH3–5)arefoundinwellS49,whichislocatednearthemangrovearea,andcouldbedueto theoxidationofpyrite,whichischaracteristicofmangrovedegradationgroundwaterconditions(Fordetal.,1992).The measuredECvaluesrangefrom74to3430␮S/cmandfrom47to2040␮S/cminthedryandwetseasons,respectively. AccordingtoWorldHealthOrganisationWHO(2008),thisbroadrangeofECvaluesdifferentiatestwotypesofgroundwater inthesystem:

1-freshwaterwithECvalueslowerthan900␮S/cm.Thisgroupcompriseswatersampledfromwellsinthewesternand centralpartsoftheregion;

-salineand/orpollutedwaterswithECvalueshigherthan900␮S/cm.Thesesamplesoriginatefromthecoastalareas, neartheSaloumRiverandfromafewwellsinthecentralpartofthestudyarea.

4.2. Groundwaterqualityassessment

Theevaluationofthechemicalcharacteristicsofthegroundwatersamplesusingthedescriptivestatisticapproachshows anorderofrelativeabundance(inmeq/L)ofCa2+>Na+>Mg2+>K+andofHCO

3−>Cl−>NO3−>SO42−.Itisthecaseforboth campaigns(dryandrainyseason).Ahighvariabilitybetweentheminimumandmaximumvalues(Fig.7)isobserved.The concentrationsofSO42−andNO3−,andtoalesserextentCa2+,Mg2+andHCO3−,arehigherforthegroundwatersampled duringtherainyseason.Thiswasprobablytheresultoftheinfiltrationofpollutedwaterandthedissolutionofcalciteand dolomiteduringinfiltration.TheconcentrationsofNa+andClinthesegroundwatersamplesdecreaseless,whichisprobably duetodilutionbyrechargewater.MostofthemajorionconcentrationsarewithintheWHOrangesfordrinkingwaterexcept forsomecasesinwhichthehighestvaluesofsodiumNa+,Cl,NO3andSO42−exceedthedrinkingwaterthreshold.This suggestssalinewaterintrusionandanthropogeniccontaminationasshownbytheECvalues.Theshallowestwells(S23,S49 andS52)arecharacterizedbyhighNO3-contents(195,200and327mg/L,respectively)duetolocalcontaminationfrom domesticwasteandpastoralactivitiesaroundthewells.ThehighestSO42−concentrationof582mg/LisrecordedinwellS49 andisassociatedwithhighconcentrationsofCl−(215mg/L),Na+(111mg/L),Ca2+(214mg/L),Mg2+(53mg/L),K+(46mg/L) andNO3−(200mg/L).ThiswellislocatedatNemavillageclosetothemangroveecosystemprobablyreflectstheimpactof salinewaterintrusionandassociatedprocesses(gypsumdissolutionand/orpyriteoxydation)andanthropogenicpollution atwellhead.

4.3. GroundwaterclassificationusingtheSOMsmethod

TheSOMsmethodappliedtobothdatasets(rainyanddryseasons)exhibitssimilarpatternandinthispaperweonly describeresultsobtainedfromthedryseasoninFig.8aandb.ThecomponentmapsofCl−,Na+,Ca2+andMg2+(Fig.8a)show similardistributionpatternstoECmap,whichindicatesthattheseionsarehighlycorrelatedwithECandthatdilutionisthe mainfactorinducingvariability.ThehighcorrelationbetweenNa+andClsuggestsacommonoriginfromthedissolution ofhaliteand/orsaltwaterintrusion.Toalesserdegree,HCO3−correlatestoCa2+.ThepHandHCO3−alsohavesimilarmaps but,asiscommonlyfoundingroundwater,areinverselycorrelatedwiththeCO2pressure.

(9)

N.M. Dieng et al. / Journal of Hydrology: Regional Studies 9 (2017) 163–182 171 Table1

Physico-chemicalmeasurementsandresultsforgroundwatersamplesandSaloumRiversamples(FL1,FL2andFL3),fordryandrainy(wet)seasonscampaigns,andgroundwaterisotopicdataforthewetseason.

Parameters EC T pH Ca2+ Mg2+ Na+ K+ HCO

3− Cl− SO42− NO3− ␦18O ␦2H

Units (␮S/cm) ◦C mg/l

ID Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Wet

S1 688 551 30.3 29.9 5 7.4 22.4 30 8.5 8.8 58.9 55.6 3.6 3.4 9.8 19.5 120.1 106.1 0.9 1.9 59.2 67.3 −4.5 −32.5 S2 612 360 30 29 5.6 6.8 43.9 37 4.9 4.4 38.9 19.3 5.8 2.9 65.9 25.6 76.4 58.5 8.3 1.8 65.5 51.4 S3 493 453 29.5 30.2 6.7 7.4 58.3 70 2.6 3.4 11.5 10.6 1.9 3.2 177.6 188.8 25 26.7 2.6 3.4 1.7 18.5 S4 369 289 29 30.8 6.2 7 39.1 41 2.9 2.9 15 15.7 0.7 0.5 131.4 126.8 23.5 22.8 1.4 1.3 5.9 5.2 S5 388 317 29.4 30.8 6.6 7.6 44 50.3 1.7 1.6 12.9 13.9 2.6 2 149.8 155.6 15.9 17 3.7 3.7 2.2 4.8 S6 185 225 29 29.2 6 7.9 17.8 30.3 1 1.7 12.9 13.7 1.1 2 58.5 106 8.6 9.4 1.1 1.8 9.8 6.7 S17 191 231 28 29.8 5.5 7.2 16.5 27 1.1 1.6 13.7 16.7 0.5 1 36.6 59.7 11.1 14.3 0.2 0.6 28.2 43.9 −5.1 −35.2 S18 570 500 30 31.1 6.6 7.5 81.3 86.3 5 5.3 14.2 14.3 1.8 1.9 300.2 298 9.4 11.9 0 0.6 0 3.4 −5.2 −35.9 S19 341 313 30 30.6 6.5 7.6 50.6 59.4 0.9 0.8 5.3 5.9 4.1 3.7 163 183.2 5.7 7.6 1.3 1.4 0.8 2.2 S20 900 748 29 30.1 7 8.1 116.4 109 9.1 9.3 32.9 30.7 1.1 1 332.9 314.9 79.8 72.2 3.5 3.8 0 3.8 −5.1 −34.7 S21 268 194 29.1 29.7 6.5 7.4 34.3 30.7 1.4 1.8 8.1 7.7 0.9 0.9 101 81.2 8.6 8.1 1.4 0.9 14.1 22.3 S22 980 781 29 29.6 5.5 5.9 51.2 52.1 6.2 7.4 81.1 83.8 1.4 1.3 65.9 64.7 185.4 180.4 10.6 11.4 5 7 −5.1 −35 S23 1040 890 29 29.2 6.2 7.5 109.1 106 11.1 12.1 39.6 40.4 7.9 8.4 162 130.4 86.7 94 3.5 3 176 196 S24 669 575 29.5 29.2 6.5 7.7 72.4 75.2 7.1 6.7 32.7 33.3 1.4 2 227.5 219 58.9 64.5 3.8 5.4 9.4 9.3 S25 296 231 29 33 5.4 7.4 12.6 13.3 1.9 1.8 26.1 25.8 0.5 0.4 17.1 22 25.9 23.6 0.5 0.7 57.5 57.8 S26 391 333 29.2 30.4 6 7.5 39.6 44.8 8.1 8.9 9.8 10.5 3.5 3.8 152.4 156 15.5 19.3 2.1 2.2 9.7 13.5 −5.1 −34.9 S27 294 224 29 31 5.9 7.9 19.3 18.8 2.8 2.8 20.7 20.1 0.5 0.5 46.3 46.3 30.9 31.5 0.9 0.7 22.9 23.2 S28 1160 908 29.2 30.1 7 7.4 113.3 102 17.2 15.2 41.9 39.3 9.3 11.3 194 169.3 191 178.1 0 2.7 0 4.5 S29 490 492 29.8 30.1 6.4 7.3 59.2 71.7 6.1 6.1 13.7 18.8 1.9 5 181.4 222.2 23.5 34.5 2.3 1.8 18.8 10.1 S30 138 98 29.2 31.1 5.5 8 8.4 8.3 3.2 3.4 6.3 6.3 0.5 0.6 26.9 29.3 7.1 8 9.6 10.8 1 1.1 −5.2 −35.5 S32 125 101 29 28.9 5.3 7.8 5.1 5.1 1.1 1.1 14.1 13.3 0.8 1.1 15.9 14.7 6.6 6.3 0.9 0.9 25.3 28 −5.2 −36.7

