• Aucun résultat trouvé

Surface-driven, one-step chemical vapor deposition of γ-Al4Cu9 complex metallic alloy film

N/A
N/A
Protected

Academic year: 2021

Partager "Surface-driven, one-step chemical vapor deposition of γ-Al4Cu9 complex metallic alloy film"

Copied!
7
0
0

Texte intégral

(1)

O

pen

A

rchive

T

OULOUSE

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

This is an author-deposited version published in :

http://oatao.univ-toulouse.fr/

Eprints ID : 11271

To link to this article :

DOI:10.1016/j.apsusc.2013.07.019

URL :

http://dx.doi.org/10.1016/j.apsusc.2013.07.019

To cite this version :

Prud’homme, Nathalie and Duguet, Thomas and Samélor, Diane

and Senocq, François and Vahlas, Constantin Surface-driven,

one-step chemical vapor deposition of γ-Al4Cu9 complex metallic alloy

film. (2013) Applied Surface Science, vol. 283 . pp. 788-793. ISSN

0169-4332

Any correspondance concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(2)

Surface-driven,

one-step

chemical

vapor

deposition

of

g-Al

4

Cu

9

complex

metallic

alloy

film

Nathalie

Prud’homme

a,b

,

Thomas

Duguet

a,∗

,

Diane

Samélor

a

,

Franc¸

ois

Senocq

a

,

Constantin

Vahlas

a

aCIRIMAT,UniversitédeToulouse-CNRS,4alléeEmileMonso,BP-44362,31432ToulouseCedex4,France bUniversitéParis-Sud11,LEMHE/ICMMO,Bat410,91405OrsayCedex,France

a

b

s

t

r

a

c

t

Thepresentpaperisaparadigmfortheone-stepformationofcomplexintermetalliccoatingsby chem-icalvapordeposition.Itgenuinelyaddressesthechallengeofdepositinganintermetalliccoatingwith comparablecontentsofCuandAl.Dependingonprocessingconditions,apureg-Al4Cu9andmulti-phase

Al-Cufilmsaregrownwithwettingpropertiesoftheformerbeingsimilartoitsbulkcounterpart.The depositionprocessanditsparametricinvestigationaredetailed.Twometalorganicprecursorsareused takingintoaccounttheirtransportandchemicalproperties,anddepositiontemperatureranges.Online andexsitucharacterizationsenlightenthecompetitionwhichoccursatthegrowingsurfacebetween molecularfragments,andwhichlimitsgrowthrates.Notably,introducingapartialpressureofhydrogen gasduringdepositionreducesAlgrowthratefromdimethylethylaminealane(DMEAA),bydisplacingthe hydrogendesorptionequilibrium.ThisAlpartialgrowthratedecreaseisnotsufficienttoachieveaCu/Al atomicratiothatishighenoughfortheformationofintermetallicswithcloseAlandCucompositions. Afivefoldincreaseofthefluxofthegaseouscopper(I)cyclopentadienyltriethylphosphineCpCuPEt3,

whereastheDMEAAfluxremainsconstant,resultsinthetargetedAl/Cuatomicratioequalto44/56. Nevertheless,theglobalgrowthrateisrenderedextremelylowbythedepositioninhibitioncausedby amassivephosphineadsorption(-PEt3).Despitetheselimitations,theresultspavethewaytowardsthe

conformalcoatingofcomplexsurfacegeometriesbysuchintermetalliccompounds.

1. Introduction

Coating of complex 3-dimensional surfaces with complex metallic alloys (CMAs) including quasicrystals provides added valuematerialsforinnovativeapplications.Examplesarelow stick-ingandlowfrictionglassmoldsthatsustainhightemperatures, andporouspreformsinfiltrationfortheproductionofsupported catalysts([1–3],andreferencestherein).CMAcoatingsshow excel-lentmechanicalpropertiessuchaslowadhesion,anti-fretting,or wearresistance,butthedrawbackoflowadhesionisthatitalmost alwaysresultsintoautodelaminationthatcanonlybeovercome byanefficientincreaseofinterfacialaccommodationandadhesion. Severalsolutionshavebeenproposedtofacethisproblem;one beingtheuseofabufferlayerofamaterialthatshowsintermediate electronicandstructuralpropertiesbetweenthoseofthesubstrate andthecoating[4,5].TheAl-Cusystempresentssuch intermedi-atephaseswhichhaveproventheirefficiencyforaccommodating icosahedralAl-Pd-MnandAl-Cu-Fequasicrystals[5,6].

∗ Correspondingauthor.

E-mailaddresses:thomas.duguet@ensiacet.fr,doug181@gmail.com(T.Duguet).

Actually,thereisnosatisfactorytechniquefortheprocessing ofsuchcoatingsoncomplexsurfaces.Byoperatinginthesurface reactionlimitedregime,chemicalvapordepositioncaninprinciple meetthisrequirement.Inthispaperwepresentforthefirsttime thedirect,one-stepprocessingofapureCMA-containingcoating bymetalorganicchemicalvapordeposition(MOCVD).Specifically, wereportontheMOCVDofAl-Cualloyedcoatings,includingthe g-Al4Cu9 approximantphasewithsimilarpropertiestothebulk

crystal.

