• Aucun résultat trouvé

In-vitro validation of 4D flow MRI measurements with an experimental pulsatile flow model

N/A
N/A
Protected

Academic year: 2021

Partager "In-vitro validation of 4D flow MRI measurements with an experimental pulsatile flow model"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: hal-02267542

https://hal.archives-ouvertes.fr/hal-02267542

Submitted on 15 May 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

In-vitro validation of 4D flow MRI measurements with

an experimental pulsatile flow model

A. David, D. Le Touzé, K. Warin-Fresse, P. Paul-Gilloteaux, F. Bonnefoy,

Jérôme Idier, Saïd Moussaoui, P. Guérin, Jean-Michel Serfaty

To cite this version:

A. David, D. Le Touzé, K. Warin-Fresse, P. Paul-Gilloteaux, F. Bonnefoy, et al.. In-vitro validation of

4D flow MRI measurements with an experimental pulsatile flow model. Diagnostic and Interventional

Imaging, Elsevier, 2019, 100 (1), pp.17-23. �10.1016/j.diii.2018.08.012�. �hal-02267542�

(2)

ORIGINAL

ARTICLE

/Research

and

new

developments

In-vitro

validation

of

4D

flow

MRI

measurements

with

an

experimental

pulsatile

flow

model

A.

David

a,∗

,

D.

Le

Touze

b

,

K.

Warin-Fresse

a

,

P.

Paul-Gilloteaux

c

,

F.

Bonnefoy

b

,

J.

Idier

d

,

S.

Moussaoui

d

,

P.

Guerin

e

,

J.-M.

Serfaty

a,f

aDepartmentofcardiovascularimaging,centrehospitalieruniversitairedeNantes,44800

Saint-Herblain,France

bLaboratoirederechercheenhydrodynamique,énergétiqueetenvironnement(CNRS,UMR

6598),ÉcolecentraleNantes,44321Nantescedex3,France

cStructurefédérativederecherchesantéFranc¸ois-Bonamy,institutderechercheensantéde

l’universitédeNantes,44007Nantescedex1,France

dLaboratoiredessciencesdunumériquedeNantes(LS2N,UMRCNRS6004),Écolecentralede

Nantes,44321Nantescedex3,France

eDepartmentofcardiology,centrehospitalieruniversitairedeNantes,44800Saint-Herblain,

France

fUnitéderechercheInsermUMR1087,institutderechercheensantédel’universitéde

Nantes,44007Nantescedex1,France

KEYWORDS 4Dflowmagnetic resonanceimaging (MRI); Phase-contrast magneticresonance imaging; Experimentalstudies; Pulsatileflowmodel

Abstract

Purpose:Thepurposeofthisstudywastoassesstheprecisionoffour-dimensional(4D) phase-contrastmagneticresonanceimaging(PCMRI)tomeasuremeanflowandpeakvelocity(Vmax) inapulsatileflowphantomandtotestitssensitivitytospatialresolutionandVenc.

Material andmethods:The pulsatile flow phantom consisted ofa straight tube connected to thesystemic circulation ofan experimentalmock circulatory system. Four-dimensional-PCMR images were acquired using different spatial resolutions (minimum pixel size: 1.5×1.5×1.5mm3)andvelocityencoding sensitivities(uptothreetimes V

max).Meanflow andVmaxcalculatedfrom4D-PCMRIwerecomparedrespectivelytothereferencephantomflow parametersandtoVmaxobtainedfromtwo-dimensional(2D)-PCMRI.

Results:4D-PCImeasuredmeanflowwithaprecisionof−0.04%to+5.46%,butslightly under-estimated Vmax when comparedto 2D-PCMRI(differences rangingfrom−1.71% to −3.85%). 4DPCMRImeanflowmeasurementwasinfluencedbyspatialresolution(P<0.001)withbetter

Correspondingauthor.

E-mailaddress:art.dav44@gmail.com(A.David). https://doi.org/10.1016/j.diii.2018.08.012

(3)

18 A.Davidetal.

resultsobtainedwithsmallervoxelsize.TherewasnoeffectofVenconmeanflow measure-ment.RegardingVmax,neither spatialresolutionnorVencdidinfluence theprecisionofthe measurement.