Parameters EC T pH Ca2+ Mg2+ Na+ K+ HCO

3− Cl− SO42− NO3− ␦18O ␦2H

Units (␮S/cm) ◦C mg/l

ID Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Wet

S33 362 308 30.2 30.3 6 7.6 39 43.5 4 4.3 14 14.9 0.8 0.6 104.8 104.8 23.8 26 1.1 1.5 24.6 29

(10)

172 N.M. Dieng et al. / Journal of Hydrology: Regional Studies 9 (2017) 163–182 Table1(Continued)

Parameters EC T pH Ca2+ Mg2+ Na+ K+ HCO

3− Cl− SO42− NO3− ␦18O ␦2H S35 827 995 28 28.7 5.8 8.4 28.4 38.5 7.5 11.2 97.3 130.1 4.1 6.6 24.4 22 184 250.3 10 10.9 24.5 32.2 −4.1 −31.2 S36 480 550 29 29 5.8 6.9 31.3 41.5 3.8 5.7 39 55.6 0.7 1.6 39 89 47.2 78.3 4.9 13.2 78.7 54.5 −4.1 −31.7 S37 419 197 29.2 30.6 4.1 8.8 19 25.3 6.1 2.6 27.7 10.6 2.4 2.4 1.9 42.6 62.1 23.9 0 1.2 66.3 24 −4.2 −31.3 S38 730 760 29 30.1 6.1 8 58 74.8 4.7 6 58.4 62.8 0.9 1 87.7 126.7 116.3 139.9 1.6 3.1 39.2 40.1 S39 253 217 30 29.4 5.7 8.6 15 17.9 1.9 2 20.8 22.6 0.5 0.4 48.8 50 23.9 23.3 0.6 0.9 25.2 30.8 S40 184 175 30.5 33.5 4.9 8.4 6.9 10 1.9 2.4 11.9 14.5 6.1 7.4 7.4 11 26 29.1 0.5 1 24.1 28.3 S41 280 286 29.4 29 4.7 8 9.3 18.1 1.5 2.7 23.7 29.4 0.3 0.4 3.9 12.3 31.6 36.5 0.3 1 49.5 68.4 −5 −33.9 S42 528 1583 27.7 26.4 5.2 8.1 28 124.4 6.3 22.5 33.8 138.5 5.6 6.5 13.5 60.9 108.2 390.2 2.3 8.8 12.7 90.3 −4.5 −31.1 S43 216 278 28.7 30 5.4 8.6 11.6 20.2 1.2 2.4 17.3 29.5 0.3 0.3 22 22 23.6 46.3 0.3 1 27.8 48.7 S44 355 332 29.8 29.4 4.9 7.4 14.7 18.5 3 3.9 28.3 34.5 0.9 1.1 14.8 13.5 32 39.1 0 0.6 71.9 86.2 S45 185 147 29.3 29.3 5.7 7.9 12.4 11.4 0.7 0.7 16 15.3 0.5 0.6 36.6 36.6 13.6 13.4 0.7 0.6 17.3 18 S46 342 286 30.1 29.8 4.4 7.2 6.1 7 2.8 3.3 35 37.5 1.4 1.4 5.2 3.8 30.2 34 0 0.6 72.8 80.8 S47 74 58 30.9 31.1 5.2 7.6 1.5 6 0.2 0.3 6.2 4.4 0.6 0.5 12.3 14.7 2.9 3.6 0.6 0.6 7.9 15.1 −5.1 −33.7 S48 3430 239 27.7 28.8 6.7 7.9 260.4 30.9 38.3 0.4 324.3 13.8 3.7 0.1 323.4 34.1 870 47.4 34 3.5 0 0.5 S49 2191 2040 28.9 27.9 3.7 4.6 124.8 213.7 37.5 52.9 91.9 110.6 58.8 45.8 16.3 7.6 173.5 214.9 426.8 583 203.8 200 −4.7 −32.1 S50 111 125 29.6 29.8 5.4 7.5 6.7 14.6 0.5 0.6 7.9 9 0.2 0.1 20.8 48.8 11.5 11.5 0.9 1.1 0.9 0.2 −5.4 −34.9 S51 81 47 30 28.3 5.3 7.8 3.2 2.1 0.2 0.4 6.8 7.3 0.2 0.2 13.5 9.8 2.6 2.8 0.2 0.1 12.1 12.3 −5.2 −34.2 S52 1140 995 28.2 28.7 3.8 5.9 49.2 53.8 14.1 16.6 98.1 90 2.3 4 13.6 6.5 110.1 104.9 1.2 1.6 296.7 328 S53 176 98 29.5 29.3 5.1 7.8 7.2 9.8 1.1 0.9 9.2 8 0.9 0.7 22 24.4 9.2 7.2 1 0.9 12.1 15.7 Parameters EC T pH Ca2+ Mg2+ Na+ K+ HCO3 ClSO42− NO318O 2H Units (␮S/cm) ◦C mg/l

ID Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Dry Wet Wet

S62 407 388 29.6 29.6 5.2 6.1 23.3 31.9 5.5 6.8 25.2 26.5 3.6 3.6 25.6 40.2 32.8 34 0.8 1 86 93.3 S64 75 54 29.1 31.3 4.8 6.2 5.8 5.7 0.8 0.8 4 3.9 0.2 0.2 28.2 27 3.6 3.5 0.1 0.1 0.4 0.4 −5.4 −36 Min 75 47 27.7 26.4 3.7 4.6 1.5 2.1 0.2 0.3 4 3.9 0.2 0.1 1.9 3.8 2.6 2.8 0 0.1 0 0.2 −5.4 −36.7 Max 3430 2040 30.9 33 7 8.8 260.4 213.7 38.3 52.9 324.3 138.5 58.8 45.8 332.9 314.9 870 390.2 426.8 583 296.7 328 −4.1 −31.1 Avg 554.18 465.8 29.3 29.8 5.63 7.49 41.49 45.73 5.7795 6.339 36.28 33.6 3.609 3.998 81.03 80.29 70.19 63.11 12.54 16.3 40.35 49.8 −4.1 −31.1 FL1 64700 50800 27 28.9 7.8 8.1 690.7 424.7 2010.7 1226 17455 10389 718.6 383.7 174.8 142.8 29641 16918 4155 2435 0 0 −0.1 −5.4 FL2 91700 60400 30 31.3 7.8 8.3 956 570.1 3679.3 1510 30053 12707 1086 399.8 206.4 151.1 52933 20857 7458 2984 0 0 0.3 −5.3 FL3 89000 55200 28 29.5 7.7 8.4 1162 574.2 4036.6 1241 32652 11443 1195 481.9 215.8 147.1 60183 18518 8540 2840 0 0 0.3 −3.2

(11)

N.M.Diengetal./JournalofHydrology:RegionalStudies9(2017)163–182 173 Table2

Physico-chemicalmeasurementsandresultsforseawatersample(sw)andmeanvaluesofconcentrationsfromrainwater((K,N,F,D,S,TandW)analyses.

Parameters CE pH Ca2+ Mg2+ Na+ K+ HCO 3− Cl− SO42− NO3− Units (␮S/cm) (/) mg/l SW 39250 7.7 338.3 952 7998.9 356.2 149.1 13014 1911.7 0 K 105 6.6 3.5 0.4 2.7 1 19 6.7 2.3 5.1 N 44 6.7 2.7 0.4 0.7 0.2 14 2.3 2.8 3.1 F 17 5.2 0.7 0.1 0.7 0.3 2.2 1.7 2.3 0.8 D 27.2 5.3 1.1 0.2 0.6 1.1 2.9 1.6 4.9 1.2 S 39.8 5 2.3 0.3 0.8 5 3.7 1.5 5.9 2.7 T 24.6 6.2 2.6 0.1 0.4 0.3 8.2 1.3 2.2 1.2 W 34.4 6.7 0.7 0.2 0.5 1.8 19 1 0.7 0.9

Fig.7.BoxplotofmajorionscompositioninCTgroundwaterandcomparisonbetweendryandwetseasonsof2012.

