• Aucun résultat trouvé

Determining Cosmological Parameters through Statistics of Redshifts of Lens Galaxies

N/A
N/A
Protected

Academic year: 2021

Partager "Determining Cosmological Parameters through Statistics of Redshifts of Lens Galaxies"

Copied!
6
0
0

Texte intégral

(1)

through

Statistics of Redshifts of Lens Galaxies

Phillip King 3

Ham burgerSternwarte,Gojenb ergsweg 112, D-21029 Ham burg,Germany

Abstract: For known gravitational lens systems the redshift distribution of the lenses is compared

withtheoreticalexp ectationsfor10 4

Friedmann-Lema^trecosmologicalmodels,whichmorethancover

therange ofp ossible cases. The comparisonis usedforassigninga relative probability toeachof the

models. The entire pro cedure is rep eated for di erent values of the inhomogeneity parameter  as

well as H

0

and the limiting sp ectroscopic magnitude, which are imp ortant for selection e ects. The

dep endence onthese three parameters is examinedinmore detailfor=0and k=0.

The previous resultof other authors thatthis metho d is a goo dprob e for

0

is con rmed,butit

app earsthatthelowprobabilityofmodelswithlarge

0

valuesrep orted bytheseauthorsmayb edue

toa selection e ect. The p owerof this metho d to discriminate b etween cosmological models canb e

improved dramaticallyifmore gravitational lens systemsare found.

1 Introduction

It has recently b een suggested by many authors (see, for example, Fukugita etal. (1992) and

references therein) that gravitational lensing statistics can provide a means of distinguishing

b etweendi erentcosmologicalmodels,moste ectiv elyconcerningthe valueofthecosmological

constant. This is fortunate, since most of the classical methods for determining cosmological

parametersaremoresensitivetootherquantitiessuchasthedensityordecelerationparameter.

It has even b een suggested (Carroll et al., 1992) that gravitational lens statistics based on

current observations already givethe b estupp er limitson

0

forworld models withk >0, and

are the most promising method ofdoing so for k=0.

Ko chanek (1992) has suggested a method based not on the total num b er of lens systems

but ratheronthe redshiftdistributionof knownlens systemscharacterisedby observablessuch

as redshift and image separation. Lo oking at a few di erent models, he concludes that at,

-dominatedmodelsare vetoten timesless probablethanmore`standard'models. Itwasm y

aim toextend thisformalism 1

toarbitraryFriedmann-Lema^tre cosmologicalmodels aswellas

to lo ok atthe in uence of observationalbiases.

3

e-mail: pking@hs.uni-hamburg.de

1

Aformalismwhichhastheadvantagesofb eing(almost)indep endentoftheHubbleconstantandnotb eing

plaguedbynormalisationdiculties asaremostschemesinvolvingthetotalnum b eroflenses.

(2)

Imak ethe`standardassumptions'thattheUniversecanb edescribedbythe Rob ertson-Walker

metricandthatlensgalaxiescanb emodelledasnon-evolvingsingularisothermalspheres(SIS).

If one drops the rst assumption, the cosmological parameters 

0 ,

0

and H

0

lose their

signif-icance; the second assumption mak es for easy calculation but, more importantly, is probably

justi ed withinthe attainableaccuracy (see Krauss&White(1992) fora discussion). In order

to have a well-de ned statistical quantity, which is based onthe optical depth d for `strong'

lensing events, 2

this discussion is limited to gravitational lens systems with sources whichare

m ultiplyimaged( !imageseparation)byisolated(!negligibleclusterin uence) single

galax-iesandwithknownsourceandlensredshifts. Anadditionalrequirementisthatthesystemm ust

have b een found without any biasesconcerning the redshift ofthe lens. (See Ko chanek (1992)

for adiscussion of these selection criteria.)