Conclusion:Usinganexperimentalpulsatileflowmodel4D-PCMRIisaccuratetomeasuremean flowandVmax withbetterresultsobtainedwithhigherspatialresolution.Wealsoshowthat Vencupto3timeshigherthanVmaxmaybeusedwithnoeffectonthesemeasurements. ©2018Soci´et´efranc¸aisederadiologie.PublishedbyElsevierMassonSAS.Allrightsreserved.

Four-dimensional (4D) phase contrast imaging (PCI) using magneticresonanceimaging(MRI)hasbeenrecently devel-opedtoallowabetterunderstandingofbloodflowthrough the heart and large vessels [1—3]. With 4D-PCI, veloc-ity is encoded in all three spatial directions (i.e., three spatialdimensions) along thecardiac cycle(onetemporal direction),resultingina4Dmodel.Unliketwo-dimensional (2D)-PCI or Doppler echocardiography,4D-PCIcan provide information on the spatial and temporal evolution of 3D blood flow within the boundaries of the volume covered [4].Inthepasttwodecades,4D-PCIacquisitionshavebeen reportedinawidespectrumofanatomiclocationssuchas heart[5],especiallyforcongenitalheartdiseases[6], tho-racicaorta[7],visceralvessels[8],orintracranialarteries [9].Currentdisadvantagesof4D-PCIincludelimitedspatial andtemporalresolutionfor flow analysisadjacentto ves-selwalls [10]and long scantimesranging between 5and 20minutesdependingonanatomiccoverage,heartrate,and spatio-temporal resolution [4]. Several studies have com-pared4D-PCItocurrent goldstandard methodsfor in-vivo validation,such asDoppler examination or 2D-PCI, show-inggoodcorrelationandreproducibilityinvariousanatomic territories[11—17].

Inclinicalpractice,incoherentmeasurementsofflowand velocityin the heart and its great vessels raise concerns regarding the accuracy of the technique. Controlled pul-satileorsteadyflow phantomexperimentscanbeusedto assess accuracy for flow and velocity [18]. Hitherto, few studies have compared 4D-PCI to reference methods for invitromeasurementofflowparameters[19—24].

Thepurposeofthisstudywastoassesstheprecisionof 4D-PCItomeasuremeanflowandpeakvelocity(Vmax)ina pulsatileflowphantomandtotestitssensitivitytospatial resolutionandVenc.

Materials

and

methods

Thisworkwasaphantomstudywithoutanyexperimentation onhumans.Therefore,Institutionalreviewboardapproval andinformedconsentwerenotrequired.

Flow

phantom

Toevaluatethequantitativeaccuracyofthe4D-PCI,invitro velocitymeasurements were acquired on a pulsatile flow

phantom previously designed in our center. The phantom consistedofastiffstraighttubewithaninnerdiameterof 20mm,surroundedbyaboxfilledwithagarosegelto min-imizesusceptibilityartifactsandtomimicstatictissuesfor backgroundcorrection.Thetubewasfilledwithwaterand connected topolyvinyl chloride tubingleading out of the magnet room andwas derived from thesystemic circula-tionofanexperimentalmockcirculatorysystem(Syncardia Systems, Inc.) [25]. This system simulated the systemic and pulmonary circulation and consisted of pulsatile left and right cardiac pumps (CardioWestTM) connected with fourtanks.EachartificialventricleCardioWestTMconsisted of a segmented cavity with two chambers, one with air content and the other withwater content, separated by a polyurethane membrane. The four tanks corresponded tothe aorta,thepulmonary arteryand thetwoatriaand containeddifferentvolumesofwater.Aflowmeter,placed betweenthetankssimulatingthesystemiccirculationand therightatrium,providedtheflowrateasareference.The ventricleswerepoweredbycompressedairdeliveredfrom anexternalpneumaticcontroller,mobilizingthemembrane andemptyingthe ejectionchamber. Insufflationpressures intheventricles,pulserateandpressurelevelsinthetanks werecalibratedtodriveapulsatileflowthroughthe phan-tomatarateof100beatsperminute(bpm)withamean flowof4.8L/min(Fig.1).