ThreedistinctgroupswereobtainedwiththeSOMsmethod,whichcorrespondtodifferentgroundwatertypeswith

respecttothecontributionofeachchemicalparameter(Fig.8b).Thephysico-chemicalandchemicalcharacteristicsofthese

3groupswereevaluatedusingadescriptivestatisticapproachinwhichtheminimum,maximum,andaveragemedianof theECandmajorionswerecomputedforeachcampaign(Table2).Inadditiontothestatisticalapproach,aPipertrilinear diagram(Piper,1944)thatdescribesthewatertypes(Fig.9),bivariatediagrams(Fig.11aandb)andcomputedSaturation Index(SI)values(Fig.11c)wereusedtofurtherinferthevariousprocessesthatcontrolthechemicalcompositionsofthe groundwatergroups.

TheU-matrix(Fig.8b),Piperdiagram(Fig.9)andTable3showthat:

a)Group1,whichisrepresentedbysamplesS1,S2,S22,S23,S34,S35,S36,S37,S38,S42,S49,S52andS62,ischaracterized byhighvaluesofEC,Cl−,Na+,NO

3−andSO4−andrelativelylowvaluesofHCO3−.ItisgenerallyencounteredneartheSaloum RiverandinonesampleneartheNemaRiver(Fig.10).TheECvaluesrangefrom491to2191duringthedryseasonwith anaverageof872␮S/cm.Thewatertypes(Fig.9)aredominantlyNa–Cl(42%)andCa–Cl(42%),andtwosamples(S23and S49)exhibitingCa–HCO3(8%)andCa/Na–SO4(8%)facies,respectively.Thisgroupincludessalinewater(S22,S28,S35and S42)thatischaracterizedbyhighCl−contents(oftenabove150mg/L)aswellaspollutedwater(S23,S34,S49andS52)with highNO3−contents(above100mg/L).Itindicatescontaminationofthegroundwaterandrecentinfiltration(Currelletal., 2010).Salinegroundwater,seawaterandtheSaloumRiverhavetypicalcommoncharacteristicsofNa-Cltypewater(Fig.9) andmolarratiosclosetoseawatervalue(0.86)(Fig.11a).Thisfactconfirmsthemarineoriginoftheions(Jonesetal.,1999; Vengoshetal.,1999;Fayeetal.,2001,2003,2004;Vengosh,2013).However,somesamplesexhibitingarelativedeficiencyin Na+relativetoClprobablyreflectreverseionexchangereaction.InthiscaseNa+istakenupbytheclayexchangerandCa2+is releasedtothesolution.MagaritzandLuzier(1985)statedthatgroundwatersamplescontaininglessthan15%seawaterare

(12)

174 N.M.Diengetal./JournalofHydrology:RegionalStudies9(2017)163–182

Fig.8.a)SOMsindividualcomponentsmapsofthechemicalparametersintheCTaquiferduringthe2012dryseasonandb)SOMsU-matrixandclustering

in3groups.

enrichedinNa+,andasthepercentageofseawaterincreases.Infact,thewaterbecomesincreasinglyenrichedinCa2+and Na+isdepleted.ThisprocessleadstogroundwaterfaciesevolvingfromNa-CltoCa-Cl(Mercado,1985;AppeloandPostma, 2005).Inaddition,thesampledpointsarealignedalongaslopeof−1inthe(Ca+Mg)–(SO4–HCO3)versus(Na+K)-(Cl-NO3) diagram(Fig.11b).Thisdiagramexcludeshalite,calciteanddolomitedissolution(JankowskiandAcworth,1997;Garcia etal.,2001;Abidetal.,2011)andevidencedionexchangereactionasadominantgeochemicalprocess..

ThecorrelationbetweenCa2+andSO42−(Fig.8a)andtheSIvalue(-0.97)withrespecttogypsum(Fig.11c)inthehighly mineralizedwatersfromwellS49(ofCa-SO4watertype)showadissolutionofgypsum.Thisisobservedinmangrovesoil, andwouldreleaseCa2+andSO

42−intothegroundwater(Eq.(1)).Otherwise,consideringthelowpH(3–5),theenrichment ofSO42−mayalsoresultfrompyriteoxidation(Eq.(2)),usuallyoccuringinmangrovedegradationsoils(LebigreandMarius, 1984;Kristensenetal.,1991) CaSO4⇔Ca2++SO2−4 (1) FeS2+ 7 2O2+H2O⇒CO2+⇔CH2CO3⇔F 2+ e +2S024−+2H+ (2)

b)Group2isrepresentedbywellsamplesS3,S4,S5,S18,S19,S20,S21,S24,S26,S28,S29andS33,locatedintheeastern partoftheregion,andbysampleS48(Fig.10),locatedinthecoastalstrip.SampleS48characteristicsdifferfromother samplesingroup2inthatitexhibitshighvaluesofCl−(870mg/L)andNa+(324.3mg/L)andisaNa-Clfacies.ItsECvalues varyseasonally(3430and239␮S/cmduringthedryandrainyseasons,respectively).Itissuggestingthatthiswelltapsthe

(13)

N.M.Diengetal./JournalofHydrology:RegionalStudies9(2017)163–182 175

Fig.9.Piper’sdiagramshowingtherelativechemicalcompositionsofgroundwater,SaloumRiverwaterandseawatersamplescollectedduringthe2012

dryseason.GroundwatersamplesbelongingtothethreegroupsdefinedwiththeSOMsmethodareplottedwithdifferentcolors.

Table3

SummaryofstatisticalhydrochemicaldataoffieldcampaignscorrespondingtodryandwetseasonsforgroundwatergroupsobtainedwiththeSOMs

analysis. Parameters CE T pH Ca2+ Mg2 Na+ K+ HCO 3- Cl- SO42- NO3 -␮S/cm) ◦C mg/l Dry 1 min 419 28.2 3.7 19 3 25 0.6 1.9 32.7 0.8 5 max 2191 30.3 6.2 124 14 98.1 58.7 161.9 187.3 426 296.7 median 730 29 5.5 43.9 6.3 58.4 3.6 25.6 110.1 3.5 66.3 average 872 29.1 5.5 50.8 9.7 62.1 8.6 48.0 110.7 39.5 100.7 2 min 268 27.7 6.2 39.1 0.9 5.2 0.7 100 5.7 0.1 0.1 max 1160 30 7 116.4 17 41 9.3 332.9 191 3.8 24 median 490 29.5 6.5 54.5 4.5 13.9 1.8 170.3 23.5 1.8 4 average 533.4 29.5 6.5 62.3 5.5 17.7 2.5 184.7 40 1.9 7.8 3 min 74.4 28 4.4 3.2 0.2 3.9 0.1 3.8 2.9 0.1 0.3 max 342 30.9 5.9 19.3 3.2 34.9 6.1 58.5 31.6 9.5 72 median 185 29.5 5.35 8.8 1.2 13.9 0.5 21.4 12.5 0.5 23.5 average 197 29.5 5.3 10 1.5 15.6 0.9 24.3 16.7 1.0 25.9 wet 1 min 388 26.4 4.6 31.9 4.3 28.5 9 6.5 33.9 1.5 6.9 max 2040 30 8.4 213.7 52.8 138.5 45.8 169.2 390.1 582.1 314 median 890 29 7.4 53.8 11.2 62.8 4 60.8 139.9 3.131 67.3 average 948.2 29.0 7 79.3 14.8 74.3 10.0 65.7 157.8 50.9 113.7 2 min 194 29.2 7 43.5 0.7 7.6 0.6 81.1 8.1 0.5 3.1 max 748 30.8 8.1 108.7 9.2 30.7 5 314.9 72.2 5.3 29 median 325 30.1 7.6 54.9 3.8 14.1 2.0 169.6 21.1 1.8 8.0 average 395.6 30.2 7.6 59.3 4.4 15.8 2.2 179.7 26.7 2.3 10.7 3 min 47 28.3 6.2 5 0.3 3.8 0.05 9.7 3.5 0.6 3.4 max 332 31.1 8.8 30.8 3.3 35.5 7.3 59.7 46.2 5.3 22.3 median 197 30.2 7.8 13.3 1.8 14.5 0.5 24.4 23.3 0.9 24.0 average 180.2 30.2 7.8 14.2 1.8 17.0 1.0 27.5 21.3 1.4 30.7

(14)

176 N.M.Diengetal./JournalofHydrology:RegionalStudies9(2017)163–182

Fig.10.Spatialdistribution,duringthe2012dryseason,ofthethreegroundwatergroupsasobtainedwiththeSOMsanalysis.