PreviousCVDco-depositionexperimentsofAl-Cufilms were performedintheearlyninetiesinordertoreplacepureAl intercon-nectionsinverylargescaleintegrationtechnologybya-(Al)solid solutionswhoseelectromigrationandresistivityarelower. Tomo-haruetal.[7]andEiichietal.[8]useddimethylaluminumhydride, DMAH,andcoppercyclopendadienyltriethylphosphine,CpCuPEt3

asprecursorsfortheco-depositionofAlandCu,respectively.They obtainedpurefilmswithhomogeneousdistributionofCuintheAl matrix,containingAl2CuprecipitatestypicalofhypoeutecticAl-Cu

alloys.Themajordifferencebetweentheseworksandthepresent oneliesinthelowconcentrationofCuintheformer,whichisin theorder1wt%.Processingoffilmswithcomparablecontentof AlandCuismoreconstrainingbecauseofpotentialsignificantgas

(3)

phaseand/orsurfaceinteractionsbetweenthetwoprecursorsor theirfragments.InafirstapproachtotheMOCVDofAl-Cucoatings, werecentlypublishedresultsonthesequentialdepositionofAl andCufollowedbyannealing.Intermetallicsarealsoobtainedbut whilethemethodissimplerthantheoneproposedhere,itpresents additionalstepsthataresourceoffilmscontaminationandinvolve higherthermalload[9].

Inaco-depositionprocess,cautionhastobetakenregarding compatibilitybetweentheselectedmetalorganicprecursors. Com-patibilityconcernsdepositiontemperatures,chemicalcomposition (O, F, and C contaminants release), chemical interactions, and transportinthegasphase.Forthisreason,thepresentworkhas beenprecededbytheinvestigationoftheMOCVDofunaryfilms of Aland Cu. Cuis obtained by decomposition of CpCuPEt3, a

solidprecursor,thesaturatedvaporpressureofwhichis0.2Torr at 60◦C [10]. Its thermal decomposition in the gas phase at

150◦C<T<270C results in theformation of PEt3gas and a

sur-face intermediate {CuCp}surf that rapidlyconvertsinto metallic

Cuand(Cp2)gas.Above270◦C,themechanismispresentedas

fol-lows: CpCuPEt3→Cusurf+HCpgas+other organic fragments [10].

In vacuum, mass spectrometry experiments show an intensity decrease of themolecular peak at temperaturehigher than ca. 150◦C, whereasdecompositionwithhydrogenissomehow

sta-bilized and shifted at approx. T>170◦C. CuCpPEt

3 is therefore

suitableforMOCVDinthesurfacetemperaturerange150–290◦C.

In this range, growth rate increases with increasing precursor feedingrateindicatingthatdepositiontakesplaceinadiffusion controlledregime.Nonetheless,massspectrometryexperiments show that the growing surface saturates with adsorbed phos-phine leading to a continuous decrease of the Cu growthrate withdepositiontime.Thiscanbecounterbalancedbyincreasing deposition temperature above 240◦C in order to desorb

by-products andofferenoughfreesurfaceforprecursoradsorption

[11].

Ontheotherhand,Alfilmsareobtainedbydecompositionof dimethylethylaminealane,DMEAA–aliquidprecursor.The mech-anismattributedtoitsdecompositionatsurfacescanbestressed asfollows:adsorption,breakingoftheAl-Nbond,desorptionof thedimethylethylamine,cracking ofthealaneAlH3 into

metal-licAlandadsorbedHatomsthatrecombinetoformH2gas[12].

Aboveasubstratetemperatureof150◦C,Fouriertransforminfrared

spectroscopyrevealedthatDMEAAdecomposesinthegasphase

[13],andchemicalkineticmodelingallowedtoestimatethatonly ca. 5% of theprecursor participates in the depositionreaction, with a stickingcoefficient onAl(111)closeto unity [14].Jang et al. [15] showed that the Al films with the lowest electrical resistivity,highestdensity,andhighestpurity,areobtainedata substrate temperature of 160◦C which alsocorresponds tothe

highestAlgrowthrateintheinvestigated100–220◦Ctemperature

range.

Obviously, a compromise must be found for co-deposition involving thetwo aforementionedprecursors. Specifically, sub-stratetemperaturemustbechoseninsuchawaythatgrowthrates arecompatiblewiththetargetedAl-Cuphases’compositionswhile minimizinghomogeneousdecompositionofprecursors.Itis reas-suring thoughthatpreliminarymassspectrometryexperiments during co-deposition show nointeractions betweenprecursors

[11].

Thearticleispresentedasfollows.Theexperimentalprotocol involvingMOCVDofAl-Cufilmsispresentedindetails,first.Then, thecomposition,theobtainedAl-Cuphasesandthemorphologyof thefilmsarepresentedanddiscussed.Finally,preliminaryresults ofthewettingbywateroftheg-Al4Cu9bulkandMOCVDprocessed

phasearepresented,priortoprovidingconcludingremarks.

