• Aucun résultat trouvé

SEISMICALLY RETROFITTING AND UPGRADING RC-MRF BY USING EXPANDED METAL PANELS

N/A
N/A
Protected

Academic year: 2021

Partager "SEISMICALLY RETROFITTING AND UPGRADING RC-MRF BY USING EXPANDED METAL PANELS"

Copied!
35
0
0

Texte intégral

(1)

SEISMICALLY RETROFITTING AND

UPGRADING RC-MRF BY USING

EXPANDED METAL PANELS

SEMINAR 09-03-2011

EXPANDED METAL PANELS

(PHUNG NGOC DUNG, HERVE DEGEE AND ANDRE PLUMIER)

Presented by

PHUNG NGOC DUNG

PhD Student – SE Sector – ArGenCo – University of LIEGE

(2)

1. Overview of procedures of seismic retrofit of

reinforced concrete moment resisting frames

2. Expanded Metal Materials and Panels (EMP)

3. Experimental studies on EMP

Outline

3. Experimental studies on EMP

4. Numerical studies on EMP

5. Application of EMP to seismically retrofit

RC-MRF

(3)

HOW TO

SEISMICALLY

Seismic evaluation Performance levels Seismic hazards Performance objectives Deficiencies

Tools for evaluation

Technical strategies

SEISMICALLY

RETROFIT

RC-MRF

Retrofit strategies Technical strategies Management strategies Retrofit systems Concentric braces Steel restrained buckling braces

Steel eccentric braces

SPSW – RCSW…

This study: EMP – New retrofit system

(4)

EXPANDED METAL PANELS – Introduction

• Expanded Metal Material (EM): steel or different alloys and adhesive materials

• Expanded Metal Panels (EMP): Panels formed by expansively pressing and

simultaneously slitting a plate made of EM to obtain 3D rhomb-shape stitch sheets;

3D stitch sheets can be cut by the dimensions of ±1,250 x ±2,500m or can be

flattened by passing through a cold-roll reducing mill and then cutting with the

(5)

EXPANDED METAL PANELS – Introduction

 Expanded metal → Flattened Type: without overlap between stitches

→ Normal Type: with overlaps between stitches A

rhomb shape stitch

 Result: Rhomb shaped stitches with a lot of possible dimensions

→ Normal Type: with overlaps between stitches → Non-constantly mechanic properties;

 Fields of application → storefront protectors, fences …

 

(6)

FINAL AIM OF THIS STUDY : APPLICATION OF EMP

TO RETROFIT RC-MRF

 Why could EMP be effective to seismically retrofit RC frames?  May work as steel plate shear walls SPSW and concentric braces  Cost of EM material is relatively low when compared with SPSW.

 My study focuses on:

1. Testing EMP loaded in shear: small to large scales to observe the behavior

of EMP.

2. Numerically simulating the tests

3. Parametrically studying to propose simplified models for EMP under shear.

(7)

EXPANDED METAL PANELS –

Small scale tests

Direction 1

Direction 2

α

α Glue connections

Spe. LD(mm) CD(mm) A(mm) B(mm) EM type Type of tests Direction 1 51 27 3,5 3,0 Flatten 1-Mono 2-Cyclic 1 2 51 27 3,5 3,0 Flatten 1-Mono 2-Cyclic 2 3 86 46 4,3 3,0 Flatten 1-Mono 2-Cyclic 1 4 86 46 4,3 3,0 Flatten 1-Mono 2-Cyclic 2 5 51 23 3,2 3,0 Normal 1-Mono 2-Cyclic 1 6 51 23 3,2 3,0 Normal 1-Mono 2-Cyclic 2 7 86 40 3,2 3,0 Normal 1-Mono 2-Cyclic 1 8 86 40 3,2 3,0 Normal 1-Mono 2-Cyclic 2

(8)

EXPANDED METAL PANELS –

Large scale tests

 Experimental Procedures: → Monotonic tests: Shear up to complete failure of sheets

⇒ Preparing the data for cyclic tests

→ Cyclic tests: ECCS 1996

Specimens LD CD A B Type of EM Type of tests Dimensions(mm) 1-Mono 51 27 3,5 3,0 Flatten Monotonic 2590x2630 2-Mono 86 46 4,3 3,0 Flatten Monotonic 2590x2630 3-Cyclic 51 27 3,5 3,0 Flatten Cyclic 2590x2630 4-Cyclic 86 46 4,3 3,0 Flatten Cyclic 2590x2630