Fig.11.Relationshipbetweenthecontentsofa)Na/ClvsCl,b)[(Ca+Mg)-(SO4+HCO3)]vs[(Na+Cl)-(Cl+NO3)]andc)saturationindexvalueinthe ground-watersamplescollectedduringthe2012dryseason.ThethreedistinctgroupsarethosedefinedwiththeSOMsmethod.

(15)

N.M.Diengetal./JournalofHydrology:RegionalStudies9(2017)163–182 177 Table4

Summaryofstatisticalhydrochemicaldataoffieldcampaignsduringthewetseasonsof2003and2012forgroundwatergroupsobtainedwiththeSOMs analysis. Parameters CE Ca2+ Mg2 Na+ K+ HCO 3- Cl- SO42- NO3 -␮S/cm) mg/l 2003 1 Mean 2099.4 133.7 37.9 278.6 16.5 82.4 513.4 64.8 131.6 Median 1769.0 140.4 29.5 202.6 8.8 61.0 386.3 12.6 59.6 Min 1013.0 98.1 6.5 114.5 1.9 30.5 174.0 0.5 2.0 Max 4920.0 189.8 106.2 791.7 61.8 158.6 1498.0 368.0 259 2 Mean 486.0 41.8 4.0 48.6 1.3 134.2 88.9 4.0 10.0 Median 358.0 46.1 3.5 21.4 1.2 134.2 23.1 0.9 7.8 Min 35.0 5.3 0.2 2.9 0.6 39.6 1.5 0.2 1.6 Max 1686.0 50.0 6.2 234.0 2.6 225.7 75.3 23.6 29.2 3 Mean 216.0 16.8 3.7 20.2 2.6 58.0 20.5 1.0 49.0 Median 172.5 11.6 1.9 14.7 0.8 47.3 19.6 0.3 26.7 Min 62.0 3.8 0.2 6.8 0.1 27.4 2.6 0.1 5.9 Max 299.0 56.5 17.6 37.1 19.3 131.1 30.8 5.0 199.6 2012 1 Mean 1250.6 96.0 20.7 90.3 19.8 46.2 194.4 132 124.9 Median 1260.0 99.6 16.8 101.3 6.5 23.8 194.2 9.9 78.8 Min 360.0 30.0 4.3 19.3 0.9 7.6 58.4 1.7 32.1 Max 2191.0 213.0 52.8 138.5 45.8 91.1 390.0 582.4 200.1 2 Mean 365.0 54.1 3.1 15.1 2.2 150.7 30.2 2.5 9.7 Median 313.0 59.4 2.9 13.8 2 183.2 26.7 1.8 9.3 Min 194.0 30.7 0.3 5.9 0.6 34.1 64.5 0.8 0.5 Max 575.0 71.7 6.7 33.3 5.0 222.1 8.1 5.0 22.3 3 Mean 170.5 11.6 1.8 17.3 1.3 27.1 19.6 0.7 29.6 Median 161.0 10.7 1.4 14.9 0.6 25.7 18.3 0.7 20.6 Min 47.0 5.0 0.3 3.8 0.1 9.7 3.5 0.9 3.4 Max 286.0 18.7 3.9 37.5 7.3 49.9 34.0 1.0 86.8

dynamicseawaterinterfacecharacterizedbyseawateradvanceduringdryseasonfollowedseawardinterfaceretreatduring

rainyseason(i.e.whengroundwaterheadsarehigher).AttheexceptionofS48,thisgroupischaracterizedbyhighCa2+and

HCO3−contents,relativelylowCl−andNa+contentsandvariablemineralizationrangingfrom268to1160␮S/cmwithan

averageof533␮S/cmduringthedryseason.Thisgroupisfeaturedbyfreshanduncontaminatedgroundwaterthatisnearly

freeofmarinewatercontamination,andthegroundwaterfaciesaredominantlyCa–HCO3.ComputedSIvalueswithrespect

tocalcite(rangingbetween−1.7and0.7)anddolomite(rangingbetween−4and0.6)(Fig.11c),andCa/HCO3molarratios

(1)inadditiontooccurrenceofcalcitemineralinthereservoirmatrix(asevidencedbyLappartient,1985)reflectcarbonate mineralsdissolution.Thisreactionisthemaingeochemicalprocesswhichwouldbeconcomitanttoionexchangeinwhich Ca2+replacesNa+intheclaymatrix(Fig.11a).

c)Group3,whichisrepresentedbywellsamplesS6,S17,S25,S27,S30,S32,S39,S40,S41,S43,S44,S45,S46,S47,S50, S51,S53,andS64,ischaracterizedbylowmineralizedgroundwater.TheECvaluesarerangedfrom74.4to342␮S/cmin thedryseason.Morethan70%ofthesamplesexhibitlowECvalues(below250␮S/cm)suggestingalowermineralisation andtheirwatertypesaredominantlyNa–HCO3(33%),Na–Cl(33%),Ca–HCO3(22%)andCa–Cl(12%).Thesecharacteristicsof lowmineralisationandvariouswatertypeslikelydepicttherecentlyinfiltrationrainwaters.Theyarereachingtheaquifer accompaniedbybothrapidcation(NaforCa)andanion(ClforHCO3)exchangesintheclaymatrixoftheaquiferreservoir inadditiontocalcitedissolution.Thiswouldresultinaconsistentgroundwater-typegradationoflowmineralisedCa-Cland Na-HCO3typesevolvingtoNa-Cl,Ca-HCO3toCa-ClandNa-Clindicatingchangesalonggroundwaterflowpathsinthese zones(Mercado,1985;Hidalgoetal.,1995).

4.4. Interannualvariationsofgroundwatersalinitybetween2003and2012

Thetemporaltrendvariationsofgroundwatersalinitywereinvestigatedusingdatacollectedin2003and2012.Intotal, 28chemicalanalyseswereretrievedfromNovember2003(Fayeetal.,2004)andNovember2012(thiswork)asacomparison todepictchangesrelatedtoanthropogenicandnaturalstressinthisvulnerablesystem.SalinitypatternsoftheSaloumRiver waterECexhibitschangesfrom78,300to90,100␮S/cmin2003andfrom50,800to60,400␮S/cmin2012.Thesechanges muchlikelyderivefromrainfalleventswhichvariedfrom535mm(502.9mmeffectiverainfall)in2003–847mm(796.18mm effectiverainfall)in2012.Comparedwiththelong-term(1960–1990)averageof610mm,consideredasreferenceinSahel, the2003and2012rainfallrecordsrepresentrespectivelyadeclineof12%andanincreaseof38%.

Thishighvariationinrainfallbetweenthese2referenceyearswouldprobablyalsochangechemicalpatternsinthe groundwater.SOMsanalysesofthedifferentgroupsrevealed:

-InwellsS1,S2,S27,S34,S35andS38,whicharegenerallylocatedneartheSaloumRiverandcorrespondtothegroup 1intheSOMsanalysis,theECevolutionshowsadecreasingtrendwithvalueshigherin2003(averageofapproximately 2099␮S/cm)thanin2012(1250␮S/cm)(Table4).Theioniccontentschanges,showninthePiperdiagram(Fig.12),are featuredbyashiftofthegroundwatertypesfromNa-CltoCa-ClorCa-HCO3.ThisconfirmstheenrichmentofCarelative

(16)

178 N.M.Diengetal./JournalofHydrology:RegionalStudies9(2017)163–182

Fig.12.Comparisonofboxplotdiagramsasobtainedfora)majorionscompositionandb)electricalconductivity(EC)inCTgroundwaterbetweenwet

seasonsof2003and2012.

toNa,andthereforethesofteningbydilutioninferredbyinflowsofbothinfiltratedrainfallandSaloumRivercomparedto 2003(seeabove).