2. Materialsandmethods

Depositionsareperformedintheexperimentalsetupdescribed indetailsandmodeledinRef. [16].Thesetupiscomposed ofa stagnantflow,cylindrical,stainlesssteelreactor.Thedeposition chamberfeaturesadoubleenvelopeallowingthemonitoringof wallstemperaturethroughthecirculationofthermallyregulated silicon oil. A turbomolecular pumpensures a base pressure of 1.3×10−4Pa.Thepumpinggroupisprotectedfromthecorrosive

by-productsbyaliquidnitrogentrap.Gasisdistributedthrough ashowerheadsystem,describedandmodeledinRef.[17].Gases arefedthroughelectropolishedstainlesssteelgaslineswithVCR fittingsandtheirflowrateiscontrolledbycomputerdrivenmass flowcontrollers.HFcleaned10×5mm2siliconcouponsareused

assubstrates. For each experiment,fivesamplesare positioned horizontallyona58mmdiametersusceptorandheatedbya resis-tancecoilgyredjustbelowthesurfaceofthesusceptor.DMEAA (Epichem)(99%pure)isusedasreceivedandCpCuPEt3(Strem)is

purifiedbyvacuumsublimationat70◦C.N2(99.9992%pure)andH2

(99.995%pure)(airproducts)arefedthroughelectropolished stain-lesssteelgaslineswithVCRfittingswithatotalfluxmaintainedat 325standardcubiccentimetersperminute,sccm.Allexperiments areperformedat10Torr;i.e.areduced,althoughtechnologically convenientpressure.

Table1isanoverviewofexperimentalconditionsandofresults thatwillbediscussedinthefollowingsection.Thevaporization ves-selofDMEAAismaintainedat8◦C,correspondingtoasaturated

vaporpressureof0.5Torr.TransportofDMEAAinvolvesaflowrate ofN2 throughtheprecursorFN2,DMEAA,equalto5sccm.Inthese

conditions,themaximumflowrateofDMEAA,FDMEAAiscalculated

asbeingequalto0.26sccminallexperiments[18].Thesublimation vesselofCuCpPEt3ismaintainedat75±5◦C.Twosetsoftransport

conditionsofCuCpPEt3areinvestigated,correspondingtotwo

dif-ferentflowratesofN2throughtheprecursor(30and150sccm).

FCpCuPEt3isestimatedfromweightlossoftheprecursorsublimator

andusingtheanalyticalformulaofRefs.[18,19].Additionally,two substratetemperatures(200and260◦C)areinvestigatedaswellas

depositionwithandwithoutH2intheinputgas.

Electronprobemicroanalysis(EPMA)isusedfordetermining theatomiccompositionsofthefilms,andX-Raydiffraction(XRD) isusedforstructuralinvestigation.Growthrate(GR)iscalculated by weightgain of each sample prior and after depositionover thedepositionduration. Table1presentsGRsandatomic com-positions (at±1%) averagedover the 5 samplesplaced in each experiment.Thiswaytoquantifythegrowthratedoesnotprovide directaccesstothethicknessof thefilm.However,it has been adoptedsincethemeasurementisstraightforwardanditismore accuratethaninvestigation ofcrosssections bySEMduetothe roughnessandporosityofsomesamplesaswillbeshowninthe nextsections.GRsoftheindividualelementsduringco-deposition areestimatedwiththefollowingformulas:GR(Al)+GR(Cu)=GR

Table1

Investigatedoperatingconditionsandresultingaveragegrowthrates(inmg/cm2/h),averageelementalcompositionsandstructureofthefilms. Experiment# t(h) T(◦C) H2(sccm) FN

2DMEAA/FN2CpCuPEt3 FCpCuPEt3(sccm) GR EstimatedGR(Al) EstimatedGR(Cu) Al/Cu(at.%) Phases

1 2 200 25 5/30 0.07 80 78.1 1.9 99/1 Al+Al2Cu

2 2 260 25 5/30 0.04 30 24.8 5.2 33/67 Al2Cu+Al4Cu9

3 2 260 0 5/30 0.06 50 42.5 7.5 93/7 Al+Al2Cu

(4)

and[GR(Al)/MAl]/[GR(Cu)/MCu]=[Al/Cu](withMEmolecularmass

ofelementE), usingEPMAresults.Oxygen has beensubtracted fromelementalcompositionsonpurposebecausesystematic mon-itoringofthegasphaseduringallexperimentsbyonlinemass spectrometrydoes notshowsignificantamountofoxygenorof watervapors,thusensuringthatallexperimentswereconducted intheabsenceofdetectableleaksordesorptionfromthereactor walls.

Wettabilitybywaterisperformedbythesessiledropmethod withaGBXDigidropinstrument.

