• Aucun résultat trouvé

On a Kinetic Equation for Coalescing Particles

N/A
N/A
Protected

Academic year: 2021

Partager "On a Kinetic Equation for Coalescing Particles"

Copied!
38
0
0

Texte intégral

(1)On a Kinetic Equation for Coalescing Particles Miguel Escobedo, Philippe Laurençot, Stéphane Mischler. To cite this version: Miguel Escobedo, Philippe Laurençot, Stéphane Mischler. On a Kinetic Equation for Coalescing Particles. [Research Report] RR-4748, INRIA. 2003. �inria-00071839�. HAL Id: inria-00071839 https://hal.inria.fr/inria-00071839 Submitted on 23 May 2006. HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés..

(2) INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE. On a Kinetic Equation for Coalescing Particles Miguel Escobedo — Philippe Laurençot — Stéphane Mischler. N° 4748 Février 2003. N 0249-6399. ISRN INRIA/RR--4748--FR+ENG. THÈME 4. apport de recherche.

(3)

(4)  

(5)  

(6)   ! #"$   %'&

(7)   ! #" (*),+.-0/214357628.9:/2;<8 =?>@ ),1A)AB<BC/EDGFH-<IJ/2K<L28HM =:N MPOQB @ FHK0/R(*),5J6 @ 1,/2I S4TVUXWY[Z]\_^a`bW cVdfegh`jiQklY g#inmogh`jW`fpqergq`bink s YpqtapugqU7WY7p#v iQWmVdjYXwoY7p x:yqinz{Y g}|4~}€ ‚GenmVmƒiQyug s Y[yhY7v„TVY7yhv„T Y†kH‡ZaˆZQ‰Š\_‹<Œ72yh`bYXyGŽrQn\nZ‘mƒer’nYJp ∗. †. ‡. “•”<–7—X˜™Všn—n›œ wo`bpugqY7k v Y‘ir:’QdjiQž erdŸCYJer EpuiQdjcVgq`bink pGgqile•pqm egh`bendjdbt`bkVTViQWin’nY7kVYXiQc pG a`bkVY gh`bv‘Wi s YXd ¡iQy vXiQendjYJpqvX`jkV’‘m eryqgq`fv dbY7pC`fpCm yqiQY s£¢ Y7eQv„T•m enyugh`bvXdjYžƒY7`jk ’‘` s YXk2gh`¥¤ Y s žat`jghp4W¦enphp ¢ WinWY7kQghcVWerk s mHiQpq`jgq`bink¨§ S4TVYdferyh’nYgq`bWY v iQk2QYXyh’nY7k v Y©gqi¦ª7YXyhi¦`bpGendbpqi«pqTViŸ#k¨§:S4TVY‘v inyhkVYJp{ghinkVY[ir¬iQcVyGerk endjtopq`bp `fp4ghT eg ¢ ¡inyGenk2t•kVinkVk YX’Qergq`bnYerk s vXinkanYXw«¡cVk v gq`bink ¢ ghTVYenphpqiavX`bergqY sl­ yhdj`fv ª[kViQyqW®`bpGe¯$`benmVcVkVi ¡c k v°gh`jiQk erdA§ œ wo`bpugqY7k v Yenk s eQputaWmoghirgq`fv©žƒY7T ePa`jiQcVy gqTVY7kyhYXdbt«inkŸCYJer «enk s pugqyhink ’]vXinWm env gqkVYJpqp WYXgqTVi s p#`bk L `bkghTVYpqmV`jyh`jg4inghTVY±}`bx0YXyhk e²³¯¨`binkƒp gqTVY7inyht¦¡iny4ghTVY|CiQd¥ghªXW¦erk k YJ´2c egh`jiQk¨§ µE¶2·.¸h¹ º ˜»<–n› œ wo`bpugqY7k v Y ¢ pughenžV`bdj`jg{t ¢ ŸCYJer ¼enk s pugqyhink ’RvXinWm env gqkVYJpqp ¢ dbinkV’Rgh`jWY½enpqtaWmogqingq`fv žHYXTƒeP2`biny ¢ ¯¨`fermVcVk i©¡c k v°gh`jiQkVk erd ¢  a`jk Y gq`fv v iQendjYJpqvXYXk vXY ¢r­ yqdb`fv ª:k inyhW ¢ WiQW]Y7k2ghp ¢ Y7k2gqyhinmV`bY7p ¢ pumVy„ePt ¢ s yqiQmVdjYXghp ¢Vs tak erW`fv[p{ghYXdbdbeny ¢V¾ enkVYX•mƒingqYXk2gh`bend ¢  a`bkVY gh`bv[Y7kVYXyh’nt 1. Û ãäÆG„Ê¿<ÌÎÔoÂhÀ{å2ÁÄAòPæJ„ó{ç„áÆGÄÅèX„éXÂhÆ#êÅÄ,æPÌÎÀ{ô7ë{Ç æPõJÄAì ÀuÈ]Ï íhîVÉPÁrÀ[ïäÈ°éhõPÊð°Ã ñ ÂhÔfïäö Ä,éX÷äÀ{ÇPê ÆGÉPõPËhÏÓÄAÄAÌÎÍuÃÓÌ΄À£ÏqÐ.À³ÄƒÑÔøÂÇPÌ ÕƒÒ À{ò ÃÓùJÏAÏ,ÌÎÉÌÎô7„õJɕÀ Ð7ÉPú£À{Ô$ûÕVü<„á?ÖÎÏ Ñ<×.Ê„ü¦Ï,Í{ÈPý°Ù„Ð£Ú Ø<ÞJÁÐX„Ñ$áÇPÄAÂ„Ì Ò ÉPÀ{ȦÃ,Ï,Ù„Ì ÄAÚ°ó¨ÚPÕVШ„ÛoõPÜXÔrÚ á7ݰ„ްàÝ°ÂhÞ]ÄAÌÎß.À{ÃäÌÎÜXÔÎàþo„ȰÈPõPУÔÎÈ°á7õPÁÏ,„À<ÌÎÇ2ÿJâÐ Ý Ã,ՃȰõ7ÃÓÈ ÄAÓÀ?À{Ä ÉPÀ?ß.Ø<ûû„Ã,CàrÈ°ÐuÇP÷¡û<ÇPÀ°ü¨Ð ÷äaØ«Ü7ü¨ÿ È7Þ°Í{Ù ôX#õPÀ{þoÇPÈ°Í{õPÈ°ÔÎõPÈ°ÃÓõPÄHÏ,ß<À¬âÍuÕoÀ{âÉPÀ Þ°©ý ÚP„ÐÝ ý°Ã,ÿ„ÇP2Í{À£À°â£ú.Û òPÀ{ãfÆGÏAÇ„Â{ÌÎùCÔVú£åHí„ÛHëh¿0ñ Û é CÐ „ì{ÃA„æ ÇJ³Íuè À°ïbÐñ°aèJê„àn{çXÈ°í Ã,ÂhêhÄ,éoÈ°ï ÌÎÃ,À¨ÉPÀHÊÂhÄAòPó³ã ÆGÃAÂh„ÄAÇPÌÎÍ{ôXÀ©õPÀ{„σÇPØɦÁP¿0ÁPÔÎÊ[ÌÎôXØ:õPó{Ð À{ú£ÏqÐXû<ÑüÇJá‘Ì Ò ÀuÑÃÓÊÏAÌ Ä,ü¼ó¨ÉPÝ°À£ý°ý°×HÿJÀ{ÐHÃÓÏÅۃ„Í{ÌÎÔÎÈ°ÔÎÀ{ÔÎÀ}ÏoÜCûáJȰ„ÃÓÆGÌÎÇ Ä„ÔÎ<À}õPá7À{õPÇ ÁrÄAó{ÌÎÇQÃÓÌÎÐ7ÀuÚ õJý<Ã,À°ÂuÐ.Ò Ú À{Ç7ý[õJÃÓÀõPÉPÀGÀ{É2ÏHö Û Ñ$ÄAÔÎÂhÆ[ÄAÏÓÐ ã¡aÑÜ ÇP„ÌÎÏuý Ð °aÿ°ÞÜ „ÕVݰް„ÿ°ÃÓÌÎý<Ï ×HÍ{À{À{ÃÓÉPÏÅÀ „¦ÌÎÔÎÔÎÞ°À{ýJÏqÐÐ ÃA„ÇPÍ{À°â£ÛVãäÆG„ÌÎÔoå2æ hê uð7í„é ì{æPë„ç„ð ïbñ 7ê Vï ∗. . †. . . ‡. . . .  