-InwellsS3,S19,S21,S22,S23,andS62,locatedinthecentralandeasternzonesmostly,andcorrespondingtogroup 2intheSOMsanalysis,theECvaluesincreasedfrom2003(meanvalueof353␮S/cm)to2012(averageofapproximately 587␮S/cm).ThisisalsoobservedintheioniccontentsofthegroundwatersamplesasconfirmedbythePiperdiagram(Fig.13). GroundwatertypesmostlyevolvedfromCa-HCO3toNa-ClorCa-Cl.Thesecharacteristicsofincreasedmineralisationand enrichmentofHCO3-,Cl−and/orNO3−insomewellslikelydepicttherecentlyinfiltrationrainwaters.Itisreachingthe aquiferaccompaniedbybothcombinedcalcitedissolutionandpollutantsfromanthropiccontamination.

-NearthecoastandtheNemaRiver,notrendcanbedistinguished.TheECvaluesdecreasedinsomeofthewells(e.g., S40,S41,S48,andS50)(from1750toapproximately200␮S/cm)andincreasedinothers(e.g.,S42,S49,andS52)(from 974toapproximately1539␮S/cm).Inthisregion,thechemicalevolutionofthegroundwaterwasduetoacombinationof seawaterintrusionthatwasenhancedbypumpingactivitiesanddilutionbyrecharge.

4.5. Isotopecomposition

Often,isotopicresultsgreatlyhelpforunderstandingthestructuralcontrolsongroundwaterflowinaridregions(e.g. Daileyetal.,2015)andtherechargepatterns(amongmanyothers:ShahulHameedetal.,2015).Here,theresultsoftheisotope analysesofthesurfacewaterandgroundwatersamplesarepresentedinTable1.Isotopicanalyseswereonlyperformed onasubsetofsamplesthatwerecollectedinNovember2012,whichcorrespondstotheendoftherainyseason.The␦18O and␦2HvaluesofthegroundwatersamplesandtheSaloumRiverwaterareplottedagainsttheGlobalMeteoricWater Line(GMWL)andtheLocalMeteoricWaterLine(LMWL)ofequation(␦2H=7.9318O+10.09)definedbyTravietal.(1987) (Fig.14a).

TheSaloumRiversamplesaredistinctlyenrichedwithvaluesrangingfrom−0.11to+0.32‰for␦18Oandfrom−5.4to −3.2‰for␦2H.ThesesamplesdeviatesignificantlyfromtheSMOWvalues(Fig.14a)confirmingprominentevaporation processesaffectthelowtostagnantSaloumRiverwater.Inthegroundwatersamples,the␦18Ovaluesrangefrom−5.4to −4.1‰,andthe␦2Hvaluesrangefrom−36to−31‰,withmeanvaluesof−4.9‰and−33‰,respectively.Plottedinthe ␦2Hvs.18Odiagram,thedataclusterbelowtheLWMLalongtheline2H=3.918O14.3(R2=0.83).Thesamplesplotto therightoftheglobalmeteoricindicatesanenrichmentofheavyisotopes,andsuggeststhattheyweresubjectedtovariable degreesofevaporation

Indeed, in the Saloum environment, where temperatures (mean 28,5◦C) are high as well as evapotranspiration (2030mm/year),itislikelythatrechargewaterfromrainfallevaporatesbeforeand/orduringafterinfiltration.

Twodistinctclusterscanbedistinguishedinthegroundwatersamplesusingtheisotopicdata(Fig.14a).InclusterA,the stableisotopevaluesrangefrom−5to−4.1%for␦18Oandfrom−35to−31%for2H.Thisclusterrepresentssamplesofgroup

(17)

N.M.Diengetal./JournalofHydrology:RegionalStudies9(2017)163–182 179

Fig.13. Piperdiagramshowinggroundwatercompositionchangebetweenwetseasonsof2003and2012.

1,whicharelocatedalongthecoastandneartheSaloumRiver.ClusterBischaracterizedbymoredepletedstableisotope valueswith␦18Orangingfrom−5.4to−5.1%and␦2Hrangingfrom−36to−34%.Thisclusterrepresentsfreshgroundwater samplesofgroups2and3.ThegroundwaterofclusterAappearstobemoreaffectedbyevaporationorismoreinfluencedby theintrusionofevaporatedsurfacewater.Bycomparing␦18OandCl(Fig.14b),theexistenceofthetwopreviousclusters isconfirmed.ThesamplesofclusterAarelocatedonamixinglinethatjoinsthesamplesofclusterB,whichrepresentfresh water,andthesamplesfromtheSaloumRiverandtheocean.ThisconfirmsthatthesalinizationofthesamplesofclusterA iscausedbymixingwithcoastalmarineorSaloumRiverwaters.

TheresultssuggestedthattheCTaquiferintheinvestigatedareashavebeenrechargedby

rainwaterinfiltrationandmixedwithsalinesurfacewaterfromtheSaloumRiver,whichisalsoaffectedbyhigh evapo-rationprocesses.Fayeetal.(2004)hypothesizedfiveprocessesmayleadtothisscatteredpattern:1)mixingprocessalong flowpathscombinedwithevaporationfromtheshallowwatertable;bothcanhomogenisethe␦18Ovaluesandincrease theoverallsalinity;(2)theisotopiccontentsofrechargedwatersandtheSaloumRiverwatercanhaveawiderangeand alsohomogenizationof␦18Ovalues;(3)transpirationfromvegetationcover;(4)dissolutionofthesaltmineralsmayleadto changingboththeSaloumRiverhydrochemistryaswellastheinterstitialwaterchemistryincreasingthereforesalinityin thetransitionzone;(5)toalesserextent,thesaltsecretinghalophytesplantsofthemangrovesystemlocatedatthemouth oftheestuarymayleadtotheenrichmentofsalinityintheunsaturatedzonewithoutisotopicfractionation.

AsshowninFig.14c,theSaloumRiverwasnotablydepletedinheavyisotopesinNovember2012incomparisonto November2003,whichvaluesrangefrom1.5to1.7‰for␦18Oandfrom0to3‰for2H.Otherwise,theevaporatedtrend ofthe2003groundwatersamplesdeviatesmoresignificantly(slopeof3.9)fromtheLMWLthanthoseofthe2012samples (slopeof4.9)(Fig.14c).TheseresultssuggestthedilutionoftheSaloumRiverwaterandthefresheningofgroundwaternear theriverduetotheincreasingamountoffreshwaterfromrainfallbetween2003and2012(Fig.14c).

5. Conclusions

TheCTaquiferrepresentsanimportantgroundwaterresourceinSenegalandparticularlyintheSaloumregion,whereit isthemainsourceofdrinkingwaterforthelocalpopulation.Therefore,thereassessmentofprocessesresponsibleforthe observedmineralizationanddegradedwaterqualityandofthegroundwaterqualitychangesoftheCTaquiferisofgreat importance.Thisreassessmentmustbedoneinthelightofthenewconstraints(e.g.changesinclimaticconditionsand pumpingconstraints),andthenewflowpatternconfigurationinthissystem.Thesimultaneousanalysisofhydrogeochemical and isotopicdatausingconventionalandstatisticalmethods allowstheassessmentofthegroundwaterquality inthe

(18)

180 N.M.Diengetal./JournalofHydrology:RegionalStudies9(2017)163–182

Fig.14.Relationshipbetweena)␦2Hand18Oandb)18OandClintheCTgroundwaterduringthe2012wetseasonandc)2Hand18OintheCT

groundwaterduringthewetseasonsof2003and2012.ThegroundwatersamplesareclassifiedusingthethreegroupsdefinedwiththeSOM’smethod.

southernpartoftheSaloumBasin.Statisticalanalysesofthegeochemicaldatademonstratethespatialvariabilityofthe chemicalcharacteristicsofthegroundwater.Theyallowtodistinguishthreegroupsofgroundwater.Thefirstgroup(1),which islocatednearthecoastandneartheSaloumRiver,isaffectedbymixingwithsalinewaterintrusionand/oranthropogenic pollution,andthemainfaciesareNa-ClorCa-Cltypes.Thesecondgroup(2),whichismainlylocatedinthecentralandeastern partsofthestudyarea,islessmineralizedandcontainsCa-HCO3faciesasaresultofcalcitedissolutionduetointeraction withtheaquifer.Inthethirdintermediarygroup(3),somesamplesindicatedfresheningprocesseslikelydepictingtheeffect ofrecentinfiltrationrainwaters.

