• Aucun résultat trouvé

Biomimetic nanocrystalline apatite coatings synthesized by Matrix Assisted Pulsed Laser Evaporation for medical applications

N/A
N/A
Protected

Academic year: 2021

Partager "Biomimetic nanocrystalline apatite coatings synthesized by Matrix Assisted Pulsed Laser Evaporation for medical applications"

Copied!
9
0
0

Texte intégral

(1)

To link to this article :

doi:10.1016/j.mseb.2013.11.007

URL :

http://dx.doi.org/10.1016/j.mseb.2013.11.007

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 12076

To cite this version :

Visan, Anita Ioana and Grossin, David and

Stefan, Nicolaie and Duta, Liviu and Miroiu, Floralice Marimona

and Stan, George E. and Sopronyi, Mihai and Luculescu, Catalin

and Freche, Michèle and Marsan, Olivier and Charvillat, Cédric and

Ciuca, Sorin and Mihailescu, Ion N. Biomimetic nanocrystalline

apatite coatings synthesized by Matrix Assisted Pulsed Laser

Evaporation for medical applications. (2014) Masterials Science and

Engineering : B, vol. 181 . pp. 56-63. ISSN 0921-5107

Any correspondance concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(2)

Biomimetic

nanocrystalline

apatite

coatings

synthesized

by

Matrix

Assisted

Pulsed

Laser

Evaporation

for

medical

applications

A.

Visan

a

,

D.

Grossin

b

,

N.

Stefan

a

,

L.

Duta

a

,

F.M.

Miroiu

a

,

G.E.

Stan

c

,

M.

Sopronyi

a

,

C.

Luculescu

a

,

M.

Freche

b

,

O.

Marsan

b

,

C.

Charvilat

b

,

S.

Ciuca

d

,

I.N.

Mihailescu

a,∗

aNationalInstituteforLasers,Plasma,andRadiationPhysics,409AtomistilorStreet,RO-77125,MG-36,Magurele-Ilfov,Romania

bCIRIMATCarnotInstitute,UniversityofToulouse,ENSIACET,4AlléeEmileMonso,31030ToulouseCedex4,France

cNationalInstituteofMaterialsPhysics,RO-077125,Magurele-Ilfov,Romania

dPolitehnicaUniversityofBucharest,FacultyofMaterialsScienceandEngineering,Bucharest,Romania

Keywords:

Biomimetichydratedbioapatites

Thinfilms

MatrixAssistedPulsedLaserEvaporation

(MAPLE)

Coatedimplants

a

b

s

t

r

a

c

t

WereportthedepositionbyMatrixAssistedPulsedLaserEvaporation(MAPLE)techniqueofbiomimetic nanocrystallineapatitecoatingsontitaniumsubstrates,withpotentialapplicationintissueengineering. Thetargetswerepreparedfrommetastable,nanometric,poorlycrystallineapatitepowders,analogous tomineralbone,synthesizedthroughabiomimeticapproachbydoubledecompositionprocess.Forthe depositionofthinfilms,aKrF*excimerlasersourcewasused(=248nm,FWHM≤25ns).The

analy-sesrevealedtheexistence,insynthesizedpowders,oflabilenon-apatiticmineralions,associatedwith theformationofahydratedlayeratthesurfaceofthenanocrystals.Thethinfilmanalysesshowed thatthestructuralandchemicalnatureofthenanocrystallineapatitewasprevalentlypreserved.The perpetuationofthenon-apatiticenvironmentswasalsoobserved.ThestudyindicatedthatMAPLEis asuitabletechniqueforthecongruenttransferofadelicatematerial,suchasthebiomimetichydrated nanohydroxyapatite.

1. Introduction

In recent years, a considerable attention was paid to the developmentofimplantswithbioactivefixation[1,2].Nowadays biomedicalresearchaimsfortheincreaseofsurface biocompati-bilityoftitanium(Ti)orthopedicordentalimplantsbythecoating withbiologicallyactivematerials.Tistandsforthemetallicmaterial ofchoiceinreconstructivemedicineduetoitsexcellent mechan-icalpropertiesinbulk,relativetothelowmassdensity,andhigh corrosionresistance[3].

Calciumphosphate(CaP)ceramicsarecurrentlythemostused biomaterialsformetalimplantcoatingsinordertoincreasethe osseoconductivity and overall bioactivity,thus speeding upthe biointegrationand repairingprocessofbonesor otherhard tis-sues[4].Nevertheless,recentstudieshaveshownthattheactual bioapatitepresentin thehumanbodyis generally nonstoichio-metricandmuchmore bioactivethanpurehydroxyapatite[HA, Ca10(PO4)6(OH)2],whichisconsideredthemodelforthebasic

con-stituentoftheinorganicpartofthebone(65–75wt.%,depending onageandsex)[5,6].Themineralpartofboneisinfactahydrated

∗ Correspondingauthor.Tel.:+40214574491;fax:+40214574243.

E-mailaddress:ion.mihailescu@inflpr.ro(I.N.Mihailescu).

calcium-deficientapatiteoflowcrystallinestatus,containing sev-eralionsubstitutions:Na+,Mg2+cansubstituteCa2+ions;(CO

3)2−

and(HPO4)2−ionscansubstitutephosphateions;(CO3)2−,Cl−and

F−canreplacehydroxylions,aswellasothervarioustraceelements

(Zn,Al,Sr)[7,8].