MRI

acquisitions

Imageacquisitionoftheflowphantomwasperformedona clinical1.5TMRIunit(AERA®,SiemensHealthineers),using an18-channelbodymatrixcoil.Asimulated electrocardio-graphicsignalwithaRRintervalof600ms,correspondingto apulserateof100bpm,wasusedforgating.

Forthe4D flowimaging,several4D-PCIsequenceswith a3Dvolumecoveringtheflowphantomwereacquiredwith differentspatialresolutionsandVenctoassesstheaccuracy ofthesequence(Table1).For2D-PCI,imagesperpendicular tothestraighttubewereacquiredwith60framespercycle, afieldofviewof340mm,amatrixof192,aslabthickness of6mm,andthesameVencasfor4D-PCIacquisitions.

Mean flow (inmL/min), vessel area (inmm2) and V max (in cm/sec) were calculated using a prototype investiga-tional software — 4D Flow (Siemens Healthineers) for 4D flowacquisitionsandusingArgus®software(Siemens Health-ineers)for2D-PCI.

(4)

Figure1. Schematicdiagramoftheexperimentalpulsatileflowmodel.

Statistical

analysis

The dataweretabulated usingan Excel2013 spreadsheet (Microsoft) and statistical analysis were performed using XLSTAT and R. Quantitative variables were expressed as means±standard deviation (SD) and ranges. Mean flow and vessel area calculated from4D-PCI acquisitions were comparedwith thereference flow parameters (RFP) by a Wilcoxontest.Kruskal—WallisandWilcoxontestswere con-ductedtoexaminethe differencesbetweentheresultsof 4D-PCIperformedusingdifferentspatialresolutionsand dif-ferentVenc.InWilcoxontests,wecomparedpeakvelocities between2DPCand4D-PCI.Pearson’srwasusedtodescribe thecorrelationbetween2D-PCIand4D-PCIforpeakvelocity measurement.Bland-Altmanplotsweregenerated compar-ingto2DPCIand4D-PCIforpeakvelocitymeasurementand thebias andlimitsof agreementwerecalculated. Signifi-cancewassetatP<0.05(two-sided).

Results

Analysis

of

4D-PCI

mean

flow

and

vessel

area—comparison

with

experimental

values

Theresultsofthecomparisonof4D-PCIderivedmeanflow andvesselareawithRFPandtheeffectsofspatialresolution andVenc arereportedinTables2and3.4D-PCImeasured meanflow with aprecision of −0.04%to+5.46%, Regard-ingspatialresolution,significantdifferenceswerefoundin meanflow and vessel area(P<0.001) between subgroups withidenticalVencbutdifferentspatialresolutions.Better accuracywasobtainedwhensmallervoxelsizeswereused (1.9×1.9×1.9and1.5×1.5×1.5mm3)withnosignificant differencebetween these twohighly resolvedsubgroups. RegardingVenc,Kruskal—Wallistestsshowednosignificant differenceinmeanflowandvesselareainsubgroupswith identicalspatialresolutionbutdifferentVenc(Fig.2).

(5)

20 A.Davidetal.

Table1 Four-dimensionalphasecontrastmagneticresonanceimagingacquisitionparameters.

Subgroup1 Subgroup2 Subgroup3 Subgroup4 Subgroup5 Meanflow=4L/min

Venc(cm/sec) 34 50 100 34 34 Fieldofview(mm) 360 360 360 360 320 Matrix 128 128 128 192 208 Voxelsize(mm3) 2.8×2.8×2.2 2.8×2.8×2.2 2.8×2.8×2.2 1.9×1.9×1.9 1.5×1.5×1.5 Repetitiontime(ms) 50.48 48.50 41.92 52.00 53.12 Echotime(ms) 4.07 3.63 3.00 4.08 4.12