3. Resultsanddiscussion

3.1. Averagecompositionsandgrowthrates,andcrystallographic phases

Itiswellknownthatsublimation ofafixedbedisneithera robustnorareproduciblemeanforfeedingthedeposition cham-berwithvaporsofa solid precursor.Indeed,statistical analysis over10experimentsofCuprecursorsublimationwithourreactor demonstratesthatitisnotpossibletodiscriminatetheresults#1–3 attheFN2,DMEAA/FN2,CpCuPEt3 fluxratioof5/30inTable1.Hardly,

weareabletoconfirmthatthe5/150fluxratiodoescorrespond toahigherfeedingrateofCuprecursor(0.12sccmcomparedto 0.04–0.07sccm).Anadditionalreasonforthisdiscrepancyisthe observeddegradationoftheprecursoronthereactorwallsand insidethesublimatorbecauseofitsreducedstabilityaboveroom temperature.Moreover,itappearsthattheelementalcomposition ofthefilmsdoesnot followthatofthegasphasebasedonthe estimationofFprecursor.Let’sconsiderexperiments#2and#3at

260◦C inTable1,forwhichtheonlydifferenceliesinthe

pres-enceofhydrogenornot.TheestimationsofFCpCuPEt3,at0.04and

0.06sccm,canbeconsideredclosevalues.With(without) hydro-gen,thefilmscontain33at.%Al(93at.%Al)andtheglobalgrowth rateis30mg/cm2/h(50mg/cm2/h).Amoredirectcomparisoncan bedonethroughtheindividualgrowthrates.SuppressionofH2

intheinputgasleadstodoublingGR(Al),whereas GR(Cu)only increasesfrom5.2to7.5mg/cm2/h.Werecallthatthemechanism ofAldepositionfromDMEAAinvolvesdesorptionofH2gasfrom

thegrowingsurface,afterthealanedecomposition.Asa rule-of-thumb,wepostulatethattheincreaseofthepartialpressureof H2inthereactordisplacesthereactionequilibrium,andtherefore

decreasesthereactionrateofDMEAAatthesurface.

Thedifferencesobservedforexperiments#1and#2inTable1

aremorestraightforwardandmainlyrelyonthedeposition tem-perature. At 200–220◦C, the deposition conditions of Al from

DMEAAareoptimal.Abovethistemperature,gasphasereactions consumemorethan97%oftheprecursorandgrowthratedecreases rapidly[14].Inversely,increasingTfrom200to260◦Cleadstoa

highergrowthrateofCufromCuCpPEt3[10].Consecutively,the

individualgrowthratesofCuandAlvaryinoppositedirections fromT=200◦CtoT=260C;GR(Cu)beingmultipliedby≈2.5while

GR(Al)isdividedby≈3.However,increasingtemperatureto260◦C

isnotanappropriateoptionforincreasingtheCucontentofthefilm sinceitdrasticallyaffectstheglobalgrowthratethatdecreasesfrom 80to30mg/cm2/h.ThesolutionforgettingCuenrichmentmust comefromthegasphaseandnotfromahighersurface tempera-ture.

Therefore, an attempt has been made (experiment #4 in

Table 1) with a substrate temperature of 200◦C and a lower

FN2,DMEAA/FN2,CpCuPEt3 ratio,equalto5/150.H2isalsointroduced

inordertofavorCudepositionattheexpenseofAl.Inthese condi-tions,theestimatedCuprecursorfluxhasincreasedto0.12sccm. Theobtainedglobalgrowthrateof25mg/cm2/histhelowestin thisseriesofexperiments,mainlybecauseitisgovernedbyGR(Al) whichislow.DuringCuunarydeposition,ithasbeendemonstrated

bymass spectrometrythat PEt3 isextensively adsorbedonthe

growingsurfacewithsubsequenthinderingofprecursorsupplyto thedepositionzone,resultinginself-inhibitionofCudeposition andgradualdecreaseofthegrowthrate[11].Here,thissituationis validinalltheexperimentsbutweprobablyattainsucha precur-sorconcentrationinexperiment#4,thatinhibitingeffectsbecome predominantandaffectthedepositionmechanismsofAl,aswell. Consequently,inadditiontothedisadvantageofusingH2,Al

depo-sitionrateisfurtherreducedbythesaturationofthesurfaceby adsorbedPEt3.

Tofurthersupporttheabove-mentionedassumptions,wenow considerexperimentally-determinedgrowthratesofunaryAl depo-sitions.ThesegrowthratesaredifferentfromtheestimatedGR(Al) reported in Table1. They result fromdedicated Al depositions performed without H2(g) witha flow rate of 0.26sccm. In

co-depositionconditionsbeneficialtotheDMEAAprecursor,i.e.either 200◦CorwithoutH2,growthratesofexperiment#1(80mg/cm2/h)

and#3(50mg/cm2/h)aresimilartoexperimentally-determinedAl depositionsgrowthrates(128and40mg/cm2/h,respectively).In co-depositionconditionsbeneficialtotheCpCuPEt3precursor,i.e.

either260◦C(experiment#2)orhighF

CpCuPEt3 at200◦C

(exper-iment#4), thepollution ofthesurface byphosphine resultsin (i) a low globalgrowthrate,and (ii) a low GR(Al),to be com-paredwiththeexperimentally-determinedAlgrowthrateat200◦C

(128mg/cm2/h). Therefore, theformation of Cu-rich samplesis more due totheinefficient depositionof Alrather than tothe increaseofthegrowthrateofCu.