Researcheffortshavebeenthereforefocusedonthesynthesis ofbioapatitematerialsascloseaspossibletothehumanbone com-positionandstructure,andtheirnextcongruenttransferontothe surfaceofmetallic implants[1,9,10].Variousdopingand differ-entmethodsofdepositionhavebeenemployedinthepastinthe attemptofobtainingasuitableapatiticstructure.Wethusmention: pulsedlaserdepositedmagnesium,manganeseorstrontiumdoped HAcoatings[11–13],magnetronsputteredB-typecarbonatedHA thinfilms[14],andmanganese,strontiumorfluorine(co)-doped electrodepositedHAlayers[15–18].

Oneimportantissueemergingduringmanyphysicaldeposition studiesisthehighlydehydratednatureofthefabricatedHAfilms (thus,contrastingtotheactualmineralphaseofbone),becauseof highvacuumdepositionconditions,hightemperatureprocess,or volatilityofOH−species.Thechemicaldepositiontechniquescan

surpassthisdrawback,butaregenerallyleadingtofilmswithpoor adhesion[19,20].

Inthiscontext,theapatitenanocrystalsobtainedby precipita-tionmethodsinsolutionpresentphysico-chemicalfeaturessimilar

(3)

tothose of bone nanocrystals, which make them very promis-ingbiomaterialsforthepreparationofhighlybioactiveceramics [21].Non-stoichiometricnanocrystalline apatite-based biomate-rialsmimicthemineralbonecrystal structureand composition andexhibita controlledreactivity inrespecttotheinteractions withcomponentsofbiologicalfluids(ions,proteins)[22].Recently, apatitenanocrystalshavebeentestedascoatingsandtheyhave shown superior biological behavior [23]. One significant prop-ertyistheirsurfacereactivity thatisrelatedtotheexistenceof a metastable hydratedlayeron thesurface of thenanocrystals inpowders[5].Thesynthesisprocessofnanocrystallineapatites poorlycrystallizedby conventionaltechniques,at high temper-ature,strongly alterstheirphysico-chemicalcharacteristics and biologicalproperties.Thesynthesisprocessesusedinthispaper werethereforeaimedtolimitthesealterations(asgraingrowth, dehydration,evolutiontowardstoichiometry)[24].

Weemphasize upontheadvantagesforprocessingthe pow-dersatlowtemperatureandillustratetheeffectofexperimental parameters’ synthesis on apatite powder characteristics. The non-stoichiometric nanocrystalline apatite bioceramic coatings weredepositedonTisubstratesbyMatrixAssistedPulsedLaser Evaporation (MAPLE) technique, considered convenient for the well-protectivetransferofnovelorganicdelicatemoleculesthin films[25,26].MAPLEensuresgoodthicknesscontrol,patterning facility,andisappropriateforawiderangeofbiomaterialsprone tothedecompositionanddegradationunderdirectintenselaser irradiationandsubsequentexposuretoplasmaaction[25–27].One candepositpatternedfilmsonavarietyofsubstratematerialswith differentgeometricshapes.Themostimportant requirementof MAPLEprocessistominimizeandpossiblyavoidthephotonic dam-age,eitherofthefilmorofmatrixmaterialduringlaserinteraction andtransfer[25–27].MAPLEisanon-contactdepositiontechnique, whicheliminatesmajorsourcesofcontaminationandcanbe inte-gratedwithothersterileprocesses[25–27].

ThismanuscriptitisdedicatedtothedepositionbyMAPLE tech-niqueofbiomimeticnanocrystallineapatitecoatingsontitanium substrates,withpotentialapplicationsinmedicine.Thekeypartof thereportedevidenceistheinvestigationofthelabilenon-apatitic environmentsofmineralionsassociatedwiththehighsurface reac-tivityofbiomimeticapatites whichwasstudiedinourprevious work[28].

2. Materialsandmethods

2.1. Synthesisofbiomimeticapatitepowders

Biomimetic apatites (BmAp), with complex chemical for-mula Ca10−x+u(PO4)6−x−y(HPO42−)x+y(OH)2−x+2u+y, 0≤x≤2 and

0≤2u+y≤x [28], were synthesized at room temperature (RT) andphysiologicalpHbydoubledecompositionmethodbetween adi-ammoniumhydrogenphosphateandacalciumnitrate tetra-hydratesolution[120gof(NH4)2HPO4(CarloErba,analysisquality:

purity:98%)in1500mlofdeionisedwater,52.2gofCa(NO3)2·4H2O

(Merck,analysisquality:purity:99%)in750mlofdeionisedwater]. Thecalciumsolutionwasrapidlypouredintothephosphate solu-tion at 20◦C and stirred for 10min. The excess of phosphate

ionswasdesignedtofixthepHbufferingatahomeostaticvalue of7.4,whichremainconstantthroughoutthesynthesisprocess. Aftermaturationforoneday,theprecipitateswerefilteredunder vacuum and washed with deionised water. Then, the gel was freeze-driedandstoredinafreezertopreventfurthermaturation oftheBmApnanocrystals.Thechosenconditions(physiologicalpH of7.4incloseresemblancetohumanbody)resultedinthe synthe-sisofapoorlycrystallineapatiteanalogoustothemineralpartof neo-formedbone.

Fig.1.MAPLEexperimentalset-up.

2.2. DepositionofBmApthinfilms

TheMAPLEset-upusedinexperimentsisdepicted schemati-callyinFig.1.