Framespercycle 30 30 30 30 30

MeanFlow=5.6L/min

Venc(cm/sec) 50 75 150 50 50 Fieldofview(mm) 360 360 360 360 320 Matrix 128 128 128 192 208 Voxelsize(mm3) 2.8×2.8×2.2 2.8×2.8×2.2 2.8×2.8×2.2 1.9×1.9×1.9 1.5×1.5×1.5 Repetitiontime(ms) 48.50 43.76 39.92 48.48 49.52 Echotime(ms) 3.63 3.23 2.75 3.64 3.67

Framespercycle 30 30 30 30 30

Table2 Meanflowmeasuredinfour-dimensionalphasecontrastmagneticresonanceimaging(4D-PCI)andcomparedto referenceexperimentalvalue.

n Spatialresolution(mm3) Venc(cm/sec) MeanFlow(ml/min) Difference

Referencevalue 4800 — 4D-PCITotal 100 4942.65±873.91[3652.8—6339.6] +142.65(+2.97%) 4D-PCISubgroup1 20 2.8×2.8×2.2 42 5048.82±903.80[3798—6224.4] +248.82(+5.18%) 4D-PCISubgroup2 20 2.8×2.8×2.2 62.5 5010.57±882.56[3903—6189] +210.57(+4.39%) 4D-PCISubgroup3 20 2.8×2.8×2.2 125 5062.11±922.57[3797.4—6339.6] +262.11(+5.46%) 4D-PCISubgroup4 20 1.9×1.9×1.9 42 4798.31±798.32[3809.4—5848.2] −1.69(−0.04%) 4D-PCISubgroup5 20 1.5×1.5×1.5 42 4793.43±904.44[3652.8—5808.6] −6.57(−0.14%)

Resultsareexpressedasmean±standarddeviation(SD).Numbersinbracketareranges.

Table3 Vesselareameasuredinfour-dimensionalphasecontrastmagneticresonanceimaging(4D-PCI)andcompared toreferenceexperimentalvalue.

n Spatialresolution(mm3) Venc(cm/sec) Vesselarea(mm2) Difference

Referencevalue 314.16 — 4D-PCITotal 100 370.5±26.26[303.8—424.6] +56.34(+17.93%) 4D-PCISubgroup1 20 2.8×2.8×2.2 42 384.53±26.33[325.5—424.6] +70.37(+22.40%) 4D-PCISubgroup2 20 2.8×2.8×2.2 62.5 382.92±22.73[337.4—424.5] +68.76(+21.89%) 4D-PCISubgroup3 20 2.8×2.8×2.2 125 378.66±23.27[331.8—422.5] +64.50(+20.53%) 4D-PCISubgroup4 20 1.9×1.9×1.9 42 353.62±16.53[309.7—378.2] +39.46(+12.56%) 4D-PCISubgroup5 20 1.5×1.5×1.5 42 370.5±26.26[303.8—424.6] +56.34(+17.93%)

Resultsareexpressedasmean±standarddeviation(SD).Numbersinbracketareranges.

Analysis

of

4D-PCI

V

max

—comparison

with

2D-PCI

The results of the comparison of 4D-PCI derived Vmax with2D-PCIandtheeffectsofspatial resolutionandVenc are reported in Table 4. 4D-PCI slightly underestimated

Vmax when compared to 2D-PCI(differences ranging from −1.71% to −3.85%; P<0.001). Correlation was excellent betweenthetwomodalities(r=0.962;95%CI:0.944—0.974; P<0.001). Bland—Altman tests showed a mean of differ-ences (bias) of −2.83% of the overall mean value for Vmax between2D PCand4D-PCI, withlimitsofagreement

(6)

Figure2. Columnbarsshowflowandvesselareameasuredwith4D-PCIandcomparedtoreferenceexperimentalvalues.A.Comparison

ofsubgroupswithdifferentspatialresolutionsbutidenticalVencformeanflowmeasurements.B.Comparisonofsubgroupswithdifferent

Vencbut identicalspatialresolutionsfor mean flowmeasurements. C.Comparisonofsubgroups withdifferent spatialresolutionsbut

identicalVencforvesselareameasurements.D.ComparisonofsubgroupswithdifferentVencbutidenticalspatialresolutionsforvessel

areameasurements.