Makinguseofthe factthattheSISpro ducesaconstantde ectionangle,i.e.,independentof

the p osition of thesource with resp ect tothe opticalaxis(de ned as passingthroughobserver

and lens), one can de ne the angular cross section of a single lens for `strong' lensing events

(Turner etal., 1984): a 2 =16 3  v c  4  D ds D s  2 (1)

where v is the one-dimensional velocity disp ersion of the lens galaxy, D

d

and D

ds

the

an-gular size distances b etween observer and lens and, resp ectiv ely, lens and source. Following

Ko chanek (1992), one can arriveatan expression for the opticaldepth as follows:

For a xed mass and mass distribution (! v), world model and z

s

, the di erential optical

depth due to all lenses of a given mass as a function of z

d

is of course prop ortional to the

num b er of lenses p er z

d

-interval. In order to arrive at an expression for d for a xed image

separation, one needs to know the relativ e num b er of lenses which, under the given

circum-stances,canpro ducethisimageseparation. Thiscanb edonebyusingthe Schechterluminosity

function (Schechter, 1976) as well as the Fab er-Jackson and Tully-Fisher relations (Fab er &

Jackson, 1976, Tully & Fisher, 1977), which give the dep endence of the velocity disp ersionon

the luminosity for elliptical and spiral galaxies, resp ectiv ely. Bringing in the familiar

param-eters and neglecting allterms whichare concerned only with normalisation, one arrives, after

some tedious but trivial calculations,at the expression

d dz d =(1+z d ) 2 a a 3 2  a a 3 D s D ds  2 (1+ ) D 2 d 1 p P(z d ) exp 0  a a 3 D s D ds  2 ! (2) where a 3:=4 0 v 3 c 1

(v3:=v of anL3 galaxy), isthe Fab er-Jackson/Tully-Fisher exponent,

the Schechter exponent, D

d

the angular size distance b etween the observer and the lens

and P(z d ) := (1+z d ) 2 ( 0 z d +10 0 )+ 0

. The optical depth dep ends on the cosmological

model through P(z

d

) as well as through the angular size distances, b ecause of the fact that

D ij = D ij (z i ;z j

;cosmologicalmodel). In general, there is no analytic expression for the D

ij ,

which also dep end on ; they can b e obtained by the solution of a second-order di erential

equation. (SeeKayser(1985);foranequivalentderivationfor=0seeSchneideretal.(1992).)

If one has an ecien t method of calculating the angular size distances, it is trivial to

evaluate Eq. 2 for various world models described by the parameters 

0 ,

0

and . (The

in uence of , which gives the fraction of homogeneouslydistributed, as opp osed to compact,

matter is felt only in the calculation of the angular size distances, whereas the cosmological

(3)

d

of note is the independence of Eq. 2 on the source luminosit y function (which of course will

generallyitselfdep end onz

s

aswell), the relativ enum b ersofgalaxytyp es(the galaxytyp e for

a particular lens is assumed tob e known) and the fraction of galaxies in clusters (the method

lo oks only at eld galaxies); these factors have to b e taken into account when doing statistics

basedonthe totalnum b erof lenses. Also,Eq.2isinsensitiv eto ner p ointsofthe massmodel

such as core radius and ellipticit y(Krauss& White, 1992, Narayan& Wallington, 1992). The

mainideaistocomparetheobserveddistributionoflens redshiftswiththeoreticalexpectations

for various world models; the methodis described inthe nextsection.

Although there is an exponential cuto towards z

d

= 0 and z

d = z

s

caused by the fact

thatthe requiredmassof thelensinggalaxyforpro ducing agivenimageseparationdivergesat

these p oints and the num b erof such galaxies declines exponentially inthe Schechterfunction,

d can nevertheless take on appreciable values at intermediate redshifts even though the lens

galaxy would be too faint to be seen at the redshift in question. In order to correct for this

e ect, I have calculated the redshift at whichthe lens galaxy would b ecome to o faint to have

its redshift measured for the investigated cosmological model and truncated d at this p oint.

(Details inthe nextsection.) It is immediately obviousthat failure tocorrectfor the faintness

of the lens galaxies willarti cially exclude cosmologicalmodels with ahigh medianredshift in

Eq. 2,which migh totherwise not b e excluded.