Thesethreegroupsandtheirchemicalcharacteristicsaregenerallyobservedinboththedryandwetseasons.However, adecreaseofthemineralizationisgenerallyobservedduringthewetseasonduetotherechargeoflessmineralizedwater. Acomparisonofthegroundwaterqualitycharacteristicsintermsofsalinizationbetween2003and2012indicatesthat significantchangeshaveoccurred.InthewellsthatarelocatedneartheSaloumRiver,decreasesoftheNa+andCl- concen-trationsandtheECvaluesareobserved.ThegroundwaterfacieshavegenerallyevolvedfromNa-CltoCa-ClorCa-HCO3, whichindicatesthedilutionofgroundwaterduetofresheninginthevicinityoftheSaloumRiver.Thisfresheningisdueto anincreaseofrainfallaswellastheintrusionoflessmineralizedwaterinrecentyearsasthesalinityoftheSaloumRiver hasalsodecreased.Anincreaseofmineralizationisobservedinsomewellslocatedinthecentralandeasternzonesofthe studyarea.GroundwatertypesmostlyevolvedfromCa-HCO3toNa-ClorCa-Clandindicaterecentinfiltrationrainwaters reachingtheaquiferaccompaniedbybothcombinedcalcitedissolutionandpollutantsfromanthropiccontamination.No trendcanbedistinguishednearthecoastandtheNemaRiverwherethechemicalevolutionofthegroundwaterwasdueto acombinationofseawaterintrusionanddilutionbyrecharge.

Insummary,changesofgroundwaterlevelsandqualityhavebeenobservedintheCTaquiferbetween2003and2012 inresponsetovariationsintheprecipitationregimeandotherfactors.Additionalchangesinrechargeorintheflowregime willoccurinthenearfutureinresponsetoclimatechangeortoincreasesofgroundwaterpumping.Itisthusimportant toidentifytheevolutionofthegroundwaterqualitythatiscausedbythesenewchangestoavoidormitigatethefuture degradationofgroundwaterqualitybeforeitbecomesamajorobstacletothefutureeconomicdevelopmentofthiscoastal area.

(19)

N.M.Diengetal./JournalofHydrology:RegionalStudies9(2017)163–182 181

Acknowledgments

TheauthorsthanktheInternationalFoundationofSciences,FrancophoneUniversityAgencyandtheANGLEprojectfor financialsupporttocarryoutthiswork.TheyalsothanktheHydrogeologyLaboratoryoftheUniversityofLiège<(Belgium), theDepartmentofGeologyofCheikhAntaDiopUniversityinDakar(Senegal)andtheHelmholtzZentrumMünchen,Institute ofGroundwaterEcology(Neuherberg/Germany).Theauthorsaregratefultothetwoanonymousreviewerswhohelpeda lotforimprovingthepaper.

AppendixA. Supplementarydata

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ejrh.2016.12.082.

References

Abid,K.,Zouari,K.,Dulinski,M.,Chkir,N.,Abidi,B.,2011.HydrologicandgeologicfactorscontrollinggroundwatergeochemistryintheTuronianaquifer

(SouthernTunisia).Hydrogeol.J.19(2),415–427,http://dx.doi.org/10.1007/s10040-010-0668-z.

Allen,R.,Pereira,L.,Raes,D.,1998.CropEvapotranspiration–GuidelinesforComputingCropWaterRequirements–FAOIrrigationandDrainagePaper

56.FoodandAgricultureOrganizationoftheUnitedNations(FAO).

Appelo,C.A.J.,Postma,D.,2005.Geochemistry,GroundwaterandPollution,seconded.BalkemaRotterdam(656p).

Aranyossy,J.F.,Guere,A.,Sidoro,M.,1989.Étudeparlesisotopesdel’environnementdesdépressionspiézométriques;premièresdonnéessurdes

exemplesauMali.Hydrogéologie3,151–158.

Archambault,J.,1960.LesEauxSouterrainesd’AfriqueOccidentale.BergerLevrault,Nancy,139p.

Barusseau,J.P.,Diop,E.H.S.,Saos,J.L.,1985.Evidenceofdynamicsreversalintropicalestuaries,geomorphologicalandsedimentologicalconsequences

(Saloumandcasamancerivers,Senegal).Sedimentology32(4),543–552.

Belkhiri,L.,Mouni,L.,Boudoukha,A.,2012.Geochemicalevolutionofgroundwaterinanalluvialaquifer:caseofElEulmaaquifer,EastAlgeria.J.Afr.

Earth.Sci.66–67,46–55,http://dx.doi.org/10.1016/j.jafrearsci.2012.03.001.

Bellion,Y.J.C.,1987.HistoiregéodynamiquePost-paléozoïqueDel’AfriqueDel’Ouestd’aprèsl’étudeDeQuelquesBassinssédimentaires(Sénégal,

Taoudéni,Iullemmeden,Tchad).ThèseSciences.Univ.Avignon,296p.

Conrad,G.,Lappartient,J.R.,1987.TheContinentalterminal;itspositionwithintheCenozoicgeodynamicevolutionoftheSenegalo-mauritanianbasin.J.

Afr.EarthSci.6(1),45–60.

Coplen,T.B.,1988.Normalizationofoxygenandhydrogenisotopedata.Chem.Geol.72,293–297.

Currell,M.J.,Cartwright,I.,Bradley,D.C.,Han,D.,2010.RechargehistoryandcontrolsongroundwaterqualityintheYunchengBasin,NorthChina.J.

Hydrol.385,216–229,http://dx.doi.org/10.1016/j.jhydrol.2010.02.022.

Dailey,D.,Sauck,W.,Sultan,M.,Milewski,A.,Ahmed,M.,Laton,W.R.,Elkadiri,R.,Foster,J.,Schmidt,C.,AlHarbi,T.,2015.Geophysical,remotesensing,

GIS,andisotopicapplicationsforabetterunderstandingofthestructuralcontrolsongroundwaterflowintheMojaveDesert,California.J.Hydrol.: Reg.Stud.3,211–232.

Degallier,R.,1962.Hydrogéologiqueduferloseptentrional(Sénégal).MémoireBRGM19,44p.

Dieng,N.M.,Faye,S.,Dinis,J.,Gonc¸alves,M.,Caetano,M.,2014.CombinedusesofsupervisedclassificationandNormalizedDifferenceVegetationIndex

techniquestomonitorlanddegradationintheSaloumsalineestuarysystem.In:Diop,S.,etal.(Eds.),TheLand/OceanInteractionsintheCoastalZone ofWestandCentralAfrica,EstuariesoftheWorld.,10.1007/978-3-319-06388-12.

Diluca,C.,1976.HydrogeologyoftheContinentalTerminalAquiferBetweentheSineandtheGambia.TechnicalReport.BRGMDakar,33p.

Diop,E.S.,1986.TropicalHoloceneEstuaries.ComparativeStudyofthePhysicalGeographyFeaturesoftheRiversfromtheSouthofSaloumtothe

Mellcorée(GuineaRepublic).(PhD.Thesis).Univ.LouisPasteur,Strasbourg,France.

Edmunds,W.M.,Gaye,C.B.,1994.EstimatingthespatialvariabilityofgroundwaterrechargeintheSahelusingchloride.J.Hydrol.156(1–4),47–59,

http://dx.doi.org/10.1016/0022-1694(94)90070-1.

Favreau,G.,Leduc,C.,Marlin,C.,Guéro,A.,2002.UnedépressionpiézométriquenaturelleenhausseauSahel(Sud-OuestduNiger).C.R.Geosci.334(6),

395–401,http://dx.doi.org/10.1016/S1631-0713(02)01763-7.

Faye,S.,Evans,D.,CisséFaye,S.,2001.OriginanddistributionofsalinegroundwaterintheSaloum(Senegal)coastalaquifer,proceed.In:Second

InternationalConferenceonSaltwaterIntrusionandCoastalAquifers,Mérida,Yucatán,México.

Faye,S.,CisséFaye,S.,Ndoye,S.,Faye,A.,2003.HydrogeochemistryoftheSaloum(Senegal)superficialcoastalaquifer.Environ.Geol.44(2),127–136,

http://dx.doi.org/10.1007/s00254-002-0749-y.