Table4 Peakvelocitymeasuredinfour-dimensionalphasecontrastmagneticresonanceimaging(4D-PCI)andcompared toreferencetwo-dimensionalphasecontrastmagneticresonanceimaging(2D-PCI)values.

n 2D-PCI Peakvelocity (cm/sec) Spatial resolution (mm3) Venc (cm/sec) 4D-PCI Peakvelocity (cm/sec) Difference Total 100 35.80±5.59 [26.88—47.78] 34.78±4.98 [27.69—41.03] −1.01(−2.83%) Subgroup1 20 35.49±4.88 [29.3—41] 2.8×2.8×2.2 42 34.88±5.05 [28.02—40.19] −0.61(−1.71%) Subgroup2 20 35.67±5.98 [26—43.07] 2.8×2.8×2.2 62.5 34.37±5.03 [28.56—40.23] −1.31(−3.66%) Subgroup3 20 35.07±5.14 [27.67—47.78] 2.8×2.8×2.2 125 35.07±5.14 [28.84—41.03] −0.84(−2.34%) Subgroup4 20 34.66±5.06 [29.17—43.08] 1.9×1.9×1.9 42 34.66±5.06 [27.92—39.93] −1.39(−3.85%) Subgroup5 20 35.88±5.1 [29.8—41.65] 1.5×1.5×1.5 42 34.9±5.1 [27.69—40.13] −0.93(−2.59%)

(7)

22 A.Davidetal.

Figure3. DiagramshowsBland—Altmanplotsof4D-PCIcompared

with2D-PCIforVmaxmeasurement.

between−10.71%and+5.29%(Fig.3).Therewereno signif-icantdifferencesbetweengroupswithvariedspatial reso-lution(P=0.74),noringroupswithvariedVenc(P=0.39).

Discussion

We developed an experimental methodology to evaluate the accuracy of 4D-PCI flow measurements in a 20-mm straighttube. Weshowedthat 4D-PCIisaccurateat mea-suringmeanflow withbetter resultsobtained withhigher spatial resolution and conversely no effectof Venc when varied up to 3 times Vmax. A good agreement between

4D-PCI and 2D-PCI was found for the measurement of Vmax.

Longtimescansareneededtoacquire4D-PCIespecially whenusingsmallpixelsize.Oneobjectiveofthisworkwas thereforetoevaluatetheimpactof increasingthespatial resolutionontheaccuracyof4D-PCImeasurements.Indeed, inourpresentinvitrostudy,wewereabletodemonstrate thatanincreaseinthespatialresolutionimprovedthe mea-surementofvesselareaandmeanflow,whicharedirectly relatedtothequalityofthesegmentation.Withhigher spa-tial resolution images, the accuracy of the segmentation minimizespartialvolumeeffectsneartotheboundariesof thetube,providingbetterflowmeasurements.Theseresults areconsistentwiththoseof Kweon etal.whoreporteda higheraccuracyofmeanflowmeasurementsonaphantom whenincreasing4Dflowspatialresolutions[21].Oneshould notehoweverthatinourstudy,althoughresultswere bet-terwith1.9mmandwith1.5mmisotropicspatialresolution than with 2.8×2.8×2.2mm resolution, 1.5mm isotropic resolutiondidnot providesignificantlybetter resultsthan 1.9-mmisotropic resolution.This resultmaybe explained bythereduction ofthesignal-to-noise ratiocausedby an important increase of spatial resolution, assuggested by Kweonet al.[21]. Althoughin theory, a higherresolution maygivea betterestimation offlow measurements, con-sideringthesignal-to-noise ratioreductionandthelonger scantime,refiningthe voxelsize below1.9-mm isotropic

mightnotbeusefulunderthepresentconditions.Thisalso supportsthestrategy ofsuper-resolutionat stageof post-processingsothatSNRremainshigh.