(8). . . . . . . . 

(9)    . " $# . Unité de recherche INRIA Rocquencourt. . .   !  .  . .

(10)  #] [

(11) X   

(12)   Š®  % . l

(13) CX! #"  ! #"C #‘

(14)  #"

(15) –

(16) › GiQc p s ŒXWiQkQghyqiQk pd  Y wo`fp{ghYXk vXY¦’ndbinž endjY s Y¦pqindbcogq`bink p[mHinc ycVkVY¦Œ7´2c ergq`bink v `bkVŒ gh`b´2cVY Wi s Œ7dj`fpqenk2gdfe v i2erdbY7phv Y7k v Y s YEm enyugh`bvXcVdjYJp¦` s YXk2gq`j¤ Œ7Y7p¦m eny¦djY7cVy«W¦enphpqY ¢ dbYXc y«`jWmVc dbpq`jiQk Y g«dbYXcVy mHiQpq`jgq`bink¨§<Gincƒp0W]iQk2gqyhink p<´2cVYCdbY7p¬pqindbcogh`jiQk p¨ghYXk s YXk2g¬nYXy„p 0 eQputaWmoghirgq`f´2cVYXWY7kQg0YXk gqY7W]mƒp0’ny„erk s § ¯$Y«mHin`bkQg]v dbY  s Y«kVingqyhY«erk endjtopqY¦Y7pug dfeEmVyhYXcVQY«´Qc Y ¢ mƒiQcVyghincoghY¦¡ink v gq`bink mHiQpq`¥gh`jQY«v iQk2QY woY ¢ dbe k inyhW]Y s  ­ yqdb`fv ªenphpuiov `bŒXY‘Y7pugc kVY]¡ink v gq`binkVkVY7djdbY s Y¦¯¨`fermVc kVi.§¯¨Y7p[yhŒ7pqcVdjgherghp s  Y wo`bpugqY7k v Y]Y g s Y vXinWmHinyqgqYXWY7kQg]enpqt2Wmoghirgh`b´2cVY•pqY s Œ s cV`fpqYXk2g]endjiQyhpmƒery s Y7p gqY7v„T kV`b´2cVYJp s Y•v iQW]mƒenv `jgqŒ•Óer`bžVdbY•Y g ¡iQyughY s erk p L s erkƒpCd  Y7pqmVyq`jg s Y©dfe gqTVŒ7inyh`jY s Y±©`bx<Y7yqkƒe YXg4¯$`jiQk p mƒiQcVy4d  Œ7´2c ergq`bink s Y[| indjgqª7WenkVk¨§ º —J– ¸ š 

(17) – › œ wo`bpugqY7k v Y ¢ p{g„eržV`bdj`jgqŒ ¢ v iQW]mƒenv `jgqŒ Óer`bžVdbY‘YXg©¡iQyughY ¢ v iQW]mHinyqgqY7WYXk2g[eQputaWmoghirgq`f´2cVY ¢ ¡iQk v°gh`jiQkVkVY7djdbY s Y¦¯¨`fermVcVk i ¢ v iQendjYJpqvXYXk vXY‘vX`jkVŒXgq`f´2cVY ¢ kVinyhWY s  ­ yhdj`fv ª ¢ WinWYXk2ghp ¢ Y7k2gqyhinmV`bY7p ¢ ’Qenª s Y’QincogqgqY7djYXgugqYJp ¢ƒs tak erW`f´Qc Y[pugqY7djdfer`byhY ¢ mHirgqY7k2gq`bYXd s Y ¾ enkVYX ¢ Œ7kVYXyh’n`bYv `bkVŒ gh`b´2cVY 1.

(18) . 

(19) 

(20)   !" #

(21) %$'&( 

(22) !" #. ‘

(23) $0  :