(9)

Hysteretic behaviour

of flattened types

EXPANDED METAL PANELS – Test Results

0 20 40 60 80 100 0 5 10 15 20 25 S h ea r fo rc es ( kN ) Displacements (mm) Monotonic test A51_27_35_30 - small scale

Direction 1 Direction 2 -120 -80 -40 0 40 80 120 -2,5 -2 -1,5 -1 -0,5 0 0,5 1 1,5 2 2,5 S h ea r F o rc es (k N ) Drift (%)

(10)

• Modeling: FINELG code

 Material: Material properties of EMP are exploited from tensile tests of bars:

steel multi-linear relationship with softening and hardening taken into

account

EXPANDED METAL PANELS – Simulations of tests

Yield strength (MPa) Ultimate strength (MPa) Yield deformation Maximum deformation Elastic modulus (MPa) Strain-hardening modulus (MPa) 337 393 0,0024 0,0290 134000 2139

 Elements: Each bar of a rhomb shape stitch is modeled as a 3D inelastic beam. Buckling of an individual bar is neglected. 337 393 0,0024 0,0290 134000 2139 3D inelastic beam

(11)

EXPANDED METAL PANELS –Tests

 Model

60 80 100 Sh ea r f or ce s ( kN )

Comparison of tests and numerical simulations of A51_27_35_30 - small scale

 Monotonic loading

0 20 40 0 5 10 15 20 25 Sh ea r f or ce s ( kN ) Displacements (mm)

Test results of direction 1 Numerical simulations of direction 1 Test results of direction 2 Numerical simulations of direction 2

(12)

EXPANDED METAL PANELS – Tests

 Model

0 20 40 60 80 Sh ea r F or ce s (k N )

 Cyclic loading

A51_27_35_30 direction 1

-80 -60 -40 -20 -10 -8 -6 -4 -2 0 2 4 6 8 10 Sh ea r F or ce s (k N ) Displacement (mm)

(13)

EXPANDED METAL PANELS – Parametric studies –

Monotonic shear loading

 Conclusion: FINELG describe properly the specimens’ behavior

⇒ Use of FINELG in parametric studies to define a simplified model of the shear resistance of EMP

 Models in parametric studies

 Dimensions from small (100mm) to large values (2000mm)  Different ratios between widths and heights of panels

 Initial deformations: 1/250 of the largest dimensions  Steps to analyze EMP: linear elastic analysis

critical behavior

(14)

EXPANDED METAL PANELS – Parametric studies –

Monotonic shear loading

25 30 35 40 45 50 C ri ti ca l L oa ds [k N ]

 Prior-to-buckling shear resistance of EMP

0 5 10 15 20 200 400 600 800 1000 1200 1400 1600 1800 2000 C ri ti ca l L oa ds [k N ]

Dimension of square EMS [mm]

A.43.23.45.30 A.62.34.45.30 A.51.27.35.30 A.86.46.43.30 A.115.60.45.20 A.62.34.30.20 A.62.34.25.15 A.43.23.25.15 A.31.16.23.15

(15)

EXPANDED METAL PANELS – Parametric studies –

Monotonic shear loading

40 60 80 100 120 U lt im at e sh ea r lo ad s (k N ) 60 80 100 120 U lt im at e sh ea r lo a d s (k N )

 Post-buckling shear resistance

0 20 40

0 100 200 300 400 500 600 700 800 900 1000 Dimensions of the square EMS

U lt im at e sh ea r lo ad s (k N )

A51-27-35-30 A86-46-43-30 A43-23-45-30 A62-34-45-30 A62-34-30-20 A115-60-45-20 A62-34-25-15 A43-23-25-15

0 20 40

200 300 400 500 600 700 800 900 1000

Dimensions in short sides of the rectangular EMS ratio 1:2 direction 1

U lt im at e sh ea r lo a d s (k N )

A51-27-35-30 A86-46-43-30 A43-23-45-30 A62-34-45-30 A62-34-30-20 A115-60-45-20

(16)