3 Calculations

The following gravitational lens systems 3

meet the selection criteria: UM 673, 0218+357,

1115+080(TripleQuasar),1131+0456,1654+1346and3C324. Iconsideredthefollowingranges

of values 4

for the cosmological parameters: 0 10 < 

0 < +10, 0 < 0 < 10, 0 <  < 1 and 30<H 0 <110 (H 0

isintheusualunitsof km

s1Mp c

). Keeping theothertwoparametersconstantat

theirdefaultvalues,Ilo okedat1002100 modelsinthe

0 -0 planefor =0: 0;0: 3;0: 5;0: 7;1: 0, H 0 =40;50;70;90 and m lim

=23: 5;24: 5;1 (Johnson R magnitudes). I used the following

de-fault values: =0: 5, H 0 =70 and m lim =23: 5 m

. In addition, I lo oked at1002100 models in

the -0 , H 0 -0 and m lim -0

planesfor the sp ecial cases of =0 and k =0.

To measurethe relativ eprobability of agivencosmologicalmodel, I de nedthe quantityf

as follows: 0<f := R z l 0 d R zs 0 d <1 wherez l

istheobserved lensredshiftforaparticularsystem. Thedistributionofthedi erentf

values (one for eachlens system inthe sample) inb bins in the interval ]0,1[ givesthe relativ e

probability p of a given cosmological model, with p = b Q i=1 1 n i ! (normally; if m gal > m lim or z s; max > z max then p := 0) where n i

is the num b er of systems in the i -th bin. The variable b

3

Forobservationaldataonthesesystems,see Surdej(1993).

4

Ofcourse, thesearem uchlarger thancontemporarywisdomdemands. However,I thinkthat thereareat

leasttworeasonsforusingsuchlargeranges:

 Itwouldb e anadditional,thoughbynomeans necessary, p ointin favourofthevalidit yof themethod

if it assigns the highest probabilit y to a cosmological model within the presently accepted canonical

(4)

a b c d e f g h

l

orientation

W

-8. -4.

0.

4.

8.

2.

4.

6.

8.

l

orientation

W

-8. -4.

0.

4.

8.

2.

4.

6.

8.

l

orientation

W

-8. -4.

0.

4.

8.

2.

4.

6.

8.

l

orientation

W

-8. -4.

0.

4.

8.

2.

4.

6.

8.

l

orientation

W

-8. -4.

0.

4.

8.

2.

4.

6.

8.

l

orientation

W

-8. -4.

0.

4.

8.

2.

4.

6.

8.

l

orientation

W

-8. -4.

0.

4.

8.

2.

4.

6.

8.

l

(default)

W

-8. -4.

0.

4.

8.

2.

4.

6.

8.

l

h = 0.3

W

-8. -4.

0.

4.

8.

2.

4.

6.

8.

l

h = 0.7

W

-8. -4.

0.

4.

8.

2.

4.

6.

8.

l

H = 50

W

-8. -4.

0.

4.

8.

2.

4.

6.

8.

l

H = 90

W

-8. -4.

0.

4.

8.

2.

4.

6.

8.

l

m = 24.5

W

-8. -4.

0.

4.

8.

2.

4.

6.

8.

l

m = infinity

W

-8. -4.

0.

4.

8.

2.

4.

6.

8.

Figure 1: Plots of the relativ e probability in the 

0

-0

plane. Deviations from the default

values are indicated.

is afree parameter, but it iseasily seen that the most information is obtained when b isequal

to the num b er of systems. The relativ e probability is thus 0 if the lens galaxy is to o faint to

have its redshift measured and/or if z

max

, the maxim umredshift p ossible in the cosmological

modelinquestion,issmallerthanthelargestsourceredshiftz

s; max

inthesample. Theapparent

luminosit y of the lens galaxy was calculated for the Johnson R-band using the K-corrections

of Coleman, Wu & Weedman (1980). (These are based on displacemen t of standard sp ectra

at z=0which extend intothe UV-band andare givenonly upto z =2: 0, where evolutionary

e ects would in any case have to b e considered. However, in most cases the galaxy b ecomes

to o faint atmodest redshifts, so the assumption of noevolutionis probablyjusti ed.)

4 Results and Discussion

Plot a gives some orientation in the 

0

-0

-plane. The vertical line shows 

0

=0, the slanted

line k = 0, the curve at the right z

max

=10, the other two curves corresp ond to t

0 h 0 = 5;7: 5 in units of 10 9 a (left to right, h 0 := H 0 1s1Mp c 1001km

); the area b etween the world age curve and the

z

max

curveisthe `allowedarea' basedonpresentknowledge. Taking basanexample plot, one

notices rst of all the region of relativ e probability 0 in the parameter space containing the

`bounce models' 5

and the fact that most of the `structure' o ccurs in the `allowedarea'. Since

the gradient runs more nearly parallel to the 

0

-axis than to the

0

-axis, one can learn more

ab out 

0

than ab out

0 .