(24)   +RY«v iQk pq` s Y7y[gqTVY-, enc v„Tat½mVyhinžVdbYXW ¡inyel a`bkVY gh`bvYJ´Qcƒegq`binkRWi s YXdbdj`bkV’/.,eg elWY7pqiQphv iQmV`bv‘dbYXnY7d10 ghTVY s tak erW`fv in‘e¼pqtop{ghYXW'ir‘m eryqgq`fv dbY7pcVk s Y7yq’Qin`bkV’ vXiQendjYJpqvXYXk vXY2.¡iQy pugq`fv„ at30•mVyhiov Y7php7§ ¾ inyhY inGm eryqgq`fv dbY7p Ÿ#`¥ghT m yqYJv `fpuY7djt ¢0s Y7phv yh`jžV`bkV’EghTVY•’2enp irGm enyugh`bvXdjYJpžatRgqTVY s YXk pq`jg{t W¦eQpqp m ∈ R := (0, +∞) erk s WiQW]Y7k2gqcVW p ∈ R erg}gh`jWfY (t,t ≥x,0m,erk p)s ≥mHiQpq0`jgq`bink x ∈ Ω ⊂ R ¢ Ÿ Yp{ghc s t•gqTVYYXwa`fpugqYXkƒv Yerk s dbinkV’]gq`bWYžƒY7T ePa`jiQcVy4ir¬puiQdjcVgq`bink p ghi‘ghTVYY7´2c ergq`bink `bk (0, +∞) × Ω × Y, .54n6§ 470 ∂ f + v · ∇ f = Q(f ) `bk Ω × Y. .84n§Î9Ž 0 f (0) = f :}YXyhY?erk s žHYXdbiŸ ¢ `jkiQy s YXy.gqi©puTViQyughYXkgqT Y:kVinghegh`jiQk p ¢ Ÿ Y¬`jk2ghyqi s c vXY¬gqT Y?W¦enphp{²ÅWinWYXk2gqc W eryh`benžVdbY erk s ghTVYnYXdbiov `jg{tPenyq`ferž djY v = p/m §0S4TVY[v indbdb`bpq`jiQk¦inmHYXy„eghiny Q(f ) y := (m, p) ∈ Y := R × R `fp4’n`bnY7kžat Q(f ) = Q (f ) − Q (f ) ¢ Ÿ#TVYXyhY Z Z .54n§ ; 0 1 Q (f )(y) = a(y , y − y ) f (y ) f (y − y ) dm dp , 2 Z Z .54n§ %Z 0 Q (f )(y) = a(y, y ) f (y) f (y ) dm dp . S4T YWY7erk `jkV’•ir0gqTVYJpuY gqY7yqW¦pG`fp#ghTVY¡iQdjdbiŸ#`bkV’ §#±©YXkVingq`bkV’«žat = (m, p) e¦m eryqgq`fv dbYin0W¦eQpqpu² WiQW]Y7k2gqcVW y ¢ Q (f )(y) eQvXvXincVk2ghp<¡iQy¬gqT Y#¡inyhW¦egq`binkin.mƒeryqgq`fv {y} dbY7p {y} žat‘vXiQerdbY7phv Y7k v Y4in£pqW¦erdbdjY7y iQkVY7p ¢ `A§ YQ§ ¢ žat¦ghTVYyhY7env gq`bink ). *. 3. +. t. 3. x. in. +. 3. 1. 2. m. 1. R3. 0. 0. 0. 0. 0. 0 ∞. 0. 2. R3. 0. 0. 0. 0. 0. 1. {y 0 } + {y − y 0 }. a(y 0 ,y−y 0 ). s YJpqvXyq`bžƒYJpgqTVY s YXmVdbY gh`jiQkRinCm enyugh`bvXdjYJp enk s `A§ Yn§ ¢ žaQt¦(fgqTV)(y) YyhY7eQv°gh`jiQk −→. {y} ,. 2. y 0 = (m0 , p0 ) ∈ (0, m) × R3 , {y}. ž2tŠv iQen’ncVdfegh`jiQk Ÿ#`jgqT ingqTVY7ym eryqgq`fv dbY7p ¢. a(y,y 0 ). {y} + {y 0 } −→ {y + y 0 } ,. y 0 ∈ Y.. ~ gGe]W`bvXyqi2pqvXinmV`fvGdbYXQYXd ¢ gqTVYv iQdjdb`fpu`binkir$g{Ÿ i]m eryqgq`fv dbY7p enk s {y } dbY7e s pCgqi]gqTVY¡iQyqW¦egh`jiQk ¢ gqTVYW¦enphp#erk s WiQW]Y7k2gqcVW žƒY7`jkV’ Ӟat < !" #<

(25)  < 0 ir¬e¦pu`bkV’ndbY[m eryqgq`fv dbY {y } Ÿ#`jgqTly„egqY a(y, {y} y) vXink pqYXyhnY s•s c yq`bkV’]gqTVYvXindbdj`fpq`jiQk¨§>=³kingqTVY7y#ŸCiQy s p ¢ Ÿ#`jgqT y = (m , p ) = (m + m , p + p ). {y} + {y } −→ {y } =³k]v iQkQghyheQp{g$gqi©gqTVY4| indjgqªXW¦enkVk YJ´Qcƒegq`bink¡iny<YXdfenpugq`fv:v iQdjdb`fpu`bink p ¢ gqTV`fp0`fpenk `byqyhYXQYXy„pu`bžVdbY?W`bvXyqi2pqvXinmV`fv m yqiov YJpqp7§ ­ ž puY7yqQY ¢ `bk mƒeryqgq`fv cVdfery ¢ gqT ergG`¥g s iaYJp4kVirgGmVyhY7pqYXyhnY©gqT Y 2`bkVYXgq`fv©Y7kVYXyh’n@t ? 0. .. 00. 0. a(y,y 0 ). Φke (y, y 0 ) :=. 00. 0. 00. 00. 00. 0. 0. |p|2 |p0 |2 |p00 |2 m m0 + − = |v − v 0 |2 ≥ 0. 2 m 2 m0 2 m00 2(m + m0 ). x¬eryqgq`fv dbY7p?YXniQdja`bkV’env7v iQy s `bkV’gqigqTVYJpuY#yhcVdbY7p:enyqY#WYXg ¢ ¡iny?`bk pugherkƒv Y ¢ `jk s YXk pqYGpqmVyhePtop0`bkanindbnY s `bk½v iQW žVcƒp{gh`jiQk yhY7eQv°gh`jiQk p ¢ Ÿ#TVYXyhYdb`b´2cV` sEs yhinmVdbY g„p}eryhYvXenyqyh`bY s ž2tle¦’2enpqYXincƒp4mVT enpqYerk s cVk s Y7yq’Qi üü ÇAVÚ hÚ Ý .