EXPANDED METAL PANELS – Parametric studies –

Monotonic shear loading

0.45 0.5 0.55 0.6 0.65 0.7 0.75 U lt im at el o ad s/ ld ia g /B /f u /( A /l b ar ) 0.25 0.3 0.35 0.4 100 200 300 400 500 600 700 800 900 1000

Dimensions of the square EMS

U lt im at el o ad s/ ld ia g /B /f u /( A /l b ar )

A51-27-35-30 A86-46-43-30 A43-23-45-30 A62-34-45-30 A62-34-30-20 A115-60-45-20 A62-34-25-15 A43-23-25-15

(17)

EXPANDED METAL PANELS – Parametric studies –

Monotonic shear loading

f B l f B W V = . . = γ .α . dia . .

• Monotonic ultimate resistance of EMP – Simplified model: the panels work as one

diagonal tension band.

V shear resistance of the sheet; W – effective width of the equivalent band

ldia diagonal length of the sheet

2 2 2 2 bar in in A A l LD L D C D C D α = = − −     +        

B thickness of the sheet

f stress generated in the equivalent band

influence of rhomb shape

γ - influence of aspect ratio of panel 0.35 square

0.27 rectangular with ratio 2:1 0.18 rectangular with ratio 3:1

(18)

DESIGN OF RC-MRF ACCORDING TO EC2-EC8

• Four RC moment resisting frames:

PHUNG NGOC DUNG - ARGENCO - UNIVERSITY OF LIEGE

Order/No of Stories Design Code Layout (plan and elevation) Span x No of Spans (m) Story Heights (m) Slab thickness (m) 1/3 EC2 Regular 5 m x 3 3,5 + 2x3 0,15 2/6 EC2 Regular 5 m x 3 3,5 + 5x3 0,15 3/3 EC2+EC8 Regular 5 m x 3 3,5 + 2x3 0,15 4/6 EC2+EC8 Regular 5 m x 3 3,5 + 5x3 0,15

(19)

DESIGN OF RC-MRF ACCORDING TO EC2-EC8

Dead loads (kN/m2) Live loads (floor-roof) (kN/m2) Wind loads (Pre-Suc) (kN/m2) PGA DC Class γγγγI fck (MPa) fyk (MPa) 5,67 3,00-2,00 0,90-0,07 0,15g DCM 1 25 500

 Loads and Seismic Actions and Material Characteristics:

 Dimensions of beams and columns

Order/No of Stories Columns (m) Beams (m)

Internal External Width Height Flange

1/3 0,35 x 0,35 0,35 x 0,35 0,25 0,35 0,85 2/6 0,35 x 0,35 0,35 x 0,35 0,25 0,35 0,85 3/3 0,35 x 0,35 0,35 x 0,35 0,25 0,35 0,85 4/6 0,4 x 0,4 0,4 x 0,4 0,25 0,35 0,85

(20)

DESIGN OF RC-MRF ACCORDING TO EC2-EC8

First mode periods, weight and effective mass of the original frames and design base shears of frame 3 and 4

Frame/No of Stories/Design Code 1st Periods of cracked frames (s) Design base shear (kN) Total Mass (x103 Kg) Effective Mass 1/3/EC2 0,88 0 1722 91% 2/6/EC2 1,85 0 3486 86% 3/3/EC2+EC8 0,88 215 1722 91% 4/6/EC2+EC8 1,50 220 3536 86%

Reinforcement configuration of the four frames

4/6/EC2+EC8 1,50 220 3536 86%

Frame/Number

of Stories/

Code

Beams (all stories) Column (number of stories x rebar configuration)

Top Bottom Exterior Interior

1/3/EC2 12Φ10+2Φ10 3Φ14 2x8Φ8+1x8Φ14 3x8Φ8

2/6/EC2 12Φ10+2Φ10 3Φ14 1x8Φ12+4x8Φ8+1x8Φ14 1x8Φ22+1x8Φ16+1x8

Φ10+3x8Φ8

3/3/EC2+EC8 12Φ10+2Φ10 3Φ16 3x8Φ20 3x8Φ20

(21)

SEISMIC EVALUATION OF THE ORIGINAL FRAMES

 Pushover analysis (N2 method) is first used to assess the existing frames. Then NLTH is used to check the results of pushover analysis, and to assess the real behaviour of the original structures.