Faye,S.,Maloszewski,P.,Stichler,W.,Trimborn,P.,CisséFaye,S.,Gaye,C.B.,2004.GroundwatersalinizationintheSaloum(Senegal)deltaaquifer:minor

elementsandisotopicindicators.J.Sci.Total.Environ.,17,http://dx.doi.org/10.1016/j.scitotenv.2004.10.00.

Faye,S.,Diaw,M.,Ndoye,S.,Malou,R.,Faye,A.,2009.Impactsofclimatechangeongroundwaterrechargeandsalinizationofgroundwaterresourcesin

Senegal.InProc.GroundwaterandClimateinAfrica,Kampala,IAHSPubl,334:163–173.

Faye,S.,Ba,M.S.,Diaw,M.,Ndoye,S.,2010.ThegroundwatergeochemistryoftheSaloumdeltaaquifer:importanceofsilicateweathering,rechargeand

mixingprocesses.J.Afr.Environ.Sci.Tech.4(12),815–830,http://dx.doi.org/10.5897/AJEST09.180.

Ford,M.,Tellam,J.H.,Hughes,M.,1992.Pollution-relatedacidificationintheurbanaquifer,Birmingham,UK.J.Hydrol.140(1-4),297–312,

http://dx.doi.org/10.1016/0022-1694(92)90245-Q.

Güler,C.,Thyne,G.D.,McCray,J.E.,Turner,A.K.,2002.Evaluationofgraphicalandmultivariatestatisticalmethodsforclassificationofwaterchemistry

data.Hydrogeol.J.10(4),455–474,http://dx.doi.org/10.1007/s10040-002-0196-6.

Gamble,A.,Babbar-Sebens,M.,2012.Ontheuseofmultivariatestatisticalmethodsforcombiningin-streammonitoringdataandspatialanalysisto

characterizewaterqualityconditionsintheWhiteRiverBasin,Indiana.USA.Environ.Monit.Assess.184(2),845–875,

http://dx.doi.org/10.1007/s10661-011-2005-y.

Garcia,L.A.,Shigidi,A.,2006.Usingneuralnetworksforparameterestimationingroundwater.J.Hydrol.318(1–4),215–231,

http://dx.doi.org/10.1016/j.jhydrol.2005.05.028.

Garcia,M.G.,Hidalgo,M.,Blessa,M.A.,2001.GeochemistryofgroundwaterinthealluvialplainofTucumanprovince.ArgentinaHydrogeol.J.9(6),

597–610,http://dx.doi.org/10.1007/s10040-001-0166-4.

Ghesquière,O.,Walter,J.,Chesnaux,R.,Rouleau,A.,2015.ScenariosofgroundwaterchemicalevolutioninaregionoftheCanadianShieldbasedon

multivariatestatisticalanalysis.J.Hydrol.:Reg.Stud.4(B,246–266.

Gning,A.A.,2015.EtudeEtModélisationHydrogéologiqueDesInteractionsEauxDeSurface-EauxSouterrainesDansUnContexted’agricultureIrriguée.

(Ph.DThesis).Univ.Liege,285p.

Hidalgo,M.C.,Cruz-Sanjulián,J.,Sanroma,A.,1995.GeochemicalEvolutionofundergroundwatersinasedimentaryriverbasin(water-bearingof

(20)

182 N.M.Diengetal./JournalofHydrology:RegionalStudies9(2017)163–182

Hong,Y.S.,Rosen,M.R.,2001.Intelligentcharacterizationanddiagnosisoftheeffectofstormwaterinfiltrationongroundwaterqualityinafracturedrock

aquiferusingartificialneuralnetwork.UrbanWater3,193–204,http://dx.doi.org/10.1016/S1462-0758(01)00045-0.

Hong,S.,Kim,H.,Kumar,N.,Kim,J.,Park,N.,2004.Experimentalinvestigationsongroundwaterflowincoastalaquifers.In:GroundwaterandSaline

Intrusion.,pp.15,21p.

Ibrahima,M.,Moctar,D.,Maguette,D.N.,Diakher,M.H.,Malick,N.P.,Serigne,F.,2015.Evaluationofwaterresourcesqualityinsabodalagoldmining

regionanditssurroundingarea(Senegal).J.WaterRes.Protect.7(3),247–6363,http://dx.doi.org/10.4236/jwarp.2015.73020.

Jankowski,J.,Acworth,R.I.,1997.Impactofdebris-flowdepositsonhydrogeochemicalprocessesandthedevelopmentofdrylandsalinityintheYass

RiverCatchment,NewSouthWales.Aust.Hydrogeol.J.5(4),71–88,http://dx.doi.org/10.1007/s100400050119.

Jones,B.F.,Vengosh,A.,Rosenthal,E.,Yechieli,Y.,1999.Geochemicalinvestigations.In:SeawaterIntrusioninCoastalAquifers-Concepts,Methodsand

Practices.SpringerNetherlands.14,51–71.10.1007/978-94-017-2969-73.

Kim,Y.,Lee,K.S.,Koh,D.C.,Lee,D.H.,Lee,S.G.,Park,W.B.,Koh,G.W.,Woo,N.C.,2003.Hydrogeochemicalandisotopicevidenceofgroundwater

salinizationincoastalaquifer:acasestudyinJejuvolcanicisland.J.Hydrol.270(3),282–294,http://dx.doi.org/10.1016/S0022-1694(02)00307-4.

Kohonen,T.,1982.Self-organizedformationoftopologicallycorrectfeaturemaps.Biol.Cybern43(1),http://dx.doi.org/10.1007/BF00337288.

Kohonen,T.,2001.AnOverviewofSOMLiterature.InSelf-OrganizingMapsSpringerBerlinHeidelberg.30,347–371.10.1007/978-3-642-56927-210.

Koussoube,Y.,2010.HydrogéologiedessériessédimentairesdeladépressionpiézométriqueduGondo(bassinduSourou)–BurkinaFaso/Mali.(Ph.D

thesis).ParisVI−PierreetMarieCurieUniv.285p.

Kristensen,E.,Holmer,M.,Bussarawit,N.,1991.BenthicmetabolismandsulfatereductioninaSouth-EastAsianmangroveswamp.Mar.Ecol.Prog.Ser.

73,93–103.

Lappartient,J.R.,1985.TheContinentalTerminalandtheEarlyPleistoceneoftheSenegalo-mauritanianBasin.Stratigraphy,Sedimentology,Diagenesis,

Alterations,PaleoshoreReconstitutionsfromtheFerraliticFormations,(PhDThesis).Univ.Marseille,France,294p.

Largier,J.L.,Smith,S.V.,Hollibaugh,J.T.,1997.SeasonallyhypersalineestuariesinMediterranean-climateregions.Est.Coast.ShelfSci.45(6),789–797,

http://dx.doi.org/10.1006/ecss.1997.0279.

LePriolJ.,DiengB.,1985.SynthèsehydrogéologiqueduSénégal(1984–1985).Etudegéologiquestructuraleparphoto-interprétation.Géométrieet

limitesdesaquifèressouterrains.Rap.Min.Hydraul.0l/85fMHIDEH.

Lebel,T.,Ali,A.,2009.RecenttrendsintheCentralandWesternSahelrainfallregime(1990–2007).J.Hydrol.375(1–2),52–64,

http://dx.doi.org/10.1016/j.jhydrol.2008.11.030.

Lebigre,J.M.,Marius,C.,1984.Etuded’uneséquencemangrove-tanneenmilieuéquatorial,baiedelaMondah(Gabon).PhotoAnn.Trav.Doc.Géogr.Trop.

CGET,131–145.

Ly,A.,Aglanda,R.,1991.Lebassinsénégalo-mauritaniendansl’évolutiondesmargespériatlantiqueauTertiaire.Cah.Micropaléontol.6(2),47p.

Magaritz,M.,Nadler,A.,Koyumdjiski,H.,Dan,J.,1981.TheuseofNa/Clratiostotracesolutesourcesinasemiaridzone.WaterResour.Res.17(3),

602–608.

Mercado,A.,1985.Theuseofhydrogeochemicalpatternsincarbonatesandandsandstoneaquiferstoidentifyintrusionandflushingofsalinewater.

GroundWater23,635–645,http://dx.doi.org/10.1111/j.1745-6584.1985.tb01512.x.