(26) Z.  #

(27) <   9 3  7

(28) 1#

(29) 3!" . vXiQendjYJpqvXYXk vXY}mVyhiov Y7phpqY7p . s cVYghivXindbdj`fpq`jiQk p 0 §<S4T Y s t2kƒerW`bv7p ir$ghTVY s YXkƒpu`jg{t¦ir<dj`f´2cV` s s yhinmVdbY g„p4eryhY ghTVYXk s YJpqvXyq`bžHY s žat½Y7´2c ergq`bink .54n§6470  ¢ nZ ¢  ¢  ¢ puY7Y¦erdfpui 647 ¢ 4PŽ ¢ Ž A§ =³kŠghTV`fpv iQkQghY wag ¢ gqTVY vXiQendjYJpqvXYXk vXY© QYXyhkVYXd a `fp4’n`bnY7kžat .54n§ 90 a(y, y ) = a (y, y ) := (r + r ) |v − v |, ¢ s Y7kVirghY]gqTVY¦y„e s `b`¬irCgqTVY¦mƒeryqgq`fv dbY7perk s ¢ ¢ Ÿ#T YXyhY ghTVYX`by}QYXrdbio=v `jgqm`bY7p7§4}rirghY=gqTƒ(megG)ghTV`bp© nY7yqk YXd$vXinyhyqYJpumHink s p gqi«ghTVYŸ YXdbd¥²Å akViŸ#kEvv yh=iQphp/m pGpqY7v°gh`jviQkl=¡iny©p T /mery s pqmVTVY7yqYJp¬`bk¦gqTVY| indjgqªXW¦enkVkgqTVY7inyhtn§ =³k¦Óenv g ¢ Y7´2c ergq`bink .54Q"§ 470¬ink djt‘ghen nY7p:`jk2ghi env7v inc kQg v iQendjYJpqvXYXk vXY enk s kVY7’ndbY7v ghp©gqTVY‘¡y„er’nWY7kQg„egh`jiQkEir?ghTVY s yqiQmVdjYXghp s cVY‘gqigqTVYenv gq`bink½in?gqT Y‘’2enp ¢ eQp}Ÿ YXdbd0enp©gqTVY vXink s YXk phegh`jiQk PY7PenmƒiQyhergq`bink ir?ghTVY s yqiQmVdbY ghperk s gqT Y‘Y7dbeQp{gh`b-v .¡’ny„erª7`jk %’ 0#vXindbdj`fpu`binkƒp}in:|CiQd¥ghªXW¦erk k g{tamHYn§ :GiŸ YXQYXy ¢ erdbd¬ghTVY7pqY«Y .Y7v ghp WePtŠžƒY•W]YXggqiQ’nYXgqTVY7y ¢ ¡iny`bk pughenk v Y ¢ `bk v iQW žVc pugq`binkRghTVYXiQyqt 2ˆ A§ =³k gqT `bp#v7enpqY ¢ ink Ycƒpuc endjdbt•vXink pq` s YXy„p gqTVY[¡iQdjdbiŸ#`jk ’‘YJ´Qcƒegq`bink Î3Ž 4 . 0. 1/3. 0. . . . 0. HS. . 0 2. . 0. 0 1/3. 0. 0. 0. . .  . . . ¡iQy gqTVY s Y7k pu`jg{t g(t, x, r, v) ir s yqiQmVdjYXghp Ÿ#TV`fv„T ¢ eg4gh`jWY t ≥ 0 ¢ eryhY[eg gqTVY[mHiQpq`¥gh`jiQk x ∈ Ω Ÿ#`jgqTle y„e s `jc p r > 0 . s yhinm djYXghperyhY puc mVmƒi2puY s gqižƒYpqmVTVYXyhY7p<0 ¢ erk s nY7djiovX`¥g{t v ∈ R § =³kEgqT `bpY7´2c ergq`bink ¢ erk s s YXkVingqY©gqTVY s yhinmVdbY g4env7v YXdbYXy„egh`jiQk«erk s YXermHiny„egh`jiQk¦yhergqY ¢ yhY7pqmƒYJv°gh`jQYXdbt ¢ gqTVY©gqY7yqW β yhYXm yqYJpuY7ωkQg„p#ghTVY Y HYJv°ghpin¬gqTVY]žVyhY7er 2²ÅcVmEir:gqTVY s yqiQmVdbY ghp s cVY‘gqi•gqTVYenv gq`binkEin?gqTVY‘’QeQp ¢ erQk s gq(g)TVY ghYXyhW Q (g) yhYXmVyhY7pqYXk2ghpGgqTVYY HYJv°ghpin?žV`jkƒeryhtlvXindbdj`fpq`jiQk p}žHY g{Ÿ YXY7k½m enyugh`bvXdjYJpX§=Åg[`jk vXdjc s Y7pžHirgqT Y7dbeQp{gh`bvCv iQdjdb`bpq`bink p<erk s v iQdjdb`bpq`bink p$’n`b2`bkV’©yq`fpuYCgqi©gqT Y vXiQerdbY7phv Y7k v Y:irVghTVY vXindbdj` s `bkV’m eryqgq`fv dbY7p7§^a`bW`jdfery YJ´2c egh`jiQk p WePterdfpuižHY[¡incVk s `bk enYXyhiQpqindHgqT YXinyht ΎnŽ ŧ ~}kVirghTVYXyCmVTatapq`fvXerdƒpu`jgqc ergq`bink¦`bk¦Ÿ#TV`fv„TvXiQendjYJpqvXYXk vXY#iav7v cVy„p¬W¦ePt žHY#¡iQcVk s `bk«p{ghYXdbdbeny s tak erW`fvXp `bkŠgqTVYWi s YXdbdj`bkV’ ir4v dbinc s pin:m eryqgq`fv dbY7p .ӒQerdfewo`bY7p 0R`bk2gqY7yheQv°gq`bkV’ž2tŠerkŠergughyheQv°gq`bnY ¾ enkVYXEm en`jy mHirghYXk2gq`ferd −α/r − ε/r .ÓpqYXY ¢ Žr 0erk s ghTVYyhY ¡YXyhYXkƒv Y7p#gqTVY7yqY7`jk 0 § =³kEmƒeryqgq`fv cVdfery ¢ ¡iny α = 0 erk s .Ó}YXŸ4gqiQkV`ferklmƒingqY7kQgh`ben1d 0 ¢ gqT Yenphpuiov `feghY s v yhiQphp{²³puYJv°gh`jiQk«`bp ε=1 .54n§ ;0 1 m+m a(y, y ) = a (y, y ) := . mm |v − v | =³k žHirghTRWi s Y7dbp s Y7phv yh`jžHY s TVY7yqY ¢ gqT Y«v iQendjYJpqvXYXk vXYyhergqY v iQyqyhY7pqmHink s p©ghilgqTVY«vXindbdj`fpu`binkŠ¡yhY ² ´2cVY7k v tQ§| cog ¢ v iQdjdb`fpu`bink p]W¦ePt kVing•erdbŸ ePtop]yhY7pqcVd¥g¦`bk e v iQena’ncVdfegh`jiQk¼Y7nYXk2gJ§S4TV`bp]ÓeQv°g•v7erk žƒY eQvXvXincVk2gqY s ¡inyCž2t]ghTVY}`bk2gqyhi s c v°gh`jiQk¦ir$evXiQerdbY7phv Y7k v Y}Y «v `bYXk vXt .¡yhYXmVyhY7pqYXk2gq`bkV’ghTVY}m yqiQž eržV`bdb`¥g{t ghT eg}gqTVYg{Ÿ i«v iQdjdb` s `jk ’¦m eryqgq`fv dbY7p s i¦yqYJerdbdjt p{gh`bv„  0°§4S4TVY7k a(y, y E) = E(y, y ) a (y, y ) ¢ Ÿ#T YXyhY a `fp gqT Y[¡yqYJ´Qc YXk vXt«ir¬v iQdjdb`bpq`bink p4erk s W¦ePt¦žHY’n`bnY7k ¢ ¡iny#`bk pugherkƒv Y ¢ žat .54n§ 0 iQy .54n§ 90 ¢ puY7Y  A§ ¯$Y g¬c p<kViŸ s YJpqvXyq`bžHY:ghTVY#v iQendjYJpqvXYXk vXY:y„eghY gqTƒeg0ŸCY Ÿ#`jdbdVv iQk pq` s Y7y`bk‘gqTV`fp0m ermHYXyJ§ +RY#enphpuc W]Y ghT eg a ¡cVd¥¤ƒdbp4ghTVYpqt2WWY ghyqt•enk s mƒi2pu`jgq`ba`¥g{tv inak s `¥gh`jiQk p e § YQ§¬ink Y , .54n§øˆ 0 0 < a(y, y ) = a(y , y) enk s gqTVYpugqyhc v°ghcVyhY[vXink s `¥gh`jiQk .54n§ ;‰ 0 a(y, y ) ≤ a(y, y + y ) + a(y , y + y ) , y, y ∈ Y. ∂t g + ∇x (v g) + ∇v (β g) + ∂r (ω g) = Qcoll (g) + Qbr (g), 3. br. !. !. coll. "  $#. % . 2. . 0. 0. 0. NP. . 0. 0. &. 0. 0. 0. 0. 0. . 0. 0. ' . 2. 0. 0. . 0. 0. 0. ÷¡û<ü¨÷äØ.