ThinBmApfilmshavebeendepositedusingaKrF*excimerlaser source(=248nm,FWHM≤25ns),runningatarepetitionrateof

10Hz.Thecommonlyusedsubstratesinexperimentsweredisks ofpureTiof1.2cmindiameterand0.2cminthickness (Dentau-rumGmbH). For microscopiccharacterizations, somestructures weredepositedonh110isingle-crystallineSiwafers(MEMC Elec-tronicMaterialsInc.).Allsubstratesweredegreasedinacetoneand ethanolinanultrasonicbathfor30minandrinsedwithdeionized water.ForMAPLEexperiments,theslurrywaspreparedby dispers-ing475mgofBmAp,maturatedforoneday,inahydro-alcoholic solution,wherebenzoicacidwaspreviouslydissolved.The result-ingslurrywascarefullystirredatRTandthenpouredinastainless steelcup.Thesolutionwasnextfrozenat77Kbyimmersionin liquidnitrogenindirectcontactwithacoolerinsidethe deposi-tionchamber.Thisway,thetargetevaporationwasinitiallyslowed downtobefinallycompletelystopped.Thetarget-substrate sep-arationdistancewasof5cm.Duringdeposition,thetargetswere rotatedwith0.3Hzandtranslatedalongtwoorthogonalaxesto avoidpiercingandtoensurethedepositionofauniformfilm.The residualworkingpressureinsidethedepositionchamberwasset at∼2.7Pa.Forthedepositionofeachfilm,30,000subsequentlaser pulseshavebeenapplied.

Theselectedvolatilesolvent,thebenzoicacid,ishighly absorb-ingthelaserwavelengthinfrozenstate,butisnotreactingwith thesoluteevenunderlaserexposure.Accordingtoliterature,the dehydrationeffectofBmApafterthesuspensionofpowderina hydro-alcoholicsolutionkeepsnegligible[22].Acomparativestudy ontheincidentlaserfluenceeffectwasconducted.Fourfluence val-uesof0.3J/cm2,0.5J/cm2,0.75J/cm2and1J/cm2havebeenchosen

andtheappliedcriterionwasthepreventionofthepowder decom-position.Finally,thevalueof0.75J/cm2wasselected,asbeingthe

highestlaserfluenceforwhichthefilmsaredeposited stoichiomet-ricandwithoutanydecompositionordenaturationoftheBmAp powder,withthelargestpossiblerate.Thisway,thestructuraland functionalfidelitywaspreservedafterMAPLEtransfer,byavoiding asignificantdirectlaser–biomaterialinteractioninthedeposition chamber.Duetothelowconcentrationofsolute(biomaterial)in thefrozentarget,thelaserphotonspreponderantlyinteractwith thematrix(solvent),whichisvaporized[29].ThemetastableBmAp moleculesarereleasedunalteredand,bymeansofcollisionswith theothermolecules,aredirectedtowardthesubstrate,wherethey formauniformthinfilm.Inthesametime,thevolatilesolventis pumpedawaybythevacuumsystem.

(4)

2.3. Characterizationmethods 2.3.1. Nanopowderinvestigation

(i)Calciumconcentrationintheinitialpowderswasmeasured byatomicabsorptionspectroscopy,usingaPerkinElmer AAn-alyst 300 Atomic Absorption spectrometer. The phosphorus concentrationwasdeterminedbyspectrophotometryofthe phospho-vanado molybdenum complex, using a Hitachi V-1100 spectrophotometer at460nm,respectingtheprotocol describedinRef.[30].Thechemicalanalysiswasbasedonthe dissolutionofapatiteinacidicsolutionbeforetheanalysis,for thecalciumandorthophosphateionscontrol,orduringthe analysis,inthecaseofcarbonateions,respectively.

(ii)Thesamplecharacterizationby X-raydiffraction(XRD)was performedusingacurvedcounterdiffractometerINELCPS120 withmonochromaticCoKaradiation(=1.789 ˚A).

(iii)Fourier transform infrared (FTIR) spectroscopy analysis of the powder was carried out in transmission mode, in the (4000–400)cm−1 range,withaPerkinElmer1600C

thermo-spectrometerwitharesolutionof4cm−1.TheRamanspectra

ofpowderswererecordedonaJobinYvonHR800spectrometer, inthe(3800–100)cm−1 range,withalaserexcitation

wave-lengthof632.8nm.Theexperimentaldatawerefittedusing theOriginsoftware.

(iv)Transmission electron microscopy(TEM) studieswere con-ductedonaJEOLJEM1011(100–500kV)microscope.

2.3.2. Thinfilminvestigation

(i)ThinfilmthicknesswasmeasuredwithanAmbiosStylus Pro-filerXP-2system,having0.1nmverticalresolution,anoptical deflectionheight-measurementsensorandstyluswith2.5mm radiusand0.1mgforce.

(ii)The identification of crystalline phases was conducted by GrazingIncidenceX-rayDiffraction(GIXRD)usingaBrukerD8 Advancediffractometer,inparallelbeamsetting,equippedwith CutargetX-raytube.Theincidenceanglewassetat2◦,andthe

scatteredintensitywasscannedintherange20–50◦(2),with

astepsizeof0.04◦,and100sperstep.

(iii)TheFTIRspectroscopyanalysisofthethinfilmswasperformed withaPerkinElmerBXSpectrumspectrometer,inattenuated totalreflection(ATR)modeusingaPike-MIRaclediamondhead of0.18cmdiameter.Thespectrawererecordedintherange (4000–550)cm−1,witharesolutionof4cm−1andatotalof

150scansperexperiment.

(iv)TheRamanmeasurementsweremadewiththesamesystem usedforthenanopowdercharacterization.