Toevaluatethevalvularorarterialstenosisseverity,one ofthemostimportantparameterisVmax[26].Inthepresent study,nodifferenceswerefoundbetweenlowandhigh spa-tialresolutionsubgroups.Thismaybeduetothefactthat thepeakintensityvoxeliscommonlylocatedinthecentral regionofthetube,andtherebylessdependentofthe qual-ityofthe segmentation.Someauthors havereportedthat improving spatial resolution may leadtoa better estima-tionofVmaxby4D-PCI[21].However,thespatialresolution oftheirreferencestandard,(computationalfluiddynamics) was markedlyhigher than 2D-PCI. Our data suggests that currentspatialresolution(2.8×2.8×2.2inourstudy)may besufficienttoprovidereliableresultsregardingthis hemo-dynamicparameter.

Asecondobjectiveofthisstudywastoassesstheimpact of Venconthe measurementof hemodynamicparameters with4D-PCI.Wefoundthattherewasnosignificant differ-enceforallthemeasuredflowparameterswhenusingVenc betweenavelocityequaltoVmaxandavelocitythreetimes greater.ThislowvariationusingloworhighVencmaybe use-fulinclinicalpractice,asonlyoneVencisallowedforthe acquisition ofthe4D-PCIsequence andasitis imperative thatVenc islargelyhigherthan Vmaxtoavoid saturation. This isparticularlytrue whenstudying patientswith arte-rialofvalvularstenosis,whichgenerateshighvelocitiesand velocityaliasing.

Thisstudyhassomelimitations,especiallyregardingthe flow conditionsin our experimental model. For example, the use of a non-MRI compatible pump to generate the flowmadeitnecessarytolengthenthewatercircuit,thus impedingresidualpulsatilitywithinthemeasurementtube. Indeed, the ratio between peak and mean velocitieswas only 1.54. Additionally, analysis of axial velocity profiles acrossthe tube showedthataxialvelocityremained posi-tivethroughoutthecycle,withoutreturntozero.Thetube wasrigid,limitingtheanalysisofvascularcompliance.Our experimentalmodel wasfilledwithwater,whose viscosity is about 10−6m2.s−1 (versus 4.10−6m2 for blood). Finally, regardingVmax,oneshouldnotethatourphantomallowed usto reachapeak ofnearly40cm/s only, whichis lower that peakvelocitiesfound inclinical practicefor valvular andarterialdiseases.WethereforechoselowVenc,farfrom thoseusedinclinicalpractice,sothattheywerehigherthan Vmax,butstillclosetoitinordertomaintainasufficient signal-to-noiseratio.Futurechangesinourmodel, includ-ingsmallertubes(allowinghighervelocities)andtheuseof blood-equivalent fluid,shouldbemade in ordertoobtain more physiologic hemodynamic conditions. Moreover, one shouldnotethattheselowvelocitiesmakeourresultsonly validinturbulentfreeconditions,whicharefoundinvivoin areaslocatedawayfromstenosisandvalves.Assessmentof theaccuracy of4D-PCIinaturbulentenvironmentwillbe thescopeoffuturestudies.

Inconclusion,usinganexperimentalpulsatileflowmodel we showedthat4D-PCIis accuratetomeasuremeanflow and Vmax withbetter results obtained with higher spatial resolution.WealsoshowthatVencupto3timeshigherthan Vmaxmaybeusedwithnoeffectonthesemeasurements.

(8)

Disclosure

of

interest

Theauthorsdeclarethattheyhavenocompetinginterest.

References

[1]Firmin DN, Gatehouse PD, Konrad JP, Yang GZ, Kilner PJ,

LongmoreDB.Rapid7-dimensionalimagingofpulsatileflow.

ComputCardiolIEEEComputSocLond1993;14:353—6.

[2]Wigström L, Sjoqvist L, Wranne B. Temporally resolved 4D

phase-contrastimaging.MagnResonMed1996;36:800—3.

[3]MarklM,ChanFP,AlleyMT,WeddingKL,DraneyMT,ElkinsCJ,

etal.Time-resolvedthree-dimensionalphase-contrastMRI.J

MagnResonImaging2003;17:499—506.

[4]StankovicZ,MarklM.4Dflow imagingwithMRI.Cardiovasc

DiagnTher2014;4:173—92.