Di erentvalues of (plots cand d)pro duce acontinuoustransformation ofthe plot

struc-ture,butinterestinglyverylittlechangesinthe`allowedarea'. Thefactthatplaysarelativ ely

unimportantr^ole inthe opticaldepthhas previouslyb een demonstratedinanother mannerby

Fukugita etal. (1992).

5

(5)

0

ues, a region of probability 0 covers part of the `interesting' parameter space, but this should

not b e taken to o seriously, resulting as it do es from the sudden `disapp earance' of a lens

galaxy|the calculated apparent magnitudes are probablyaccurate to only amagnitude or so

(Ko chanek, 1992). The factthat the structure inthe plots do es not severelyand/or

discontin-uously change hints at the fact that the in uence of the Hubble constant, whichmak es itself

felt onlyin the calculation of the apparent magnitudes ofthe lens galaxies, isnot to o severe.

A comparisonb etween bor gand hshowsthe e ect ofneglectingm

lim

; onthe otherhand,

there is relativ ely little di erence b etween b and g, so that the exact determination of m

lim

is not crucial and one sees that using the same m

lim

for all systems is go o d enough for a rst

approximation.

It can b e qualitatively understo o d why the value of H

0 or m

lim

do esn't exert a larger

in uence: around the redshift at which the lens galaxy b ecomes to o faint, the graph of m as

a function of z

d

isvery steep, 6

so that even a relativ ely large changein H

0

(movingthe entire

curve parallel to the m -axis) or m

lim

(changing the cuto value) corresp onds to just a slight

changeinz

d

. Since the graph of d as a functionof z

d

istypically not very steep atthis value

ofz

d

,asmallchangeinthe value ofz

d

atwhichthe probabilitydistributionistruncated mak es

little di erence asfar asthe integral upto this p ointis concerned.

Returning to the example plot, one notices that, at least in the `allowed area', roughly

oblong areas of constant relativ e probability run approximately parallel to curves of constant

world age.

5 Concluding Remarks

A comparison ofthe plots showsthat neglecting the limiting magnitude pro ducesmore

`struc-ture'. Thisarises fromthe factthatthe current samplecontainsmostly lensesof relativ elylow

redshift;one obtainsarelativ elylowprobabilityofworldmodelswithahighermedianredshift.

Correcting for this e ect means lo oking only at the di erence in distribution at low redshift,

whichmak esthe methodless able todiscriminateb etween di erentcosmologicalmodels.

Nev-ertheless, plot ggives an idea of whatcouldb e done, ifone were able tomeasurethe redshifts

of the faintest lens galaxies. For a given image separation, the brightness of the lens galaxy

has a minim um at some intermediate redshift; this is typically at ab out 30 m

in R, so that

larger telescopes and advances in image pro cessing will probably b e able to mak esubstantial

progress on this front in the next few years. If one were able to measure the lens redshift at

the minim umbrightness, this would havethe side-e ectof eradicating the dep endence onH

0 .

On the other hand, probably more would b e gained than lost, b ecause it would no longer b e

p ossible to neglect evolutionary e ects. For this reason, the most progress in the immediate

future (barring a revolution in the understanding of evolutionary e ects) will probably come

fromincreasing the num b erof usablesystems rather than frompushingm

lim

tofainter values.

The dramatic di erence caused by not neglecting m

lim

casts doubt onthe degree to which

present observations, based only onthe redshift distribution, are able to rule out certain

cos-mological models; in particular, at models with alarge cosmological constant, having a high

medianexpectedlensredshift, b ecomemore probable throughintro ducingm

lim .

7

It is

reassur-6

The apparent brightnessdecreases m uch faster as a functionof z

d

than in the `normal' case, b ecause in

thisz

d

-intervaltherequiredgalaxymass(!absolutebrightness)foragivenimageseparationtypicallydecreases

withincreasingz

d

;seeKo chanek(1992).

7

(6)

b e able toput limitson cosmologicalparameters comparable toother methods.