Fromtheresultsreportedaboveweconcludethatwecan suc-cessfully obtain intermetallic compounds of interest. Despite a majordrawbackreferringtothereducedgrowthrateandprobably theprocessyield,solutionsareavailabletocircumventthose prob-lemswhichareattributedtothecontroloftheco-depositionby synergeticphenomena.Fromtheanalysisoftheresultsreported inTable1itappearsthatbetterconditionsforthegrowthof Al-CucompoundsfromCuCpPEt3andDMEAAshouldinclude:(i)the

useofbothprecursors–butmoreimportantly ofCpCuPEt3–in

liquidsolutionincombinationwitharegulated deliverysystem (e.g.directliquidinjection,pulsedinjection,...),(ii)avoidingthe useofH2formaximizingAlgrowth,(iii)determiningacoupleof

[T;FCpCuPEt3]parametersthatallowtheproperdesorptionofPEt3

fromthesurface,andpreventthethermaldegradationofDMEAA inthegasphase,and(iv)elucidatesurfacemechanismsthatare

Fig.1.XRDspectraofsamplesfromexperiments#1–4withgivenidentificationsof phases.Phasesreportedontheright-handsideofthefigurewhereidentifiedwith aidofJCPDS#04-0787forfcc-Al,#25-0012for-Al2Cu,and#24-003forg-Al4Cu9.

(5)

responsibleforthosesynergeticeffectsandtunethesubstrate reac-tivity,accordingly.

Fig.1showstheXRDpatternforasprocessedsamplesof exper-iments#1–4.Thefilmsarecomposedof3differentphases:fcc-Al,

-Al2Cu,andg-Al4Cu9.ComparisonofthesephaseswiththeAl/Cu

ratios shown inTable1,allows concludingthatAl-rich compo-sitions(experiments#1and#3)correspondtotheformationof

eitherpureAlorofana-(Al)solidsolutionplus-Al2Cu,

eventu-ally.Indeed,whencompositiongetsricherinCu(fromexperiments #1–3)thenthecontributionofthe-Al2CuphasetotheXRD

dia-grambecomes larger. If thecompositionin Cu is large enough thenthetargetedg-Al4Cu9isformed,eitherpureorwith-Al2Cu.

Hence,phaseformation qualitativelyfollowsthesimplemixing rulethatcanbededucedfromtheAl-Cuphasediagram.Itisworth

(6)

notinghowever,thatthesampleofexperiment#2whichshows theelementalcompositiontheclosesttothetheoreticalAl4Cu9

composition(Al33Cu67andAl31Cu69,respectively)isnottheone

giving rise to the formation of a single-phase g-Al4Cu9

coat-ing. This is observed for the sample of experiment #4 whose elementalcompositionissomehowshiftedfromthisideal com-position.Thisresultisincontrastwithreports,followingwhich fora given coatingcompositionthecorrespondingpoint in the phase diagram can beused to predict the final phase fraction

[6,20]. It is rather attributed to partial alloying giving rise to transient phases, mainly-Al2Cu and g-Al4Cu9 because of the

relativelylow activationenergy required fortheir formation in thinfilms [9,21].Moreover,it hasbeenreportedthat, indepen-dentlyoftheAl/Curatio,thermalannealingofAl-Cubilayersfirst yields-Al2Cu at temperatures aslow as 130◦C followed by a

smallamount ofa secondphase, AlCu3. Thesubsequent phase

formation wasfoundtodepend ontheCu:Al atomic ratio. For Cuconcentrationshigherthan50at.%,thereactionsubsequently proceedstowardthephasesg-Al4Cu9 anda-Cu.ForCu concen-trationlowerthan50at.%,AlCu3transformstoanewhexagonal

phaseAlxCuwhichsubsequentlytransformsbacktoAlCu3before

the reaction proceeds toward the end phases AlCu and Al2Cu

[22].

EPMAandRutherfordbackscatteringexperimentsrevealthat oxygen concentration in the films is high, ranging from 13 to 61%. Taking into account that on line mass spectrometry unambiguouslyshowsbackgroundlevel forall oxygen contain-ing species, it is concluded that oxidation of the films occurs

ex situ.Based onSEM observations illustratedin the next sec-tion,thehighsurfacetovolumeratiois mostlikelyresponsible for surface oxidation in addition to O2 and water

adsorp-tion.