Mikhailov,V.N.,Isupova,M.V.,2008.HypersalinizationofriverestuariesinWestAfrica.WaterResour.35(4),367–385,

http://dx.doi.org/10.1134/S0097807808040015.

Montcoudiol,N.,Molson,J.,Lemieux,J.M.,2015.GroundwatergeochemistryoftheOutaouaisRegion(Québec,canada):aregional-scalestudy.Hydrogeol.

J.23(2),337–396.

Mudry,J.,1991.Discriminantanalysisanefficientmeansforthevalidationgeohydrologicalhypothesis.Rev.Sci.Eau.4(1),19–37,

http://dx.doi.org/10.7202/705088ar.

NdiayeB.,AranyossyJ.F.,FayeA.,1993.Lerôledel’évaporationdanslaformationdesdépressionspiézométriquesenAfriqueSahélienne;hypothèseset

modélisation.In:LesressourceseneauauSahel.EtudeshydrogéologiquesethydrologiquesenAfriquedel’Ouestparlestechniquesisotopiques,

IAEA-TECDOC-721:53-63.

Ngom,F.D.,2000.CaractérisationDesTransfertsHydriquesDansLeBassinDeLaNemaAuSineSaloum.These3emeCycle.Univ.Dakar,130p.

NgounouNgatcha,B.,Mudry,J.,Aranyossy,J.F.,Naah,E.,Reynault,S.J.,2007.Apportdelagéologie,del’hydrogéologieetdesisotopesdel’environnement

àlaconnaissancedesnappesencreuxduGrandYaéré(NordCaméroun).Rev.Sci.Eau.20(1),29–43.

Nicolini,E.,Rogers,K.,Rakowski,D.,2016.Baselinegeochemicalcharacterisationofavulnerabletropicalkarsticaquifer;Lifou,NewCaledonia.J.Hydrol.:

Reg.Stud.5,114–130.

Noël,Y.,1975.EtudeHydrogéologiqueDuContinentalTerminalDeSineGambiePremièrePhaseEtRapportDeSynthèse.BRGMDakar,30p.

Page,J.,Citeau,J.,1990.RainfallandsalinityofaSahelianestuarybetween1927and1987.J.Hydrol.113(1–4),325–341,

http://dx.doi.org/10.1016/0022-1694(90)90182-w.

Peeters,L.,Bac¸ao,F.,Lobo,V.,Dassargues,A.,2007.Exploratorydataanalysisandclusteringofmultivariatespatialhydrogeologicaldatabymeansof

GEO3DSOM,avariantofKohonen’sSelf-OrganizingMap.Hydrol.EarthSyst.Sci.11(4),1309–1321,http://dx.doi.org/10.5194/hess-11-1309-2007.

Piper,A.M.,1944.Agraphicalprocedureinthegeochemicalinterpretationofwateranalyses.Trans.Am.Geophys.Union25(6),

http://dx.doi.org/10.1029/TR025i006p00914.

Pritchard,D.W.,1967.WhatisanEstuary:PhysicalViewpoint.InLauff,G.H.(Ed.)Estuaries.Am.Ass.Advanc.SciPub.83,3–5.

Ridd,P.V.,Stieglitz,T.,2002.Dryseasonsalinitychangesinaridestuariesfringedbymangrovesandsaltflats.Estuar.Coast.Shelf.Sci.54(6),1039–1049,

http://dx.doi.org/10.1006/ecss.2001.0876.

Roger,J.,Barusseau,J.P.,Castaigne,P.,Duvail,C.,Noël,B.J.,Nehlig,P.,Serrano,O.,Banton,O.,Comte,J.C.,Travi,Y.,Sarr,R.,Dabo,B.,Diagne,E.,Sagna,R.,

2009.Programmed’AppuiAuSecteurMinierCartographiegéologiqueDuBassinsédimentaire.Projet9ACPSE009.

Sarr,R.,1995.Etudebiostratigraphiqueetpaléoenvironnementaledessériesd’âgeCrétacéTerminalàEocènemoyenduSénégaloccidental.In:

SystématiqueEtMigrationDesOstracodes.(Thèsed’Etat).Univ.C.A.D.Dakar,335p.

Savenije,H.,Pagès,J.,1992.Hypersalinity:adramaticchangeinthehydrologyofSahelianestuaries.J.Hydrol.135,157–174.

ShahulHameed,A.,Resmi,T.R.,Suraj,S.,UnnikrishnanWarrier,C.,Sudheesh,M.,Deshpande,R.D.,2015.Isotopiccharacterizationandmassbalance

revealsgroundwaterrechargepatterninChaliyarRiverbasin,Kerala,India.J.Hydrol.:Reg.Stud.4(A,48–58.

Smith,A.J.,Turner,J.V.,2001.Density-dependentsurfacewater-groundwaterinteractionandnutrientdischargeintheSwan–Canningestuary.Hydrolog.

Process.15(13),2595–2616,http://dx.doi.org/10.1002/hyp.303.

Travi,Y.,Gac,J.Y.,Fontes,J.C.,Fritz,B.,1987.ChemicalandisotopicsurveyofrainwatersinSenegal.Geodyn2(1),43–53.

Travi,Y.,1988.HydrogéochimieEtHydrogéologieDesAquifèresFluorésDuBassinDuSénégal.OrigineEtConditionsDeTransportDuFluorDansLesEaux

Souterraines.ThesisSci.Univ.ParisSud(Orsay),190p.

Vengosh,A.,Spivack,A.J.,Artzi,Y.,Ayalon,A.,1999.Geochemicalandboron,strontium,andoxygenisotopicconstraintsontheoriginofthesalinityin

groundwaterfromtheMediterraneansoastofIsrael.WaterResour.Res.3(6),1877–1894,http://dx.doi.org/10.1029/1999WR900024.

Vengosh,A.,2013.SalinizationandSalineEnvironments.In:SherwoodLollar,B.(Ed.),Environmentalgeochemistry,TreatiseinGeochemistry.SecondEd.

11,325–378.10.1016/B978-0-08-095975-7.00909-8.(Chapter9SalinizationTreatiseinGeochemistry).

WHO,2008.GuidelinesforDrinking-WaterQuality,thirded.1.Recommendations,WorldHealthOrganization(WHO),Geneva,Switzerland,515pp.

WernerA.D.,LockingtonD.A.,2004.Dynamicgroundwaterandsalttransportnearatidal,partiallypenetratingestuary.In:MillerC.T.,PinderG.F.(Eds).

Computationalmethodsinwaterresources.55(2),1535–1547.10.1016/S0167-5648(04)80164-3.

Wolanski,E.,1986.Anevaporation-drivensalinitymaximumzoneinAustraliantropicalestuaries.Estuar.Coast.Mar.Sci.22(4),415–424,

Figure

Fig. 1. Location of the investigated area and monitoring network. The dark line indicates the location of the cross-section A-A’ presented in Fig
Fig. 2. Cross section of the study area showing the geological formation and the piezometric level of CT groundwater (cross section indicated in Fig
Fig. 4. Groundwater piezometric map in the CT aquifer during the dry season of 2012.
Fig. 5. Recharge map and punctual observed seasonal changes in piezometric heads.
+7

Références

Documents relatifs

Whereas benthic macrofauna has been described to negatively affect biofilm processes related to their nutrient uptake ability (e.g. Sabater et al., 2002), the present

The main water fl ow direction in the river/groundwater interface was from groundwater to river; water that fl owed in this direction accounted for 65%of the total exchanged

is the salinity variation of the karstic spring over time the result of (1) a brackish karst coastal aquifer being periodically diluted by rainfall, or (2) a fresh karst coastal

fiques des colloques suivants : Association pour le développement des méthodologies d’évaluation en éducation en Europe (Lisbonne, janvier 2016) ; Association internationale

tions in the natural chemistry of the two periods follow the same trend: the main control on the baseline quality is the geochemistry of the LTSA and downgradient evolution of

لوالأ لصفلا تيبشاحلما ثامولعلما ماظىل ماعلا راطالإ مكر لكشلا ( 2 :) تيبشاحلما تمولعلما صئاصخ ردصلما دبك ىلك ادامخكا نيخبلاؼلا دادكإ ًم :

The evolutionary history of the taxa in X can then be represented by a rooted phylogenetic network N on X where the tree nodes correspond to speci- ation events and the reticulate