(30) 

(31) 

(32)   !" #

(33) %$'&( 

(34) !" # . RYerdfpqi‘yhY7´2cV`byqYghTVY’nyhiŸ4gqT v ink s `¥gh`jiQk p +. aδ,R (M ) := ωδ,R (R0 ). Z. sup y 0 ∈Y. :=. δ,R. n§ .84n6§ 47%0 .54 ;0. a(y, y 0 ) 1a(y,y0 )≥M dy −→ 0, M →∞. Yδ,R. sup. Z. a(y, y 0 ) dy −→ 0, R0 →∞ |y 0 |. ¡iQy enkat R > δ ¢ Ÿ#`jgqT Y := (δ, R) × B § =³km eryqgq`fv cVdfery ¢ gqTVY[v i2erdbY7phv YXkƒv YG QYXyhkVYXd a enk s a ¡c d¥¤ d¨gqTVYenžƒiQYeQpqpqcVWmogq`binkƒp ¢ eQp4`¥gG`fp#puT iŸ#k`bkE~GmVmHYXk s `¥wl|©§ ¢ gqTVY v7enpqYEir[gqT YŠ² ~©p¦¡iny ¢ ŸCY WePt v iQk pu` s Y7y¦gqTVYRvXeQpuYEinghTVY½Ÿ#TViQdjYŠpum eQv Y s `jWYXkƒpu`bink enΩdogqiQyqcƒp Ω = T iny0gqT Y}vXeQpuY#in£e[žHinc k s Y s¦s inW¦er`bkir R Ω§>=³=kghRTVYGdfegughYXy:v7enpqY7p ¢ ink YGT enp ghi«puc mVmVdbYXWYXk2g .84n6§ 4704Ÿ#`jgqTEY7`¥ghTVYXyGmHYXyh`bi s `bvžHinc k s eryht•vXink s `jgq`binkƒp#iny ¢ ¡iny©`jkƒp{g„erk vXY ¢ kVin²A`bk vXinW`jk ’  cowv iQk s `jgq`bink p iQk {x ∈ ∂Ω , n(x) · v < 0} , .84n6§ 494 0 γf = 0 Ÿ#T YXyhY γf p{g„erk s pG¡iQy#gqTVY gqy„envXYir f inklghTVY žHinc k s eryhtenk s n(x) s Y7kVirghY7pGgqTVY‘incog{Ÿ4ery s kVinyhW¦erd c kV`¥g#QY7v°ghinyC¤ YXd s § =³kiny s YXyCgqi¦pq`jWmVdb`¥¡tghTVY[mVyhY7pqYXk2ghergq`bink ¢ Ÿ Y©iQkVdjt«vXink pq` s YXyCgqTVYv7enpqY `bk ghTVYpuYJ´2cVYXdA§ :GiŸ YXnY7y ¢ Ÿ Y© QYXYXmgqT Yk irghergq`bink Ω gqi s ` HY7yqY7k2gq`fegqY[žHY g{Ÿ YXY7k•ghTVYpum eQv Yir$ΩmH=iQpq`jRgq`bink p enk s gqTVYpqm envXY[irWiQW]Y7k2ghe .¡iQy#nYXdbiov `jgq`bY7<p 0°§ +RY[¤ k endjdbt¦yqYJ´2cV`jyhY©gqT erg ghTVY[`jk `¥gh`bend s eghcVWT eQp:¤ƒkV`¥ghY[gqingherd.kacVW‘žƒY7y#irmƒeryqgq`fv dbY7p ¢ ¤ƒkV`¥ghYgqirg„erd W¦eQpqp#enk s ¤ƒkV`¥ghYWY7erk WinWYXk2ghcVW ¢ gqT ergG`bp ¢ .84n6§ 4J;Ž 0 0 ≤ f ∈ L (Ω × Y, (1 + m + |p|) dydx) . ­ cVy#W¦en`jklyhY7pqcVd¥g#`fp gqTVY[¡iQdjdbiŸ#`bkV’ §  ¶aº ˜ ¶   # #(

(35) '  <7!" #

(36) 

(37)  < ; (@ ! a <3! ! #  #<#(

(38)   # !#"$ p0 ∈R3 ,m0 ≥R0. δ,R. Yδ,R. R. HS. NP. 3. 3. 3. . in. . 1. . .        ! ; 

(39) #

(40)  1#! ( #%#!&'#)(   +*;1#( #  !" <#< #! 3  <7!" #

(41) < @ < ,#!-./#0&'21 3 #

(42)  1#3 #.  !!. T >0. 41 

(43)  . s `b ∂ ρ+ t. x. f ∈ C([0, +∞); L1 (Ω × Y )), ΩT := (0, T ) × Ω. . j≤0. .

(44).  <5 . 1  . 0. D (ΩT ),. t 7−→. Ω. m f (t, x, y) dydx Y. 7 @!!98  #

(45) ! 3  #

(46)  1#! (#. üü ÇAVÚ hÚ Ý . f (t) → 0. .   . Q(f ) ∈ L1 (ΩT × Y ). n§ 7. p f dy,. .84 64 %0. 1# '@.  

(47)  < #(%$ <3 

(48) 5 !

(49) ' .. .84 64 0. ρ=.  6( 3!" Z Z. f ≥ 0. L1 (Ω × Y ). Z. #. m f dy, j = Y. t → +∞. . Z. Y. n§ XZ.

(50)  #

(51) <   9 3  7

(52) 1#

(53) 3!"  . 7 3(  /

(54) '  . #

(55) 

(56) ' p ∈ [1, ∞]  

(57)  1# '  . @ <#< $ <3@  5 !

(58) .84 64;0 t 7−→ kf (t)kL (Ω×Y ) .  #

(59) 

(60) R > 0  

(61)  #( # f (t) ⊂ V 7 @!!98  #( # in R = {(x, y) ∈ Ω × Y, |v| ≤ R} R  8 t ≥ 0    f f in⊂mV|v|  .   . 1  #    4 #   @   @  $#8    2 ∈ L1 (Ω × Y ) f in 1# '@ .  

(62)  < #(%$ <3 

(63)  8 !