(v)The morphology of the films was examined by scanning electronmicroscopy(SEM)withaFEIInspectSelectron micro-scope,operatingat20kVaccelerationvoltage,inhighvacuum, undersecondary electronmode. Cross-sectionSEMimages wererecordedonaspecimendepositedonSiwafersin iden-ticalconditionsinordertoinvestigatethefilmhomogeneity indepth.Additionally,higherresolutionmorphological stud-ieswereperformedbyatomicforcemicroscopy(AFM),using anAgilent5500apparatusequippedwithasupersharp TESP-SSNanoworldtip(nominalresonancefrequency320kHzand nominalradiuscurvature2nm).

(vi)TheCa/Pratioofthethinapatiticfilmswasdeterminedby energy dispersive spectroscopy (EDS)analysis, using EDAX Inc.instrumentwithaSiLidetector,operatedat20kV.The analyseswereperformedonfiverelativelylargeregionsof 250mm×250mm,inordertoensurethegoodstatisticofthe measurement.

(vii)TheHAfilmsadherencetothesubstratewastestedby pull-outmethod.Theexperimentalprocedurewasconductedin

Fig.2.XRDpatternsofstoichiometriccrystallineHAandBmAppowder.

accordance withtheASTMD4541andISO4624standards. TheinvestigationswerecarriedoutusingaDFDInstruments AT101PATMICROadhesiontesterequippedwitha0.28cm diameterstainlesssteeltestelements(dollies),gluedtofilms surface witha cyano-acrylateone-component Epoxy adhe-sive, E1100S. Aftergluing, the samples wereplaced in an ovenforthermalcuring(130◦C/1h).Eachtestelementwas

pulled-outverticallywithacalibratedhydraulicpumpuntil detachment.Thebondingstrengthvalueswerecalculatedas theratio betweenthe pullingforce atwhich the adhesive fractureoftheHAfilmoccurredtotheactuallyfilm delam-inatedarea.Wementionthatpriortothefilmtesting,control measurementsregardingthequalityofthebondingadhesive (steel-on-steel)wereperformed.Theaverageadherencevalue estimatedatthestainlesssteeldolly/stainlesssubstrate inter-facewasof∼85MPa.

3. Resultsanddiscussion 3.1. Nanopowders’characterization

Fromtheconcentrationofcalciumandphosphateions,obtained bychemicalanalyses,weinferredtheCa/Patomicratioinorder toassessthechemicalcompositionofsyntheticBmApafterone dayofmaturation.TheobtainedCa/Patomicratiovalueof1.5is noticeablyinferiortothetheoreticalvalueof1.67,characteristic tostoichiometricHA.Thisputsinevidencethenon-stoichiometric, calcium-deficient,biological-likenatureoftheapatitic(HA)phase usedinourexperiments.

The XRD powder patterns of a crystalline pure commercial powderHA(TecknimedSA)andofthesyntheticnanocrystalline apatitematuratedforonedayarepresentedcomparativelyinFig.2. Bothmaterialsexhibited thecharacteristic linesof the hexago-nalHAphase(ICDD:00-009-0432),withsharpandwelldefined peaksinthecaseofcommercialcrystallinematerial,andlargeand overlappingmaximainthecaseofBmApmaturatedpowder.The broadeningoftheBmAppeaksistheindicativeofapoorly crystal-lizednanoapatite,duetothelatticedisorderandveryfinesizeof crystallites,similarlytomineralbone[31,32].

Themeancrystallitesize wasderivedusing thewell-known Scherrerequation[33]:

Lhkl= K∗ b∗cos

HereLhkl isthemeansizeoftheordered(crystalline)domains,

which may besmaller or equal tothe grainsize; shape factor K=0.94;is theX-raywavelength;ˇ isthelinebroadeningat

(5)

Fig.3.FTIRspectraofhighlycrystallineHA(aandb)andBmAppowders(candd)inthespectralregions:1800–400cm−1(aandc)and4000–2800cm−1(bandd).

halfthemaximumintensity,aftersubtractingtheinstrumentalline broadening,inradians;andistheBraggangle.

Itwasappliedtodiffractionlines(002)and(310),giving esti-matedvaluesofthecrystallitelengthandanaverageoftheirwidth. Thus,ifoneignoresthestraineffects,basicprofileanalysisleadsto L002valuesof∼20nm,andL310of∼5nm,foramaturationtimeof

oneday.Thesedataconfirmedthenanometersizeofthe crystal-litesconstitutiveofBmAppowder,andindicatedtheirelongated shape.Itshouldbenotedthatpreviousstudiesrevealedby insight-fulmorpho-structuralanalysesthathumanbonealsoexhibitsan elongatedcrystalliteshape, havingananisotropic growthalong the[00l]crystallographicdirection[34,35].FTIRspectrumisgiven inFig.3 oftheBmAppowder (cand d),togetherwiththeone ofthestoichiometriccrystallineHA(aandb),in thefingerprint (1800–400cm−1)andfunctionalgroup(4000–2800cm−1)regions.

AllthecharacteristicabsorptionbandsofHAarepresent.The phos-phatebandpositions correspond totheones oftenreported in specializedliterature(forstoichiometricHA)[36–39].The promi-nentphosphatesbandsarevisible[472(n2bendingmodeofPO43−

groups),561and603(n4 asymmetricbendingofPO43−groups),

875(P–O–HvibrationintheHPO42− group),960(n1 symmetric

stretchingofPO43−groups),1030–1096(n3asymmetricstretching

ofPO43−groups),1151(vibrationsofHPO42−ions),and1250cm−1

(vibrationsofHPO42−ionsandpossible(PO2)−(Q2)species)].The

structuralOH− shallowbandsat638cm−1 (librationmode)and

3570cm−1(stretchingmode)werealsoevidenced(Fig.3candd).