3.2. Morphology

Fig.2regroupssurfaceandcross-sectionSEMimages.Thefirst obvious observation is that rough morphologies correspond to Al-richcompositions(experiment#1and#3)whereassmoother morphologiesarefoundonCu-richsamples(experiment#2and #4).However,sinceAl-richfilmsaremuchthickerbasedonweight gainandonSEMcross-sectionsanalysis,itisunclearwhetherhigh thicknessorAlgrowthorthecombinationofbothisresponsible forroughnessandporosity.Agoodindicationcomesfrom deposi-tiontemperatures.Thefilmofexperiment#1wasgrownat200◦C

whereasthefilmofexperiment#3wasgrownat260◦C.At200C,

growthrateishigherbecauselessprecursorisconsumedin homo-geneousreactions.Fromthesurfacepointofview,itcorrespondsto ahigherfluxofprecursor.Inversely,ahighertemperatureresultsin thecombinationofalowerprecursorfluxandhigherbulkand sur-facediffusionrates;bothmechanismsarebeneficialtothesurface smoothness.

The surface of the sample of experiment #2 is composed of a dense film with equiaxed grains on top of which quasi-unidirectionalfilamentsarepointingawayfromthesurfaceplane. In Fig. 3, similar filaments are found for experiments #2–4. It was not possible to determine their structure and compo-sition due to their size which is not compatible with SEM, XRD or EPMA. Experiment #4 is the most promising applica-tion wise:the film is single-phase g-Al4Cu9 (within thelimits

of XRD characterization) and it shows large surface regions like the one illustrated in Fig. 3 with no parasite filament grains.

Thissampleprovides thefirstexperimental proofofconcept accordingto which MOCVD co-deposition canform a complex metallicalloycoatinginonestep.

3.3. Wettingof -Al4Cu9surfacesbywater

The useof MOCVD films containing approximant phases as buffer layers for the interfacial accommodation and adhesion betweenametallicsubstrateandaquasicrystallinecoatingis sub-jectedtotheirsurfaceenergy,whichinturnimpactstheirwetting byliquids,e.g.water.Itiswellknownthatinambientair,typical valuesforaquasicrystalofhighlatticeperfectionlikeanannealed singlegrainicosahedralAl-Pd-Mnareintherange90◦<<100,

whereaspurealuminummetalshowsvaluesaround70◦ [23].In

thiscontext,itisexpectedthatag-Al4Cu9 single-phasedsurface

shouldpresentacontactanglewithwaterbetween70◦ and90.

Inordertoverifythispointaseriesofwettingexperimentswere performedwithultrapurewater(resistivity18.2MOhm/cm)onthe surfaceofsample#4(pureg-Al4Cu9)andonthesurfaceofapure

g-Al4Cu9bulksample.Beforewettingexperiments,thesurfaceof

thebulksamplewaspolishedwithSiCdisks.Threesurfacefinishes wereobtainedwith600,2400and4000grit,providingsurfaces withmeanroughnessRaof246nm,16nmand7nm,respectively. Fourmeasurementsofcontactanglewithwaterwereperformedon eachsurfacefinish.Theobtainedvaluesare82◦,84,and87(±2)

fromtheroughertothesmoothersurface.Theseresultsconfirmthe intermediatevalueofthecontactanglewithwateronthesurface oftheg-Al4Cu9approximantbetweenthoseobtainedonthe

sur-faceofaluminummetalandoficosahedralcrystals.Theyarealso consistentwithWenzel’stheory,followingwhichanintrinsically hydrophilicsurfacebecomesmorehydrophilicwhenitsroughness increases[24].Followingthesameprotocol,fourmeasurements ofcontactanglewithwaterwerealsoperformedonthesurface oftheMOCVDprocessedpureg-Al4Cu9film.Theobtainedmean

valueis89(±2◦).TakingintoaccountthatRaofthelatter

sam-plewasmeasuredtobe5nm,thisresultistobecomparedwith theoneof87◦obtainedonabulkg-Al4Cu9surfacewith

compara-bleroughness.ItisconcludedthatMOCVDprocessedapproximant phasespresentsimilarsurfacecharacteristicstothose of equiv-alentbulkcrystals.Inamore prospectiveview,itispossibleto engineerthesurfaceenergyofMOCVDAl-Cufilmbyproper selec-tionofdepositionconditionsleadingtoamixtureofintermetallic phasesincludingapproximantones.

4. Conclusions

We present a one-step process for the deposition of Al-Cu intermetallic coatings by metalorganic chemical vapor deposi-tion.Dimethylethylaminealane(DMEAA),aliquidprecursor,and copper(I)cyclopentadienyltriethylphosphine(CpCuPEt3),asolid

precursor,arechosenasprecursorsfortheco-depositionofAland Cubecausetheycontainnooxygen,theyarechemicallycompatible, andtheirdepositiontemperaturesaresimilar.

Theelementalcompositionofthefilmsdoesnotfollowthatof thegasphase.Thepresenceofhydrogengasplaysanimportantrole intheco-depositionprocessbydisplacingthereactionequilibrium ofDMEAAatthesurface,thereforedecreasingtheAlgrowthrate. Additionally,whentheCpCuPEt3gasfluxishighenoughfor

achiev-ingAl/Cucompositionsofinterest,theexperimentalgrowthrateof Al-Cufilmsislimitedbytheadsorbedphosphineoriginatingfrom CuCpPEt3decompositiononthegrowingsurface.Encouragingly,

solutionsareavailabletocircumventthoseproblemswhich are attributedtothecontroloftheco-depositionbysynergeticsurface phenomena.