(64) ' .84 64$%0 2 f in ∈ Lp (Ω × Y ). n§. p. n§ SiEincVy[ akViŸ#dbY s ’QY ¢ ghTVY¦Y wo`fp{ghYXk vXYir#puiQdjcogh`jiQk pgqi ghTVY«v i2erdbY7phv YXkƒv Y]Y7´2c egh`jiQk .84n§6470T eQp[kVirg žHYXY7kpugqc s `jY s tQY gCŸ#T YXkgqTVY s `fp{ghyq`bžVcogh`jiQk«¡cVk v gq`bink f s YXmHYXk s p4ink•gqTVY©¡incVy4eryh`feržVdbY7p (t, x, m, p) § =³k ghTVY pqm egh`bendjdbt•TViQWin’nY7kVYXiQc p#vXeQpuY f = f (t, m, p) ¢ YXwa`fpugqYXkƒv Yerk s cVkV`f´Qc YXkVYJpqp#in0pqindbcogh`jiQk pGeryhY YJp{g„eržVdb`fpuTVY s `bk  ¢ Ÿ#TV`bdjYekacVWY7yq`fvXend¨pqv„TVY7WY`bp s YXnY7djiQmƒY s `bk  ŧC¯¨YXgGc p#mHin`bk2gGincog#ghT eg ¢ `bk  ¢  ¢ gqT YG¡inyhW c dbergq`bink¦ir.84n§64 0¬`fp s ` .YXyhYXk2g enk s `bk2QindbnYJp0gqTVY©eryh`benžVdjYJp (r, v) .¡Ÿ#`jgqT r = m ¢ 0?`jk pugqYJe s in §¬GYXQYXyqgqTVY7djYJpqp ¢ gqTVY©g{ŸCi¡inyhW cVdfegh`jiQk pCenyqY}Y7´2cV`bPendjY7k2g enpC`jgC`fp pqTViŸ#k v`bk =~Gp/m mVmHYXk s `¥w ~§ + TV(m, YXk ghp)TVY s `fp{ghyq`bžVcogh`jiQk ¡c k v°gh`jiQk f = f (t, m) s iaY7p¦kVing s YXmHYXk s iQk (x, p) ¢ ghTVY Y7´2c egh`jiQk .84n§64 0‘yqY s c v YJpghi ghTVYEv dfenphpu`fvXend4^oW]iQdjcƒv„TViŸGpu a` v iQen’ncVdfegh`jiQk Y7´2c ergq`bink Ÿ#T `bv„T T enp žHYXY7kŠYXwagqYXkƒpu`bnY7djtEpugqc s `bY s pq`jk vXY ghTVYmV`binkVY7YXyh`jkV’ Ÿ inyh  in ¾ Y7djªJer  n ŧ +RY‘yhY ¡Y7ygqigqTVY¦pqcVyqQYXt žat ~Gd s incƒp 64 enk s gqT Y•žHi2iQ Šžat ±}c žƒiopq 2` Žn ¡iny eEWiQyqY s Y ghen`jdbY s s Y7phv yh`jmogh`jiQk¨§ + TVY7k gqTVY s `bpugqyh`jž cogq`bink•¡cVk v°gh`jiQk s iaY7p kVing s Y7mƒY7k s iQk«ghTVY©WiQW]Y7k2gqcVW ¢ eyhYXdfeghY s Y7´2c egh`jiQk ¢ ghTVY s ` .c pu`bnYCv iQen’ncVdfegh`jfiQk©=YJ´2fc (t,eghx,`jiQk m)¢ T enp£yhY7vXYX`bnY s W‘c v„TegqgqY7kQgh`jiQkyqYJv Y7kQghdjtQ§ =³k[gqT `bp$Y7´2c egh`jiQk ¢ gqTVY Y7niQdjcogh`jiQkir f Ÿ#`jgqT•yqYJpumHY7v g¬gqighTVYGmHiQpq`¥gh`jiQk x ∈ Ω `fp?Wi s YXdbdjY s žat]e s ` .c pu`binkghYXyhW −d(m)∆ f `bk pugqYJe s inVgqTVY4e s nY7v gq`bink[ghYXyhW f §<^a`bk vXY:ghTVYCŸ inyh op¨žat| ŒXkV`bdbenk  +Ryqª7iQpqYX  aenk s ,CiQdjdbY g  x0iQcVm erc s 6494 vXink vXYXyhkV`bkV’GghTVY s v·∇ `fpqvXyqYXgqY s ` .c pq`jQY#v iQen’ncVdfegh`jiQkY7´2c ergq`bink ¢ YXwo`bpugqY7k v Y4ir.puiQdjcVgq`bink pgqi ghTVY©vXink2gq`bkacVincƒp s ` Hcƒpu`bnYv iQen’ncVdfegh`jiQkY7´2c egh`jiQk¦T enpCžHYXYXk•`jkanYJp{gh`j’2eghY s `bk Ž ¢ 4J ¢ ŽQˆ ¢  4 ŧ¬¯¨YXgCc p mHin`bk2gCiQcogCTVY7yqYGgqT erg:gqT Y© QYXt]Y7pugq`bWergqYJp?c pqY s `bk«in$S4TVYXiQyqY7W 4Q"§ 4}enyqY}`jk•gqTVYpumV`byh`¥g ir Ύ ¢ ŽQˆ ¢  4 A§ +RY¬¤ kƒerdbdjtWYXk2gq`binkghT eg ¢ nYXyht}yhY7vXYXk2gqdbt ¢ e# a`bkVY gh`bv:Y7´2c egh`jiQ' k .¡Ÿ#`jgqTQYXdbiavX`¥g{teryh`benžVdb7Y 0ƒ¡inym eryqgq`fv dbY7p c k s YXyh’niQ`jk ’‘db`jk Y7ery4¡y„er’QWYXk2ghergq`bink•Tƒenp4žHYXYXkEpugqc s `jY s `bk Ž 4 ¢ ŽZ A§ ¶  ™o˜       1# !  9

(65) !98   *91#( @<  #<3! #<   ( < -

(66) #! t 7−→ kf (t) m |v| kL1 (Ω×Y ). ..  .  .  . . . 1/3.  .  .  . . . x.  . x.  . . . ". .  . . . . . . . . . . . *;

(67)  #   < #

(68) 1 

(69)  '     !"

(70) #9<<

(71) !"      $5     ' '; /  ;< 3    1#  (βf ) + ∂ (ωf ) 1#';  -  !" < .   #( 9 8 #!$  3 9

(72)  #(3   !6  #<#(

(73)  . # ∇  v 9<< !"

(74)   m ' -5      #$ 7 !!61 %$ &    !  < <  $

(75) '

(76)    /

(77) <3!  ! #

(78)    9   

(79)   #!- 3 9

(80)   #( @    #<#(

(81) @  5 1 < @ (#<# 5  < 

(82) #$

(83)

(84)   

(85) <  1/#

(86) 1  / #  <    < !" #<

(87)  <

(88) < 1#/

(89) 2 2   

(90)     @ #

(91)   9! 8 #(1# ; # @ <(/ 8' 5     #

(92) 1 

(93) 

(94) !" #(  <!! 1#( #  ! #

(95)   

(96) !  9     <!! 1#( /

(97) 5 

(98) !  $

(99) '   8  1#  ;    ( $   .     #( 9 5  #!-   -  < #

(100)   p . @/

(101) #  @ !6%$%

(102)     3@ 5<3@ @! #    1 ; @   1   12  -

(103) ' 8  31# ; L 4 64 -= 4 64 . ;0 (fn ) '.54 6470 1 L .84 6470 &. ¯$Y g c p kViŸ ’n`bnY¦puiQWY«v inWWYXk2g„pink S4TVY7inyhYXW n§ r§ Åg gqcVyhk piQcoggqTƒeg‘S4TVY7inyhYXW n§ ¦`bpe Xv ink pqY7´2cVY7k v Y¬inVe#p{g„eržV`bdj`jg{tyqYJpucVdjg ÓpqYXY ^aY7v gq`bink £Ÿ#TV`bv„TeQpqpqYXyqghpHghT eg<eGpuYJ´2cVYXk vXY irVpqindbcogq`bink p ghi n§ 0phegh`bpu¡ta`jk ’kƒegqc yhendožƒiQcVk s p?vXinkanY7yq’QY7pŸCYJer adbt`jk ¢ c m‘ghie[pucVžƒpuYJ´Qc YXk vXY ¢ ghiepuiQdjcogh`jiQk ghi n§ §?‚#incV’QTVdbt«pumHY7en 2`bkV’ ¢ ghTVY[W¦er`bk•W¦eghTVYXW¦egh`bv7erd s ` «v cVdjg{t«`fp gqi]mVyqY7nY7kQg gqT Y©¡iQyqW¦ergq`bink•in ÷¡û<ü¨÷äØ.