 To perform nonlinear analyses of the frames, estimation of actual values of material strengths is considered, instead of the design strength in order to reflect the expected real over-strength of the structures.

 The seismic excitation is represented by a set of four artificial accelerograms,

with γIx S x agR=1 x 1,15 x 0,15g = 0,1725g -2 -1,5 -1 -0,5 0 0,5 1 1,5 2 0 3 6 9 12 15 A cc ele ra tio n( m /s2 ) Time(s)

Accelerogram 1 - Soil C - type 1 - 0,15g

-2 -1,5 -1 -0,5 0 0,5 1 1,5 2 0 3 6 9 12 15 Ac ce ler ati on (m /s2 ) Time(s)

Accelerogram 2 - Soil C - type 1 - 0,15g

-2 -1,5 -1 -0,5 0 0,5 1 1,5 2 0 3 6 9 12 15 Ac cel era tio n(m /s2 ) Time(s)

Accelerogram 3 - Soil C - type 1 - 0,15g

-2 -1,5 -1 -0,5 0 0,5 1 1,5 2 0 3 6 9 12 15 Ac cel era tio n(m /s2 ) Time(s)

(22)

SEISMIC RESPONSE OF THE ORIGINAL FRAMES

 Modelling and analyses:

 Nonlinear code: SAP 2000 and SEISMOSTRUCT – a full nonlinear code

 Concrete: a uniaxial nonlinear constant confinement model (Mander et al. [1998]).

Confinement : fcc/fc = 1,2 for the concrete core.

 Steel: elastic-perfectly plastic steel stress-strain diagram

 Seismic performance criteria: FEMA356 with three levels of plastic deformations of beams or columns:

beams or columns:

Immediate Occupancy IO, Life Safety LS and Collapse Prevention CP.  Failure modes: (1) soft-story mechanism

(2) local failure

(23)

• Response of the original frames

SEISMIC RESPONSE OF THE ORIGINAL FRAMES

Frame Load Pattern Vb1y (kN) ∆b1y (m) Vbm (kN) ∆bm (m) E (kNm) Criteria of failure ∆t0,15gSC (m) Vb0,15gsC (kN) Max PGA 1 ‘Modal’ 274,9 0,112 297,1 0,148 030,1 Soft-story 0,100 261 0,22g ‘Uniform’ 308,4 0,104 344,3 0,152 036,1 Soft-story 0,090 286 0,25g

2 ‘Modal’ 147,7 0,096 219,7 0,204 028,9 Local failure 0,164 244 0,18g

‘Uniform’ 170,0 0,090 256,2 0,204 034,6 Local failure 0,164 291 0,18g ‘Uniform’ 170,0 0,090 256,2 0,204 034,6 Local failure 0,164 291 0,18g

3 ‘Modal’ 347,0 0,100 505,5 0,340 133,0 Global 0,100 347 0,48g

‘Uniform’ 398,5 0,100 563,7 0,290 122,0 Global 0,090 336 0,50g

4 ‘Modal’ 158,0 0,090 265,2 0,256 047,7 Local failure 0,160 244 0,23g

‘Uniform’ 183,7 0,084 318,0 0,246 054,2 Local failure 0,130 273 0,28g

(24)

• Response of the original frames

Drift of the original frames by pushover analysis (%) at PGA = 0.15g soil C

SEISMIC RESPONSE OF THE ORIGINAL FRAMES

Frame 1 (Average of two load patterns)

Frame 2 (Average of two load patterns)

Story1 Story2 Story3 Story1 Story

2

Story3 Story 4 Story 5 Story 6

1,140 1,200 1,000 0,910 1,100 0,832 1,100 0,970 0,890

Frame 3 (Average of two load patterns)

Frame 4 (Average of two load patterns) patterns)

0,900 1,100 1,000 0,760 0,890 0,930 0,904 1,100 0,780

Frame 1 (Average) Frame 2 (Average) Frame 3 (Average) Frame 4 (Average)

Period Base shear Period Base shear Period Base shear Period Base shear

0,6s 184,3kN 1,1s 233,9kN 0,52s 233,3kN 1s 252,3kN

Fundamental periods and maximum base shear of the original frames from NLTH due to Earthquake type 1 with PGA of 0.15g soil C