[5]Bolger AF, Heiberg E, Karlsson M, Wigström L, Engvall J,

SigfridssonA,etal.Transitofbloodflowthroughthehuman

leftventriclemappedbycardiovascularmagneticresonance.

JCardiovascMagnReson2007;9:741—7.

[6]MarklM,GeigerJ, KilnerPJ,FöllD,StillerB, BeyersdorfF,

et al. Time-resolved three-dimensional magnetic resonance

velocitymapping ofcardiovascular flow paths involunteers

andpatientswithFontancirculation.EurJCardiothoracSurg

2011;39:206—12.

[7]BürkJ,BlankeP,StankovicZ,BarkerA,RusseM,GeigerJ,etal.

Evaluationof4Dbloodflowpatternsandwallshearstressin

thenormalanddilatedthoracicaortausingflow-sensitive4D

CMR.JCardiovascMagnReson2012;14:84.

[8]Bächler,PinochetN,SoteloJ, CrelierG, IrarrazavalP,Tejos

C,etal.Assessmentofnormalflowpatternsinthepulmonary

circulationbyusing4Dmagneticresonancevelocitymapping.

MagnResonImaging2013;31:178—88.

[9]Bammer R, Hope TA, Aksoy M, Alley MT. Time-resolved 4D

quantitativeflow MRIof themajorintracranial vessels:

ini-tial experience and comparative evaluation at 1.5T and

3.0T incombinationwithparallelimaging.MagnResonMed

2007;57:127—40.

[10] Boussel L, Rayz V, Martin A, Acevedo-Bolton G, Lawton

MT, Higashida R, et al. Phase-contrast magnetic resonance

imagingmeasurements in intracranial aneurysms in vivo of

flow patterns, velocity fields, and wall shear stress:

com-parisonwithcomputational fluiddynamics.MagnResonMed

2009;61:409—17.

[11] MeckelS,StalderAF,SantiniF,RadüEW,RüfenachtDA,Markl

M,etal.Invivovisualizationandanalysisof3-Dhemodynamics

incerebralaneurysmswithflow-sensitized4-DMRimagingat

3T.Neuroradiology2008;50:473—84.

[12] Frydrychowicz A, Markl M, Hirtler D, Harloff A, Schlensak

C, Geiger J, et al. Aortic hemodynamics in patients with

andwithout repairofaortic coarctation:in vivoanalysisby

4Dflow-sensitivemagnetic resonanceimaging.InvestRadiol

2011;46:317—25.

[13] Stankovic Z, Csatari Z, Deibert P, Euringer W, Blanke P,

KreiselW,etal.Normalandalteredthree-dimensionalportal

venoushemodynamicsinpatientswithlivercirrhosis.

Radiol-ogy2012;262:682—773.

[14]WentlandAL,GristTM,WiebenO.Repeatabilityandinternal

consistencyofabdominal2Dand4DphasecontrastMR flow

measurements.AcadRadiol2013;20:699—704.

[15]MeckelS,LeitnerL,BonatiLH,SantiniF,SchubertT,Stalder

AF,etal.Intracranialarteryvelocitymeasurementusing4DPC

MRIat3T:comparisonwithtranscranialultrasoundtechniques

and2DPCMRI.Neuroradiology2013;55:389—98.

[16]MarklM,WallisW,HarloffA.Reproducibilityofflowandwall

shearstressanalysisusingflow-sensitivefour-dimensionalMRI.

JMagnResonImaging2011;33:988—94.

[17]NordmeyerS,RiesenkampffE,CrelierG,KhasheeiA,

Schnack-enburgB,BergerF,etal.Flow-sensitivefour-dimensionalcine

magnetic resonance imagingfor offline bloodflow

quantifi-cation inmultiplevessels: a validationstudy. JMagnReson

Imaging2010;32:677—83.

[18]DyverfeldtP,BisselM,BarkerAJ,BolgerAF,CarlhällCJ,Ebbers

T,etal.4Dflowcardiovascularmagneticresonanceconsensus

statement.JCardiovascMagnReson2015;17:72.