Atpresent,itisdiculttoquantifytheconclusions,sinceitisdiculttode ne,forexample,

a con dence region in the 

0

-0

plane. The values of the relativ e probabilities are known, of

course, but it is to o simple to conclude that a quotient of, say, 5 b etween two areas means

that the one area is` vetimes morelik ely'than the other; the factthat there are only(afew)

discrete values of the relativ e probability mak es the situation a bit more complicated. The

b estmethodseems tob etocarryout sim ulationsusingarti cialsamplesand thentouse these

to de ne a useful con dence region. This will also allow the statistical uctuations (arising

b ecause of the small num b erof systems in the sample) tob e takeninto account. 8

To conclude, I nd thatthe methodoutlined here can probablyb e usedto setuseful limits

on

0

andp erhaps

0

,althoughatpresentthereareto ofewusefulsystemstoallowonetomak e

rmcon dence estimates,if onetakesm

lim

intoaccount, asseemstob e essential. Amethodof

usefully quantifyingthe estimates probably requires information derived fromsim ulations. As

the num b er ofsystems increasesand the interpretationofthe results b ecomesclearer,it migh t

proveuseful toestimatem

lim

foreachsystem individually,taking intoaccountallobservational

factors.

Acknowledgements

It is apleasure tothank S.Refsdal, R.Kayser and T. Schrammfor helpful discussions, Bernd

Feige for some source co deas wellas R.Schlotteand A.Dent forcomputational aid.

References

Bondi, H.: 1952, Cosmology, CambridgeUniversityPress

Carroll, S.M., Press, W.H.,Turner,E.L.: 1992, ARAA 30, 499

Coleman, G.D., Wu, C.-C., Weedman, D.W.: 1980, Ap J Supp. 43, 393

Fab er, S.M., Jackson,R.E.: 1976, ApJ 204, 668

Feige, B.: 1992, Astr. Nachr. 313, 139

Fukugita, M.,Futamase, K., Kasai, M., Turner,E.L.: 1992, ApJ 393, 3

Kayser, R.: 1985, do ctoral thesis,University of Ham burg

Ko chanek, C.S.: 1992, Ap J 384, 1

Krauss, L.M.,White, M.: 1992, Ap J394, 385

Narayan, R., Wallington, S.: 1992, in Gravitational Lenses, R. Kayser, T. Schramm &

L.Nieser, eds., Springer-Verlag

Schechter, P.: 1976,Ap J 203, 297

Schneider, P.,Ehlers, J.,Falco, E.E.: 1992, GravitationalLenses,Springer-Verlag

Stab ell, R.,Refsdal, S.: 1966, MNRAS 132, 379

Surdej, J.: 1993,this volume

Tully,R.B., Fisher, J.R.: 1977, A&A 54,661

Turner, E.L., Ostriker,J.P.,Gott, J.R.: 1984, Ap J284, 1

uncertaintiesduetonormalisation. Itma yb ep ossibletoobtainmore informationbyconsideringthe

complete-nessofthesample,i.e.,thefractionofsystems withmeasuredlensredshiftsfrom thesampleofsystemswhich

areotherwisesuitable, assuggestedbyKo chanek(seetheDiscussion).

Figure

Figure 1: Plots of the relativ e probability in the

Références

Documents relatifs

` A partir de nos simulations, nous avons montr´e que l’augmentation de capacit´e dans les carbones poreux est le r´esultat d’une modification impor- tante de la structure du

Le présent travail concerne plusieurs milieux d'écoulement dans la vallée de la Seille caractérisés par une salinité modérée et variable.. Un important cortège

Division of Clinical Pharmacology &amp; Toxicology and Department of Research, University Hospital Basel, 4031 Basel, Switzerland.. e-mail:

Cette étude a été conçue dans une logique de continuité forte avec les travaux menés précédemment Continuité théorique d’abord puisque l’on utilise tout au long de ce rapport

Dans les entreprises de 10 salariés ou plus des secteurs concurrentiels (1), le nombre moyen d’heures supplé- mentaires par salarié à temps complet (2) déclarées par les

Entwicklung der Reninhemmer Das Prinzip der Reninhemmung zur Hy- pertoniebehandlung ist alt, hat sich aber seit der Mitte des letzten Jahrhunderts nicht durchgesetzt,

Calculez le pourcentage ou la valeur