(25)

• Response of the original frames

Max story drift (%) and top displacements (m) of the original frames by NLTH due to Earthquake type 1 with PGA of 0.15g soil C

SEISMIC RESPONSE OF THE ORIGINAL FRAMES

Frame 1 (Average) Frame 2 (Average)

Story1 Story2 Story3 Top Displ

Story1 Story2 Story3 Story4 Story5 Story6 Top Displ

0,70% 0,75% 0,71% 0,07m 0,70% 0,8% 0,8% 0,77% 0,72% 0,66% 0,124m

Frame 3 (Average) Frame 4 (Average)

0,51% 0,66% 0,64% 0,064m 0,63% 0,71% 0,74% 0,72% 0,69% 0,64% 0,118m

(26)

SEISMIC RESPONSE OF THE ORIGINAL FRAMES

• Response of the original frames: Pushover and target displacements of frame 1 and 3

250 300 350 400 450 500 550 600 B as e sh ea r (k N ) EC2 EC8 0 50 100 150 200 250 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 B as e sh ea r (k N ) Top displacements(m)

'Modal' - Frame 1 Target Displ - 'Modal' - Frame 1 - 0,15gsoilC Max Displ - 'Modal' - Frame 1 - 0,22g soilC 'Modal' - Frame 3 Target Disp - 'Modal' - Frame 3 - 0,15g soilC Max Displ - 'Modal' - Frame 3 - 0,47g soilC Design base shear for Frame 3 Max base shear of Frame 1 - NLTH Max base shear of Frame 3 - NLTH

(27)

SEISMIC RETROFIT OF RC-MRFS BY USING EMP

 Selecting the EMP to retrofit the original frames:  Approach: Direct Displacement Based Design

 Equivalent Viscous Damping: Rules for Takeda Thin model

 EMP to carry the seismic forces. Depending on the deficiencies of the original frames, types and distribution of the EMP are selected.

 Because all frames are symmetric with three bays, EMP are put in the intermediate bay.

 In frame 1 and 3 (3-story frames), the EMPs are put in the first and second  In frame 1 and 3 (3-story frames), the EMPs are put in the first and second stories, while the EMP are put in the first to fourth stories in frame 2 and 4 (6-story frames). Because there is no hinge appeared at the upper stories, no EMP is put there.

 EMP is modelled as an axial tension strut with a bilinear force-displacement relationship for pushover analysis and pivot model for NLTH.

(28)

Response of the retrofitted frames by pushover analysis

SEISMIC RETROFIT OF RC-MRFS BY USING EMP

Frame Load Pattern Vb1y (kN) ∆b1y (m) Vbm (kN) ∆bm (m) E (kNm) Criteria of failure ∆t0,15gSC (m) Max PGA 1 ‘M’ 291,5 0,052 476,0 0,208 073,6 Soft-story 0,080 0,365g ‘U’ 365,7 0,056 483,8 0,144 050,2 Soft-story 0,070 0,300g 2 ‘M’ 268,1 0,090 445,4 0,253 072,2 Local failure 0,150 0,245g

‘U’ 347,7 0,083 535,6 0,235 089,2 Local failure 0,120 0,265g

‘U’ 347,7 0,083 535,6 0,235 089,2 Local failure 0,120 0,265g

3 ‘M’ 352,1 0,060 656,0 0,340 175,0 Beam-sway 0,085 0,610g

‘U’ 415,0 0,060 738,3 0,300 172,0 Beam-sway 0,070 0,620g

4 ‘M’ 288,2 0,090 444,9 0,271 088,0 Local failure 0,140 0,285g

(29)

 Comparison of behaviour between original and retrofitting frames by pushover analyses

SEISMIC RETROFIT OF RC-MRFS BY USING EMP

Frame 1 Frame 2 Frame 3 Frame 4

No EMP With EMP No EMP With EMP No EMP No EMP No EMP With EMP

0,85s 0,71s 1,53s 1,28s 0,85s 0,71s 1,53s 1,28s

Periods of all frames with and without EMP

Frame 1(Average) Frame 2(Average)

Story1 Story2 Story3 Story1 Story2 Story3 Story4 Story5 Story6

0,74 0,77 0,79 0,66 0,76 0,78 0,79 0,78 0,73

Frame 3(Average) Frame 4(Average)

