• Aucun résultat trouvé

Learning Chaotic and Stochastic Dynamics from Noisy and Partial Observation using Variational Deep Learning

N/A
N/A
Protected

Academic year: 2021

Partager "Learning Chaotic and Stochastic Dynamics from Noisy and Partial Observation using Variational Deep Learning"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-02941313

https://hal-imt-atlantique.archives-ouvertes.fr/hal-02941313

Submitted on 16 Sep 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Learning Chaotic and Stochastic Dynamics from Noisy

and Partial Observation using Variational Deep Learning

Duong Nguyen, Said Ouala, Lucas Drumetz, Ronan Fablet

To cite this version:

Duong Nguyen, Said Ouala, Lucas Drumetz, Ronan Fablet. Learning Chaotic and Stochastic Dynam-ics from Noisy and Partial Observation using Variational Deep Learning. CI’2020 : 10th International Conference on Climate Informatics, Sep 2020, Oxford, United Kingdom. �hal-02941313�

(2)

LEARING CHAOTIC AND STOCHASTIC DYNAMICS. . .

L

EARNING

C

HAOTIC AND

S

TOCHASTIC

D

YNAMICS FROM

N

OISY AND

P

ARTIAL

O

BSERVATION USING

V

ARIATIONAL

D

EEP

L

EARNING

Duong Nguyen1, Said Ouala1, Lucas Drumetz1 and Ronan Fablet1

I. CONTEXT ANDPROPOSED APPROACH

Although many works have recently successfully pro-vided proofs of concept for data driven approaches of learning dynamical systems under ideal conditions, i.e. noise-free and high sampling frequency, dealing with real life data where the measurements are usually noisy and can be partially and irregularly sampled remains challenging.

We propose a new method, called DAODEN (Data-Assimilation-based Ordinary Differential Equation Net-work), which can explicitly capture the stochastic com-ponents of both the process of interest and the ob-servation system. It involves two main modules: an inference module which aims to reconstruct the hidden states of the systems from damaged observations, and a generative model which addresses the dynamics of the system and the observation model. The proposed learn-ing strategy relies on a variational learnlearn-ing settlearn-ing. By construction, it guarantees performance similar to state-of-the-art schemes under ideal experimental settings.

Specifically, given a series of observations x1:T, which can be noisy, partially and irregularly sam-pled of a dynamical system, DAODEN supposes that the generation process of x1:T relies on a series of true states z1:T. The inference module in DAODEN is an LSTM-based network that reconstructs zt from x1:T: qφ(zt|x1:T). The generative module involves the parametrization of the dynamics of the hidden states pθ(zt+1|zt), modeled by a neural network; and an ob-servation distribution p(xk|zk), usually known. DAO-DEN maximizes the Evidence Lower BOund (ELBO) of the log likelihood ln p(x1:T) over {θ, φ}. This opti-mization results in the surrogate model of the dynamics of the considered system.

II. EXPERIMENT AND RESULT

As illustration of the proposed framework, we first consider an application to the identification of an ODE representation given noisy and irregularly sampled ob-servations, here for Lorenz-63 system. Using a Bilinear Neural Network (BiNN) [1] for the dynamical module, we show that DAODEN significantly outperforms the

1

IMT Atlantique, Lab-STICC, 29238 Brest, France

direct learning of the BiNN model from the observation data both in the short-term prediction error and the long-term topology.

Compared with previous works, DAODEN can also capture the stochasticity of dynamical systems, such as in the Lorenz 63 stochastic system [2], as presented in Fig. 1.

TABLE I: Short term prediction error (e4) and the first Lyapunov exponent (λ1) of models trained on noisy and partially observed Lorenz63 data with a missing rate of 80%. The results are averaged over 50 test sequences.

Model stdnoise/stdsignal 8.5 % 33.3% BiNN e4 0.348±0.327 0.372±0.238 λ1 1.116±0.026 0.329±0.033 DAODEN e4 0.089±0.062 0.162±0.104 λ1 0.892±0.011 0.859±0.013 T rue x1 1510 5 0 5 10 15 x2 20 10 0 10 20 x3 10 15 20 25 30 35 40 x1 15 105 0 5 10 15 x2 20 10 0 10 20 x3 10 15 20 25 30 35 40 x1 15 10 5 0 5 10 15 x2 20 10 0 10 20 x3 10 15 20 25 30 35 40 x1 15 10 5 0 5 10 15 x2 20 10 0 10 20 x3 10 15 20 25 30 35 40 D A ODEN x1 1510 5 0 5 10 15 x2 20 10 0 10 20 x3 10 15 20 25 30 35 40 x1 15 105 0 5 10 15 x2 20 10 0 10 20 x3 10 15 20 25 30 35 40 x1 15 10 5 0 5 10 15 x2 20 10 0 10 20 x3 10 15 20 25 30 35 40 x1 15 10 5 0 5 10 15 x2 20 10 0 10 20 x3 10 15 20 25 30 35 40

Fig. 1: Attractors generated by the true Lorenz63 stochastic system (top), and by DAODEN (bottom). The true Lorenz63 stochastic system and DAODEN system are stochastic, hence each runtime we obtain a different sequence, even with the same initial condition. The model was trained on noisy observations, with a noise level of 33.3%.

REFERENCES

[1] R. Fablet, S. Ouala, and C. Herzet, “Bilinear Residual Neural Network for the Identification and Forecasting of Geophysical Dynamics,” in 2018 26th European Signal Processing Confer-ence (EUSIPCO), pp. 1477–1481, Sept. 2018. ISSN: 2219-5491.

[2] B. Chapron, P. D´erian, E. M´emin, and V. Resseguier, “Large-scale flows under location uncertainty: a consistent stochastic framework,” Quarterly Journal of the Royal Meteorological Society, vol. 144, no. 710, pp. 251–260, 2018.

Figure

TABLE I: Short term prediction error (e4) and the first Lyapunov exponent (λ 1 ) of models trained on noisy and partially observed Lorenz63 data with a missing rate of 80%

Références

Documents relatifs

Prairies de fau c h e et talus de la Combe de Da i llay Campanula glomerata Campanula persicifolia Onobrychis viciifolia Ononis repens Phyteuma orbiculare Pimpine/la

(d) S is very weakly left cancellative if and only if the union of any set of fewer than κ left solution sets has cardinality less than κ.. (e) S is very weakly right cancellative

bon niveau de langue et suit un cours débutant. Probablement que s’il avait suivi le cours « Connaître le pays d’accueil », il aurait eu un autre regard sur les cours et

conscience syntaxique contribue donc partiellement mais obligatoirement à l'élaboration d'un énoncé correct. Les recherches actuelles ne permettent pas encore de

As training data, in addition to the data of the previous PlantCLEF challenge [3], we provided two new large data sets both based on the same list of 10,000 plant species (living

When such a force variation is applied to the SDF vibration model of the span, the maximum response is given by a dynamic amplification factor ( O ) , similar to but smaller

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. For

Par exemple, si on a deux images numériques, une d’un méga de pixels (1 million de pixels) et une image différente ayant 5 méga pixels de d'information dans l'image, la