Additionally,oneobservesthepresenceofthebroadwaterbands at(3400–3000)cm−1(stretchingmode)and1630cm−1 (bending

mode),whichindicateahigherdegreeofhydratationofthe mate-rial.Thebroadn3 CO32− asymmetricstretchingbandpeakingat

∼1450cm−1suggeststheslightcarbonationoftheBmAppowder,

duetocontaminationduringpreparationorhandling.

AllIRbandsofBmAppowder(Fig.3c)arebroaderandless con-spicuousthan thecorrespondingonesof thestoichiometricHA

Fig.4.Curvefittingofn4(PO4)3−IRbandofBmAppowder.

(Fig.3a),pointing tothelowerstructuralordering ofthis com-pound,ingoodagreementwiththeXRDobservations(Fig.2).

Moreover,theFTIRbandsoftheBmAppowderhavecomplex shapessuggestingtheoverlapofvariousvibrationcontributions. TheidentificationoftheBmApsub-structurewasattemptedbythe curvefittingofthen4PO43−asymmetricbendingdomain(Fig.4).

Besides thetriply degenerated bands of n4 PO43− groups (561,

572and603cm−1),theHPO

42−band(617cm−1),andthelibration

modeofOH−(638cm−1)[37],disclosedthepresenceofadditional

bands,positionedat535and550cm−1.TheybelongtotheP O

bonds,whicharenotusuallypresentinanapatiticstructureand cannotbeassignedtoanapatiticenvironment[22,28,36].The for-mationofnon-apatiticenvironmentsisassociatedtothesynthesis ofapatitenanocrystalsatphysiologicalpHincloseresemblanceto humanbone[36].

(6)

Fig.5.RamanspectraofhighlycrystallineHA(aandb)andBmAppowder(candd)inthespectralregionsofn1(PO4)3−(aandc)andnS(OH)−(candd)bands.Insert:Curve

fittingofn1(PO4)3−RamanbandofBmAppowder.

TheRamaninvestigations(Fig.5)wereinagreementwiththe FTIRresults(Figs.3and4),andwereusedtogetadditional informa-tiononthechemicalcompositionandstructureofBmAppowder. IfinthecaseofthepureHAcrystallinepowderasymmetricalpeak isevidenced(at962cm−1),duetothen

1PO43−vibrations,forthe

BmAppowdertheanalogouspeakhadanasymmetricallure, hint-ingtowardamixbandscontribution.Thecurvefittingevidenced two distinct components (see Fig. 5c-inset): an intense one at 961cm−1 (whichcanbeattributedtoapatiticPO

4), andaweak

oneat 955cm−1 (assignable tonon-apatitic phosphategroups).

Theyarise becauseof thesignificantdifferences in the interte-trahedronP Obondlengthsbetweentherespectivegroups.Such bandsarenotobservableincaseofwellcrystallizedstoichiometric apatites.ThepresenceofnOH−structuralvibrationswasnoticed at∼3571cm−1forbothcrystallineHAandBmAppowders(Fig.5b

andd)

Theagglomerationofaciculargrainshaving(150–250)nmin lengthand(10–15)nminwidthwererevealedbyTEM(Fig.6).The TEManalysesindicatedthehomogeneouscrystallinemorphology oftheBmAppowder,andconfirmeditsnanometricnature.

3.2. Characterizationofdepositedthinfilms

The AFM and step profilometry measurements indicated that the BmAp MAPLE films had an average thickness of ∼1.55±0.15mm.

Thecross-view(Fig.7a)andtop-view(Fig.7b)SEMmicrographs indicatedthatthefilmshadaratheruniform,homogeneousand fairlycompactmorphology,bothindepthandonthesurface.The filmsurfaceconsistsofnanograinshardtodiscriminate, charac-teristictofilmsdepositedbyMAPLEtechnique[26,27].Next,the

Fig.6.TEMmicrographsofBmAppowder collectedattwomagnifications(a:

(7)

Fig.7.SEMmicrographsrecordedincross-view(a)andtop-viewmodes(b)forthe

BmApMAPLEfilm.EDSspectrumfortheBmApMAPLEfilm(c).

filmmorphologywasinvestigatedinmoredetailbyhigh resolu-tionAFM.Fig.8 presentsthefilmsmicrostructureas visualized byphase-contrastAFM.Theseresultssupports thehomogenous characterofthenanostructuredMAPLEfilm,consisting predomi-nantlyoffairlypackedgrainswithsizesintherangeof30–50nm. However,rarelocalsurfaceabnormalitieswereobserved(Fig.8c), consistingofclustersofsignificantlylargergrains(150–200nm) withroundedges.Thepresenceofnanoparticulates,is character-istictostructuresdepositedbypulsedlasertechnologies(PLDand MAPLE)[4,27],andcanbeseenasadvantageousintheparticular caseofcoatedimplantsduetothegreaterinteractionoftheactive surfacewiththesurroundingcells.

TheEDSqualitative analysisconfirmedtheuniform distribu-tionofcalciumand phosphorousthroughoutthefilm(datanot shown),whilsttheEDSspectrum(Fig.7c)indicatedtheabsence ofimpurities.ThequantitativeEDSanalysisrevealedaCa/Pratioof 1.48±0.07,closetotheoneofthestartingpowder.

Theshort-rangeorderwasstudiedbyFTIRandRaman spectros-copies,whilstthelong-rangeorderwasinvestigatedbyGIXRD.

Thespectroscopicinvestigationsputinevidencethe preserva-tion,afterdeposition,ofthenon-apatiticenvironmentswhichare believedtoenhancethesurfacereactivity,asmentionedinRef.[36]. TheFTIR(Fig.9)andRaman(Fig.10)spectraoftheBmApMAPLE filmswerequitesimilartotheanalogousspectraofthestarting powder.