(104) ˆ. 

(105) 

(106)   !" #

(107) %$'&( 

(108) !" #. e±©`byheQvCW¦eQpqp?erg:puiQWY#mƒiQ`jk2g?irHgqT YGmVT eQpuYGpqm envXY §0S4T YGp{ghyqc v gqcVyhYGenphpqcVWmogq`bink .54Q§ ‰%00erdbdjiŸGp cƒp#gqi¦m yqiQY[gqT erg ¢ ¡iQy©enk2tkVink kVYX’2egq`bnYenk s v iQk2ٍQY ×wY¡cVk v°gh`jiQk ¢ ghTVY‘eQpqpqiov `feghY sE­ yqdb`bvXªkVinyhW `bpGe ¯$`benmVcVkVi¡c k v°gh`jiQk erd ¢ Ÿ#TV`fv„T m yqY7nYXk2g„p vXink vXYXk2gqy„egh`jiQk•žat¦ghTVY±}cVkV¡iny s ²Ax0YXgugq`fp4ghTVYXiQyqY7W §>=³k Óenv g ¢ Ÿ YvXerkRmVyhinY gqTVYŸ Y7er ½vXinWm eQv°gqk Y7php©`bk L ir:žHirghT (f ) erk s (Q(f )) §¦^2gqyhink ’ vXinWm env gqkVYJpqp `bk ir ²³ePnYXy„er’QY7p#in ghTVYXkŠ¡indbdbiŸGp}žatEghTVY‘QYXdbiov `jg{t½ePnYXy„er’Q`jk ’¦djY7W]W¦eir4puiQdjcogh`jiQk p}gqi gqTVY ghyhenLk pqmƒiQyug y Y7´2c egh`jiQk¨§ S4fTVYRyqY7Wen`jk s YXy irghTVYRmVyqiain `bp•gqT YXk mƒY7yu¡iQyqWY s `jk gqTVY pqmV`jyh`jg ingqTVY ±©`bx<Y7yqkƒe²³¯¨`bink pCgqT YXinyht¦¡iQy4gqTVY| indjgqª7W¦erkVk Y7´2c ergq`bink "4 A§ ¯$Y gGc p4¤ƒk erdbdjt•yqY7Wenyq ghT eg ¢ ¡iny4ghTVY nY7yqk YXd a ¢ pughergq`bink enyqt«pqindbcogq`binkƒp gqi .54Q"§ 4 04enyqY .84n6§ 4P9ˆ 0 S(m, p) = µ(m) δ Ÿ#`jgqT µ ∈ M (0, +∞) `fpGe]žƒiQcVk s Y s W]YJenpqcVyhYenk s u ∈ R §:S4T YXinyhYXW 4Q"§ 4[`bWmVdj`bY7p#gqT erg#gqTVYª7YXyhi pqindbcogh`jiQk]`fp¬ghTVY}iQkVdbt‘pughegh`jiQk eryht‘pughergqYGŸ#T `bv„T¦`fp?yhY7eQv„TVY s `jk«gqTVYGdbink ’gq`bWYGŸ#TVYXk«pughenyugh`jk ’¡yqiQW enk `jk `¥gh`bend s eg„eV§ +RY[gqTac pG` s Y7k2gq`j¡tWinyhYenv7v cVy„eghYXdbt¦gqTVYeQputaWmoghirgq`fvpugheghY[gqT enkl`jk  ŧC¯$Y gGc p L endbpqi]W]Y7k2gq`binkgqT erg ¢ `j S `fpGe]puiQdjcogh`jiQk•ghi .54n6§ 470CŸ#TV`fv„T `bpGe]pughegh`jiQk eryht«pqindbcogq`bink¡iny4Y7eQv„T (t, x) ¢ ghT egG`fp ¢ S `bp#’Q`jQYXkž2t .54Q"§ 4ˆ 0 Ÿ#`¥ghT µ = µ erk s u = u(t, x) ¢ `¥g}phegh`bpu¤ Y7p 1. 1. n. n. n.  . HS. v=u. 1. 3.  . 1. t,x. t,x. t,x. ∂t St,x + v · ∇x St,x = 0.. ³k2ghyqi s c vX`jk ’. ¢ Ÿ Y¬yqYJerdb`jª7Y0gqT erg (%, u) pqergq`fp{¤ƒY7p.ghTVY?mVyhY7phpuc yqY7djYJpqp.’2enpqY7p£pqtapugqY7W .84n6§ 47%‰ 0 ∂ % + ∂ (%u) = 0, ∂ (%u) + ∂ (%u ) = 0, pqYXY ‰ ¢ ¢ n‰ enk s gqTVYyhY ¡Y7yqY7k v YJpCgqTVY7yqY7`jk¨§ +RY:kViŸ iQcogqdb`bkVY?ghTVYCvXink2gqY7kQg„p¨inogqTV`fp$mƒermHYXyJ§ =³kghTVY:kVYXwag<pqY7v°gh`jiQk ¢ ŸCYCv indbdbY7v°g0puiQWY:´2c erdb`¥g„egh`jQY enk s ¡iQyqW¦erd `bko¡inyhW¦egq`bink¼ink ghTVY pqindbcogh`jiQk pX§ S4TVY7tRdbY7e s ghi½gqT Yk ergqcVy„erd žHincVk s pghT eginkVY vXenk YXwomƒYJv°g0inkghTVY pqindbcogh`jiQk pX§ =³k]^aYJv°gh`jiQk‘GŸ Y4pumHY7vX`¥¡t[ghTVYCk irgq`bink irƒpqindbcogq`bink ŸCY s Y7end2Ÿ#`jgqT ¢ erk s p{g„egqY ghTVY4 nY7tp{g„eržV`bdj`jg{tghTVYXiQyqY7W .ÓS4TVY7inyhYXW § 90Ÿ#TV`fv„T]`bp0mVyhinY s `bk^aYJv°gh`jiQk‘Zƒ§0^aYJv°gh`jiQk ©`bp s YXningqY s gqi ghTVY}m yqiair£in£gqTVYv inkaQYXyh’nYXkƒv Y4ir£ghTVY©pqindbcogq`binkƒp¬gqi ªXYXyhi¡iQy:dferyh’nY#gh`jWY7p7>§ +ŠY}gqTVY7k«žVyh`jY  t]Y womVdfer`bk `bk ^aYJv°gq`bink ¦T iŸ ghTVY pugherž `jdb`¥g{tyqYJpuc d¥g}e s ermog„p4gqi•mVyqiQYS4TVYXiQyqY7W 4n6§ 4r§ +ŠY¤ k erdbdbt•Y7pughenžVdb`bpqTlgqTVY YJ´2cV`jendjY7k v Y©žƒYXg{ŸCY7YXkgqTVY©g{ŸCi‘¡inyhW c dbergq`bink p:yhe s `jcƒp{²ÅnY7djiov `jg{t (r, v) erk s W¦enphp{²ÅWinWYXk2gqc W (m, p) in .84n6§ 4 04`bkE~GmVmHYXk s `¥wE~†erk s ghTVYXkEv„TVYJv„ ¦gqTƒegGghTVYv i2erdbY7phv YXkƒv Y[ nY7yqkVY7dbp a enk s a ’n`bnY7kžat .84n§ 04erk s .84n§ ;0 s i¦phegq`fpu¡t .54Q§Îˆ 0³<² .84n6§ 479 0 `bkE~GmVmHYXk s `¥wl|§ “š   ºa¹  ¶ »  ¶  ¶  —7–  +RY’ny„eghY ¡cVdbdjt«eQv„ akViŸ#djY s ’nY©gqT Ym eryqgq`ferd¨pqcVmVmHinyqg#ir<gqTVY œ c yqiQmƒYJerkl‚#Y ² pqY7enyhv„T S$y„er`bkV`bkV’ GYXg{ŸCiQyq    :}x:‚G#8² , S ²{Žrn2ŽP²³n2Žr‰QŽ s cVyh`jkV’ ghTV`fp¦ŸCiQyq .§ S4T Yl¤ yhpug•erk s ghTV`by s encogqTViQyhp}ŸCY7yqYmƒeryqgq`ferdbdjt pucVm mƒiQyughY s žat , ©‚}^Eenk s