Thesingle-phaseg-Al4Cu9isformedwhentheCucomposition

intheAl-Cufilmsishighenough.Thesurfaceroughnessofsuch filmsisverylow,withaRavalueequalto5nm.Wetting

measure-mentswithwateronthissurfaceprovideacontactangleof89±2◦;

i.e.roughlythesameastheoneonabulkpolycrystallineg-Al4Cu9of

(7)

approximantphasepresentsimilarsurfacepropertieswiththose ofequivalentbulkcrystalsandcan,thereforebeusedas interfa-ciallayerbetweenmetallicsubstratesandquasicrystallinecoatings accommodatingthemismatchofsurfaceenergybetweenthem.

ThepresentworkdemonstratesthatitispossiblebyMOCVD toprocessinasinglestepandatrelativelylowtemperature,films containingintermetallicphasesincludingapproximantones.This workmaybeconsideredasapreliminaryapproachpavingtheway totheconformalcoatingofcomplexsurfacegeometriesbysuch intermetalliccompounds.

Acknowledgments

WeareindebtedtoLyacineAlouiandtoMaëlennAufray,both atCIRIMAT,Toulouseforperformingthe,andforadviceon, con-tact angle measurements,respectively, to Philippe de Parseval, Observatoire Midi-Pyrénées,Toulouse,forEPMAanalysisandto Marie-CéciledeWeerd,InstitutJeanLamour,Nancy,forproviding theg-Al4Cu9crystal.Thisworkwassupportedbythe6th

Frame-workEUNetworkofExcellence‘ComplexMetallicAlloys’(Contract No.NMP3-CT-2005-500140),andbytheFrenchAgenceNationale delaRecherche(ANR)undercontractNo.NT05-341834.Itwould neverhavebeencompletedwithoutthepersistentsupportof Jean-MarieDubois,CNRS,Nancy.

References

[1]J.-M.Dubois,P.Brunet,W.Costin,A.Merstallinger,Frictionandfrettingon quasicrystalsundervacuum,JournalofNon-CrystallineSolids334–335(2004) 475.

[2]J.-M.Dubois,M.-C.DeWeerd,J.Brenner,M.Sales,G.Mozdzen,A.Merstallinger, E.Belin-Ferré,Surfaceenergyofcomplex–andsimple–metalliccompounds asderivedfromfrictiontestinvacuum,PhilosophicalMagazine86(2006)797.

[3]B.Ngoc,C.Geantet,J.Dalmon,M.Aouine,G.Bergeret,P.Delichere,S.Raffy, S.Marlin,Quasicrystallinestructuresascatalystprecursorsforhydrogenation reactions,CatalysisLetters131(2009)59–69.

[4]M.Bielmann,A.Barranco,P.Ruffieux,O.Gröning,R.Fasel,R.Widmer,P. Grön-ing,FormationofAl4Cu9onthe5foldsurfaceoficosahedralAlPdMn,Advanced EngineeringMaterials7(2005)392.

[5]T.Duguet,J.Ledieu,J.M.Dubois,V.Fournée,Surfacealloysasinterfaciallayers betweenquasicrystallineandperiodicmaterials,JournalofPhysics:Condensed Matter20(2008)314009.

[6]T.Duguet,S.Kenzari,V.Demange,T.Belmonte,J.M.Dubois,V.Fournee, Struc-turallycomplexmetalliccoatingsintheAl-Cusystemandtheirorientation relationshipswithanicosahedralquasicrystal,JournalofMaterialsResearch 25(2010)764–772.

[7]K.Tomoharu,K.Eiichi,T.Nobuyuki,N.Tadashi,Y.Hiroshi,O.Tomohiro, Met-alorganicchemicalvapordepositionofaluminum-copperalloyfilms,Japanese JournalofAppliedPhysics32(1993)L1078.

[8]K.Eiichi,K.Yumiko,T.Nobuyuki,O.Tomohiro,Interconnectionformation by doping chemical-vapor-deposition aluminum with copper simulta-neously: Al-CuCVD, Journal of TheElectrochemical Society 141 (1994) 3494–3499.

[9]L. Aloui, T. Duguet, F. Haidara, M.-C. Record, D. Samélor, F. Senocq, D. Mangelinck,C.Vahlas,Al–Cuintermetalliccoatingsprocessedby sequen-tialmetalorganicchemicalvapourdepositionandpost-depositionannealing, AppliedSurfaceScience258(2012)6425–6430.

[10]F.Senocq,A.Turgambaeva,N.Prud’homme,U.Patil,V.V.Krisyuk,D.Samélor, A. Gleizes, C. Vahlas, Thermal behaviour of CpCuPEt3 in gas phaseand

Cu thin films processing, Surface and Coatings Technology 201 (2007) 9131–9134.