[19]GuT,KorosecFR,BlockWF,FainSB,TurkQ,LumD,etal.PC

VIPR:ahigh-speed3Dphase-contrastmethodforflow

quantifi-cationandhigh-resolutionangiography.AJNRAmJNeuroradiol

2005;26:743—9.

[20]GhosnMG,JacksonM,MaragiannisD,ChinK,AutryK,IgoS,

etal.Aninvitrovalidationofcardiacmagneticresonance4D

flow measurementswithbioprostheticmitralvalveflow

vol-umesquantification.JCardiovascMagnReson2014;16:67.

[21]KweonJ,YangDH,KimCB,KimN,PaekM,StalderAF,etal.

Four-dimensionalflowMRIforevaluationofpost-stenotic

tur-bulent flow in a phantom: comparison with flowmeter and

computationalfluiddynamics.EurRadiol2016;26:3588—97.

[22]ZhaoSZ,PapathanasopoulouP,LongQ,MarshallI,XuXY.

Com-parativestudyofmagneticresonanceimagingandimage-based

computational fluid dynamics for quantification of pulsatile

flow in a carotid bifurcation phantom. Ann Biomed Eng

2003;31:962—71.

[23]Hollnagel DI, Summers PE, Poulikakos D, Kollias SS.

Com-parative velocity investigations in cerebral arteries and

aneurysms:3Dphase-contrastMRangiography,laserDoppler

velocimetry and computational fluiddynamics.NMRBiomed

2009;22:795—808.

[24]Hollnagel DI, Summers PE, Kollias SS, Poulikakos D. Laser

Doppler velocimetry (LDV) and 3D phase-contrast

mag-neticresonanceangiography(PC-MRA)velocitymeasurement:

validation in an anatomically accurate cerebral artery

aneurysm model with steady flow. J Magn Reson Imaging

2007;26:1493—505.

[25]Senage T, FevrierD, Michel M, Pichot E,Duveau D, Tsui S,

et al.A mockcirculatorysystem toassess theperformance

of continuous-flow left ventricular assist devices (LVADs):

doesaxialflow unloadbetterthancentrifugalLVAD?ASAIOJ

2014;60:140—7.

[26]GachP,DabadieA,SorensenC,QuarelloE,BonelloB,PicoH,

et al.Multimodalityimagingofaortic coarctation:fromthe

Figure

Figure 1. Schematic diagram of the experimental pulsatile flow model.
Table 1 Four-dimensional phase contrast magnetic resonance imaging acquisition parameters.
Table 4 Peak velocity measured in four-dimensional phase contrast magnetic resonance imaging (4D-PCI) and compared to reference two-dimensional phase contrast magnetic resonance imaging (2D-PCI) values.
Figure 3. Diagram shows Bland—Altman plots of 4D-PCI compared with 2D-PCI for V max measurement.

Références

Documents relatifs

The flow properties are investigated by measuring electric potentials on the outer sphere, the induced magnetic field in the laboratory frame just above the rotating outer sphere,

Experimental validation of an 2D overland flow model using high resolution water depth and velocity data.. Luis Cea, Cédric Legout, Frédéric Darboux, Michel Esteves,

Comparison of Flow Measurement by 4D Flow Magnetic Resonance Imaging and by Particles Image Velocimetry on Phantom of Abdominal Aortic Aneurysm.. SM Vascular medecine, SM

2014 After characterisation of the medical MRI Bruker BMT 100 scanner in the aim of studying porous media, we showed, by means of a model system that it was possible

La plupart des demandeurs d’emploi inscrits à Pôle emploi sont tenus de faire des actes positifs de recherche d’emploi : certains sont sans emploi (catégorie A), d’autres

One major reason for this is that the high levels of accuracy and reliability required today for improving aeronautic design are obtained through long term expertise and

Cathalifaud, Patricia and Zagzoule, Mokhtar and Balédent, Olivier Biomechanical modeling and Magnetic Resonance Imaging to investigate CSF flow

Investigation of phase-contrast magnetic resonance imaging underestimation of turbulent flow through the aortic valve phantom: Experimental and computational study using