UnliketheIRspectrumoftheBmAppowder(Fig.3c),onecan notice intheFTIRfingerprintregionof theMAPLE film(Fig.9a andc)betterdefinedandsharperbands,whichdesignateahigher structuralorder.Thisallowedforabetterdiscriminationofthefilm “sub-structure”.Theshallowphosphateband(at∼552cm−1)

asso-ciatedwiththehydratedlayercoveringthenanocrystals[22,28,36], assignedtothenon-apatiticchemicalenvironments[22,36]and previouslyhinted by theIRpowderspectrum fitting(Fig.4), is observedrather distinctivelyfor thedeposited film, along with allthe othertypical apatiticvibrations, revealedin case ofthe BmAppowder(seeFigs.4and9a,b).Theothernon-apatitic vibra-tionband(positioned in thecase ofthe powderat ∼535cm−1, Fig.4),couldnotbeevidenced,asinfraredspectruminATRmode islimited tothecut-off point at550cm−1,where thediamond

windowabsorbstheinfraredradiation.TheshiftoftheOH−

libra-tionband(Figs.3cand 9a), relativetoitspositionseen forthe

Fig.8. AFMphase-contrastimagesofBmApMAPLEfilmrecordedintheintermittent

contactmode,atdifferentscales:1mm×1mm(aandb);0.5mm×0.5mm(b),on

differentsurfaceregions.

stoichiometricHApowder(Fig.3a),suggeststhatthesestructural unitsaremoredisorderedincaseofBmApmaterials,theirlocations inthe“OHchannel”beingaltered.Aslightcarbonationofthefilm hasbeenalsonoticed(asabroadbandcenteredat∼1450cm−1).

TheRamanspectrum(Fig.10)ofthedepositedfilmdisplayed asimilarasymmetricenvelopeastheoneseenfortheBmAp par-entpowder(Fig.5c),thereforesuggestingitsintimatestructural resemblance.

TheGIXRDpattern(Fig.11)oftheMAPLEfilmindicated the presenceof HA(ICDD: 00-009-0432)asa singlelow crystalline phase, but witha slightly improvedstructural order in respect withtheBmAppowder,which is inagreementwiththe afore-mentionedATR-FTIRobservations.Crystallitesizesestimatedatthe (002)and(310)crystalplanes,byapplyingtheScherrerequation, werealsohigher(L002≈45nm,andL002≈7nm).Theformationof

amorphouscalciumphosphate(ACP),iskineticallypossibleatpH higherthan7,althoughtheHAisthemostthermo-dynamically stable phase. The minor presence of ACP should not be disre-garded,andcouldalsoaccountforthesystematicbandsshiftsof BmApmaterialsrelativetothestoichiometricHAIRpeaks’ pos-itions(Figs.3and9),aswellasfortheirslightlylowerCa/Pratios.

(8)

Fig. 9.FTIR spectra of the BmAp MAPLE thin film in the spectral regions:

650–550cm−1(a),1800–830cm−1(b),and3620–3100cm−1(c).

Fig.10.RamanspectrumoftheBmApMAPLEthinfilminthespectralregionofn1

(PO4)3−.

Fig.11. GIXRDpatternoftheBmApMAPLEthinfilm.

TheadherencevalueattheBmApfilm/substrateinterfacewas of44±5.3MPa,asestimatedbythepull-outmeasurements,thus, closetotheone(∼50MPa)imposedbytheinternationalstandards forloadbearingimplantHAcoatings[40].

OurresultsdemonstratedthecongruenttransferoftheBmAp materialbyMAPLEtechnique,theobtainedfilmspreservingthe chemical composition ofthe parentpowder,with onlya slight alterationoftheinitialnanocrystals.

The link between the HA bioreactivity and the presence of hydratedlayerhasbeenproposedinthepast[22,36,41].This super-ficiallayercanintermediatevariousinteractions(ase.g.:proteins bondingoradsorption,ionicexchangesorsharing)withthe bio-logicalenvironment[22,36,41].Ontheotherpart,theOHcontent caninfluencetheinvivodegradabilityoftheHAmaterial,asthe osteoclastsareknowntoinducealocaldropofthepHtobeable toresorbtheapatite[42].ThelowconcentrationofOHcanresult inareducedbufferingcapabilityofthematerial,favoringits disso-lutionandresorbtionbyosteoclasts[41,42].Neverthless,atoolow OHconcentrationcaninduceafastsolubilizationoftheHAcoating, whichcandrasticallyreducetheimplant’sfunctionality.Itshould bementionedthatahigherconcentrationofhydroxylgroupscan leadtoaslowerrateofdissolution,andalsoenablesthebuffering capacityoftheimplantforspecificmedicalapplicationsperforming inhighlyacidicmedia(e.g.dentistry)[41,43].

4. Conclusions

Weperformedthedepositionofadherentbiomimetic nanocrys-tallineapatitethinfilmsbyMAPLEtechniqueontotitaniumand siliconsubstrates.

TheFTIRandRamanspectraofthethin filmswerefoundto behighlysimilarandhadanidenticalsignaturetothespectrum of theinitialpowder.The observed shouldersattributedtothe HPO42− non-apatiticionsconfirmthepreservationofahydrated

phaseinsidethethinfilms.

Averylimitedtransformation oftheinitialnanocrystals was observed,whilsttheoriginalchemicalcompositionofthestarting powderswaspreserved.TheBmApbiomaterialsintheformofthin filmsshowedahighresemblancetothehumanhardtissuemineral structureandcomposition,andarethereforeexpectedtoinsurea betterfunctionalitytometallicimplantcoatings.