0,80 0,86 0,79 0,64 0,72 0,75 0,75 0,74 0,70

(30)

COMPARISON OF SEISMIC RESPONSE OF THE

ORIGINAL AND RETROFITTED FRAMES

Pushover and target displacements of frame 1: before and after retrofitted

200 250 300 350 400 450 500 B a se s h e a r (k N ) -F R A M E 1 EC2-NoEMP EC2+EMP 0 50 100 150 200 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 B a se s h e a r (k N ) Top displacements(m)

Pushover - 'Modal' - NoEMP Target Displ - 'Modal' - NoEMP - 0,15gsoilC Maximum Displ - 'Modal' - NoEMP - 0,22g soilC Pushover - Modal pattern with EMP 0,15g soilC

Target Disp - With EMP - Modal pattern - 0,15g soiC Maximum Displ - With EMP - Modal pattern - 0,36g soilC

(31)

• Comparison of behaviour between original and retrofitting frames:

Capacity curves and target displacements of Frame 3 before and after retrofitting

SEISMIC RETROFIT OF RC-MRFS BY USING EMP

400 500 600 700 800 B as e sh ea r (k N ) EC8-NoEMP EC8+EMP 0 100 200 300 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 B as e sh ea r (k N ) Top displacements(m)

Pushover - 'Modal' - NoEMP Target Displ - 'Modal' - NoEMP - 0,15gsoilC Max Displ - 'Modal' - NoEMP - 0,47g soilC 'Modal' with EMP 0,15g soilC

(32)

• Comparison of behaviour between original and retrofitting frames: Story Drifts of Frame 3 before and after retrofitting

SEISMIC RETROFIT OF RC-MRFS BY USING EMP

4,0 5,0 6,0 7,0 8,0 9,0 St or y H ei gh ts (m ) 0,0 1,0 2,0 3,0 4,0 0 0,4 0,8 1,2 1,6 St or y H ei gh ts (m ) Story Drifts (%)

Frame 1 - before retrofitting Frame 1 - after retrofitting Frame 3 - before retrofitting Frame 3 - after retrofitting

(33)

SEISMIC RETROFIT OF RCMRFS BY USING EMP

-Conclusions

 The application of the proposed retrofitting system results in an increase of strength, stiffness and ductility. The energy dissipated by EMP is considerable, reaching about 20% of the total energy.

 This results in an increase of the level of earthquake that the structures can sustain.

 Although EMP cannot change the failure mechanism of the structures, it can reduce the demand of seismic actions thanks to increases of strength and reduce the demand of seismic actions thanks to increases of strength and stiffness and ductility of the structures.

 NLTH points out that pushover analysis is successfully in capturing the behaviour of low and medium rise buildings.

(34)

FURTHER WORKS

 Model more different types of RC-MRF with and without EMP by both pushover and NLTH.

 Characterise the use of EMP to retrofit RC-MRF and suggest the design or retrofit procedures.

(35)

Références

Documents relatifs

La véritable religion se doit de substituer, à l’abus des pratiques et aux vaines ratiocinations (les unes et les autres si souvent intéressées), le pur respect

Host habitat patchiness and the distance decay of similarity among gastro-intestinal nematode communities in two species of Mastomys southeastern Senegal Carine Brouat,

In order to conclude, the propagation of ramp waves in silica glass was studied in this work. Despite several recent studies, ramp waves are still misunderstood and difficult to

erythropoietic culture of human PB-MNCs in at minimum-essential medium (aMEM) supplemented with FBS, Epo, and conditioned medium from cultures of the 5637 bladder- carcinoma

However, despite of the valuable durability properties they confer, these materials have serious disadvantages—particularly in high volume flyash concrete  that limit

Dans cette thèse, le dimensionnement, le contrôle et la gestion d'énergie optimale de Microgrid sont proposées dans les deux modes: mode îloté et mode connecté au réseau..

Whether osteoclasts can be differentiated directly from PBMC or from purified monocytes obtained after 45 min adhesion followed by a differentiation step in the

Being mostly reduced to the basal rigid skeleton, without the free spicules of the choanosome and dermal layer, our specimens cannot be identified to any of the 13 known