[11]A.E.Turgambaeva,N.Prud’homme,V.V.Krisyuk,C.Vahlas,Mass Spectro-metricmonitoringofthegasphaseduringtheCVDofcopperfromcopper cyclopentadienyl triethylphosphine,ChemicalVapor Deposition18(2012) 209–214.

[12]A.Ludviksson,D.W.Robinson,J.W.RogersJr.,Theinteractionof dimethylethy-laminealaneandammoniaoncleanandoxidizedAl(111):atomiclayergrowth ofaluminumnitride,ThinSolidFilms289(1996)6–13.

[13]J.-H.Yun,M.-Y.Park,S.-W.Rhee,Fouriertransforminfrareddiagnosticsofgas phasereactionsinthemetalorganicchemicalvapordepositionofaluminum fromdimethylethylaminealane,JournalofVacuumScience&TechnologyA: Vacuum,Surfaces,andFilms16(1998)419–423.

[14]T.C.Xenidou,N.Prud’homme,C.Vahlas,N.C.Markatos,A.G.Boudouvis, Reac-tionandtransportinterplayinAlMOCVDinvestigatedthroughexperiments andcomputationalfluiddynamicanalysis,JournalofTheElectrochemical Soci-ety157(2010)D633–D641.

[15]T.W.Jang, W.Moon,J.T. Baek, B.T. Ahn,Effectof temperature and sub-strate on the growth behaviors of chemical vapor deposited Al films with dimethylethylamine alane source, Thin Solid Films 333 (1998) 137–141.

[16]T.C. Xenidou, A.G. Boudouvis, N.C. Markatos, D. Samélor, F. Senocq, N. Prud’Homme,C.Vahlas,Anexperimentalandcomputationalanalysisofa MOCVDprocessforthegrowthofAlfilmsusingDMEAA,SurfaceandCoatings Technology201(2007)8868–8872.

[17]T.C.Xenidou,N.Prud’Homme,L.Aloui,C.Vahlas,N.C.Markatos,A.G.Boudouvis, Shapeoptimizationofashowerheadsystemforthecontrolofgrowth uni-formityinaMOCVDreactorusingCFD-basedevolutionaryalgorithms,ECS Transactions25(2009)1053–1060.

[18]S.D.Hersee,J.M.Ballingall,Theoperationofmetalorganicbubblersatreduced pressure,JournalofVacuumScience&TechnologyA:Vacuum,Surfaces,and Films8(1990)800–804.

[19]C.Vahlas,B.Caussat,F.Senocq,W.L.Gladfelter,L.Aloui,T.Moersch,Adelivery systemforprecursorvaporsbasedonsublimationinafluidizedbed,Chemical VaporDeposition13(2007)123–129.

[20]J.M.Vandenberg,R.A.Hamm,AninsituX-raystudyofphaseformationinCu-Al thinfilmcouples,ThinSolidFilms97(1982)313.

[21]H.G.Jiang,J.Y.Dai,H.Y.Tong,B.Z.Ding,Q.H.Song,Z.Q.Hu,Interfacialreactions onannealingCu/Almultilayerthinfilms,JournalofAppliedPhysics74(1993) 6165.

[22]F.Haidara,M.-C.Record,B.Duployer,D.Mangelinck,Investigationofreactive phaseformationintheAl–Cuthinfilmsystems,SurfaceandCoatings Technol-ogy206(2012)3851–3856.

[23]J.M.Dubois,Amodelofwettingonquasicrystalsinambientair,Journalof Non-CrystallineSolids334–335(2004)481–485.

[24]R.N.Wenzel,Resistanceofsolidsurfacestowettingbywater,Industrial& EngineeringChemistry28(1936)988–994.

Références

Documents relatifs

The most useful application of such mixed formulation of Tikhonov regularization seems to be the numerical resolution of linear ill-posed partial differential equations like the

Le contexte de Moyen-Orient nécessite, d’une part, de projets denses pour accorder l’augmentation de population (taux d’urbanisation élevé), et d’une autre part,

The first two chapters of this dissertation focus on the ethics of antidepressant use. Specifically, in them I take up the previously-made claim that antidepressant

To reach this aim, we developed SHiNeMaS (Seeds History and Network Management System) a database with its web interface, dedicated to the management of the history of seed lots and

exploitent ces sites pour la promotion de ses idées, la prestation de ses services et la vente de leurs produits, de sorte que ces sites sont des instruments pour l’actualisation du

pombe cells were able to degrade malic acid efficienly without sugar consumption ( 20 g/1 malate consumed during 150 heurs after sugar exhaustion ). pombe is neither

Abbr&lt;rViations: BMC, bull&lt; moulding compound; CEPCI, chemical engineering plant cost index; CF, carbon fibre; CFC, carbon fibre composite; CFRP, carbon fibre reinforced

C’est à partir de ce pays que nous étudions la manière dont des savoirs locaux se construisent en tension avec des dynamiques plus globales puisque, comme tout registre de la