WeconcludethattheMAPLEmethodiscapabletomaintain thestructuralfidelityaftertransferofbiomimeticapatitefroma solidfrozentargettoanearbysubstrate,informofthinfilm.We havethusobtainedandputinevidencethecompletetransferofa hydrated,delicatematerialbyMAPLE.

Tothebestofourknowledge,thisisthefirstreportofMAPLE deposition of thin films of poor-crystallized hydrated apatites

(9)

synthesizedbythebiomimeticmethod.Weforeseethatthe char-acteristicfeatures–suchascomposition,structureandadherence –ofBmApthinfilmscouldbetailoredinthenextfutureby opti-mizingthedepositionparameters,tothoroughlydemonstratethat theMAPLEtechniqueisapromisingalternativeforfabricationof metallicimplantcoatings.

Acknowledgements

Thisresearch was partiallysupported by ExecutiveUnit for Financing Higher Education, Research, Development and Inno-vation(UEFISCDI)of Romania undertheID304/2011and PCCA 153/2012Contracts.AValsoacknowledgesthesupportofSocrates fellowship.GESacknowledgeswiththanksthefinancialsupportof PNII-RU-TE-2011-3-0164(TE49/2011)researchgrant.

References

[1]R.A.Surmenev,Surf.Coat.Technol.206(2012)2035–2056.

[2]A.Sola,D.Bellucci,V.Cannillo,A.Cattini,Surf.Eng.27(2011)560–572.

[3]C.Oldani,A.Dominguez,in:S.Fokter(Ed.),RecentAdvancesinArthroplasty, InTech,Rijeka,2012,pp.149–162(Chapter9).

[4]V.Nelea,M.Jelínek,I.N.Mihailescu,in:R.Eason(Ed.),PulsedLaserDeposition ofThinFilms:Applications-leadGrowthofFunctionalMaterials,Wiley&Sons, NewJersey,2006(Chapter18).

[5]S.V.Dorozhkin,Materials2(2009)1975–2045.

[6]I.N.Mihailescu,C.Ristoscu,A.Bigi,I.Mayer,in:A.Miotello,P.M.Ossi(Eds.), Laser-SurfaceInteractionsforNewMaterialsProductionTailoringStructure andProperties,SpringerSeriesinMaterialsScience,NewYork,2010.

[7]M.M.Figueiredo,J.A.F.Gamelas,A.G.Martins,in:T.Theophile(Ed.),Infrared Spectroscopy–LifeandBiomedicalSciences,Intech,Rijeka,2012,pp.315–338.

[8]F.Miculescu,G.E.Stan,L.T.Ciocan,M.Miculescu,A.Berbecaru,I.Antoniac,Dig. J.Nanomater.Biostr.7(2012)1667–1677.

[9]B.León,J.A.Jansen,MaterialsScienceChemistry,Springer,NewYork,2009.

[10]L.Duta,F.N.Oktar,G.E.Stan,G.Popescu-Pelin,N.Serban,C.Luculescu,I.N. Mihailescu,Appl.Surf.Sci.265(2013)41–49.

[11]W.Mróz,A.Bombalska,S.Burdy ´nska,M.Jedy ´nski,A.Prokopiuk,B.Budner, A. ´Slósarczyk,A.Zima,E.Menaszek,A. ´Scisłowska-Czarnecka,K.Niedzielski,J. Mol.Struct.977(2010)145–152.

[12]E.György,P.Toricelli,G.Socol,M.Iliescu,I.Mayer,I.N.Mihailescu,A.Bigi,J. Werckman,J.Biomed.Mater.Res.A71(2004)353–358.

[13]C.Capuccini,P.Torricelli,F.Sima,E.Boanini,C.Ristoscu,B.Bracci,G.Socol,M. Fini,I.N.Mihailescu,A.Bigi,ActaBiomater.4(2008)1885–1893.

[14]L.E.Sima,G.E.Stan,C.O.Morosanu,A.Melinescu,A.Ianculescu,R.Melinte,J. Neamtu,S.M.Petrescu,J.Biomed.Mater.Res.A95(2010)1203–1214.

[15]Y. Huang, Q. Ding, X. Pang, J. Mater. Sci. Mater. Med. 24 (2013) 1853–1864.

[16]Y.Huang,Q.Ding,X.Pang,Appl.Surf.Sci.282(2013)262–456.

[17]Y.Huang,Y.Yan,X.Pang,Appl.Surf.Sci.282(2013)583–589.

[18]Y.Huang,Y.Yan,X.Pang,Ceram.Int.39(2013)245–253.

[19]N.Hijón,M.VictoriaCaba ˜nas,J.Pe ˜na,M.Vallet-Regí,ActaBiomater.2(2006) 567–574.

[20]K.Cheng,C.Ren,W.Weng,P.Du,G.Shen,G.Han,S.Zhang,ThinSolidFilms 517(2009)5361–5364.

[21]C.Rey,A.Hina,A.Tofighi,M.J.Glimcher,CellMater.5-4(1995)345–356.

[22]D.Eichert,C.Drouet,H.Sfihi,C.Rey,C.Combes,in:J.B.Kendall(Ed.), Nanocrys-tallineApatite-basedBiomaterials:Synthesis,ProcessingandCharacterization, BiomaterialsResearchAdvances,NovaSciencePublishers,NewYork,2007.

[23]P.Habibovic,F.Barrere,C.A.vanBlitterswijk,K.deGroot,P.Layrolle,J.Am. Ceram.Soc.85(2002)517–522.

[24]R.Z.LeGeros,Clin.Mater.14(1993)65–88.

[25]B.R.Ringeisen,J.Callahan,P.K.Wu,A.Pique,B.Spargo,R.A.McGill,M.Bucaro, H.Kim,D.M.Bubb,D.B.Chrisey,Langmuir17(2001)3472–3479.

[26]R.Cristescu,I.N.Mihailescu,M.Jelínek,D.B.Chrisey,in:R.Kassing,P.Petkov, W.Kulisch,C.Popov(Eds.),FunctionalizedThinFilms&StructuresObtainedby NovelLaserProcessingIssues,223,NATOScienceSeriesbySpringer,SeriesII: Mathematics,PhysicsandChemistry,2006,pp.211–226.

[27]A.Pique,in:R.Eason(Ed.),DepositionofPolymersandBiomaterialsUsingthe Matrix-AssistedPulsedEvaporation(MAPLE)Process,Wiley-Interscience,New Jersey,2007.

[28]D.Grossin, S.Rollin-Martinet, C. Estournes,F. Rossignol,E. Champion,C. Combes,C.Rey,C.Geoffroy,C.Drouet,ActaBiomater.6(2010)577–585.

[29]B.C.Riggs,A.D.Dias,N.R.Schiele,R.Cristescu,Y.Huang,D.T.Corr,D.B.Chrisey, EMRSBull.36(2011)1043–1050.

[30]G.Charlot,ChimieAnalytiqueQuantitative,Masson,Paris,1974.

[31]A.Boskey,Osteoporos.Int.14(2003)S16–S21.

[32]S.L. Rowles, in: R.W. Fearnhead, M.W. Stack (Eds.), Studies on Non-stoichiometricApatites,ToothEnamelProc.Int.Symp.,JohnWright&Sons, Bristol,1965.

[33]A.L.Patterson,Phys.Rev.56(1939)978–982.

[34]S.Markovi ´c,L.Veselinovi ´c,M.J.Luki ´c,L.Karanovi ´c,I.Braˇcko,N.Ignjatovi ´c,D. Uskokovi ´c,Biomed.Mater.6(2011)045005.

[35]Y.Yamato,M.Matsukawa,H.Mizukawa,T.Yanagitani,K.Yamazaki,A.Nagano, IEEETrans.Ultrason.Ferroelectr.Freq.Control.55(2008)1298–1303.

[36]C.Rey,E.Strawich,M.J.Glimcher,in:D.Allemand,J.P.Cuif(Eds.),Non-Apatitic EnvironmentsinCa-Pbiominerals:ImplicationsinReactivityoftheMineral PhaseanditsInteractionswithOrganicMatrixConstituents,Rev.Mineral. Geochem.,Monaco,1994,pp.55–64.

[37]M.Markovic,B.O.Fowler,M.S.Tung,J.Res.Natl.Inst.Stand.Technol.109(2004) 553–568.

[38]A.Roy,S.S.Singh,M.K.Datta,B.Lee,J.Ohodnicki,P.N.Kumta,Mater.Sci.Eng.B 176(2011)1679–1689.

[39]D.P.Minh,N.Lyczko,H.Sebei,A.Nzihou,P.Sharrock,Mater.Sci.Eng.B177 (2012)1080–1089.

[40]ISO-13779-2, Implants for Surgery—Hydroxyapatite—Part 2: Coatings of Hydroxyapatite,2008.

[41]J.D.Pasteris,B.Wopenk,J.J.Freeman,K.Rogers,E.Valsami-Jones,J.A.M.vander Houwen,M.J.Silva,Biomaterials25(2004)229–238.

[42]S.L.Teitelbaum,Science289(2000)1504–1508.

[43]G.E.Stan,D.A.Marcov,I.Pasuk,F.Miculescu,S.Pina,D.U.Tulyaganov,J.M.F. Ferreira,Appl.Surf.Sci.256(2010)7102–7110.

Figure

Fig. 1. MAPLE experimental set-up.
Fig. 2. XRD patterns of stoichiometric crystalline HA and BmAp powder.
Fig. 3. FTIR spectra of highly crystalline HA (a and b) and BmAp powders (c and d) in the spectral regions: 1800–400 cm −1 (a and c) and 4000–2800 cm −1 (b and d).
Fig. 5. Raman spectra of highly crystalline HA (a and b) and BmAp powder (c and d) in the spectral regions of n 1 (PO 4 ) 3− (a and c) and n S (OH) − (c and d) bands
+3

Références

Documents relatifs

In conclusion, our results indicate that acute intra- venous FO lipid emulsion administration was rapidly incorporated into cell membrane and downregulated the neuroendocrine

X-ray diffraction patterns showed that ZnO films are polycrystalline with a hexagonal wurtzite—type structure with a strong (103)orientation and have a good crystallinity

Dans l’étude Aliénor, disposant de données plus précises sur la vision notamment de loin, des scores significativement plus faibles aux tests ont été retrouvés à l’inclusion

This paper compares three frameworks, Multidisciplinary Design Optimization (MDO), traditional Game Theory, and a Modified Game Theoretic approach on the form and flow of

find that the obvious ways to progress in early education are brought out in the book: the neces- sary co-operation between home and education-program; the need

Se espera que todo este trabajo sirva para una mejor utilización de esta planta en los sistemas ganaderos de Cuba y el mundo, así como para el avance del

To assess how the extent of DC-SIGN clustering influences internalization, Raji or Raji/DC-SIGN cells were treated with polymers of different lengths, such that the

33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department