(109) x  œ :

(110) gqTVyhincV’QTEe¦x = ,4^lžHY g{Ÿ YXY7k ghTVY

(111) k `jQYXy„pu` s e sRs Y7d:x¬e fp ?enphv iEenk s gqTVY œ vXindbY«GiQyqW¦erdbY•^acVmHŒXyh`bYXcVyhYn§ +RY«erdfpqighT erk  Šx?`bYXyhyhY ±©YX’Qink s ¡iQy0¡yqcV`jgu¡c d s `fpqvXc phpu`bink p?Ÿ#TV`bv„TWirgh`jergqY#c p0ghiY wagqY7k s S4TVY7inyhYXW 4Q"§ 4 gqi`bkV`jgq`ferd s eg„e©Ÿ#`jgqT mHiQphpq`jžVdbt«`bko¤ kV`jgqY a`bkVY gh`bv[Y7kVYXyh’ntQ§ =. %(t, x) :=< m, µt,x > t. '. x. t. 2. x. . . . . . HS. . . üü ÇAVÚ hÚ Ý . NP.

(112) ‰.  #

(113) <   9 3  7

(114) 1#

(115) 3!" .   "$ 4©[

(116) X ! "   l _ :

(117)   !X" =³k]ghTV`bp:puYJv°gq`binkŸ Y s YXyh`bnY#puiQWY.¡¡inyhW¦erd00v inkƒpuY7yqQY s ´2c enk2gq`jgq`bY7p?enk s kVinko²Å`bk v yhY7eQpu`bkV’}iQkVY7p:enp0Ÿ YXdbd,§ ¯$Y gGc p#pughenyug#Ÿ#`jgqT gqTVY[¡iQdjdbiŸ#`bkV’]¡cVk s enW]Y7k2gherd .,erk s ¡iQyqW¦erd0C` s YXk2gq`jg{t@?0¡inyGerkat φ : Y → R ghTVYXyhY[TVind s p Z Z Z .AŽo6§ 4'%0 1 Q(f ) φ dy = a(y, y ) f f (φ − φ − φ ) dy dy. 2 S4T `bp[` s YXk2gh`¥g{tŠ`bp[iQžoghen`jkVY s erägqY7yv„T erkV’Q`jk ’eryh`feržVdbY7p[erk s enmVmVdbta`jkV’ .ӟ#`¥ghTVincog#z{cƒp{gh`¥¤ƒv7egh`jiQk 0©gqTVY ‹ cVžV`bkV`gqTVY7inyhYXW gqi § :}YXyhY erk s žƒY7djiŸ ¢ ŸCY mVcog g = g(y) ¢ g = g(y ) enk s g = g(y + y ) ghi¦puTViQyughYXk kVirg„egh`jiQk QpX§ (f ) ^ac `¥g„eržVdbY•v„TViQ`bvXY7p[ir ¡cVk v gq`bink p `bk .,Žo6§ 4';0djYJe s gqi½pqYXQYXy„erd¬´2c erdb`¥g„egh`jQY]`bko¡iQyqW¦egh`jiQk inkRgqTVY pqindbcogh`jiQk f gqi‘gqT YvXiQerdbY7phv Y7k v Y©Y7´2c erφgq`bink .84n6§ 4 0 ¢ enk s iQk«gqT Y©yhY7eQv°gq`bink«gqYXyhW Q(f ) enpCŸ YXdbd,>§ +RYdb`fp{g pqinWY[irgqTVY7W®kViŸ§ ¾ enphp‘vXink pqYXyhegh`jiQk¨§ + `jgqT ghTVYv„T in`fv Y ¢ ghTVY«ghYXyhW φ − φ − φ enkV`bpqTVYJp erk s ŸCY • s Y s c vXYgqTVY[ghirghend¨W¦enphp4v inkƒpuY7yqegh`jiQk ? φ(y) = m Z Z Z Z .AŽo§ÎŽr% 0 m f (x, y) dydx , t ≥ 0. m f (t, x, y) dydx = ¾ inWY7kQghcVW v iQk puY7yqergq`bink¨§©^o`jW`bdbenyqdbt ¢ Ÿ#`¥ghT½ghTVY]v„T in`fv Y = p ¢ ghTVY‘gqYXyhW φ − φ − φ erdfpqi • enkV`bpqTVYJp#erk s ŸCY s Y s c vXY[gqTVYWY7enkWiQW]Y7k2gqcVW v inkƒpuY7yqeφ(y) gh`jiQk ? Z Z Z Z .AŽo§Î3Ž 4 0 p f (t, x, y) dydx = p f (x, y) dydx , t ≥ 0. =ÅgG`fp#kVYXw2gGvXdjYJery4¡yhinW .AŽo6§ 4'90CghT eg ¢ `¥ φ : Y → R `fp#puc ž e sVs `¥gh`jQY ¢ ghT eg#`fp ¢ ¡iQyGerdbd (y, y ) ∈ Y , .AŽo§ÎŽn;Ž 0 φ(y + y ) ≤ φ(y) + φ(y ) ghTVY[¡indbdbiŸ#`jkV’]W¦erm Z Z +. 0. Y. Y. 0. 00. 0. 0. Y. 0. 1. 0. 00. 00. 0. 0. in. Ω. Ω. Y. Y. 00. 0. in. Ω. Y. Ω. 0. Y. 0. 0. t 7→. 2. f (t, x, y) φ(y) dydx. `fpGekViQko²Å`jk vXyqYJenpq`jk ’‘¡c k v°gh`jiQkEir<gq`bW]YQ§+ŠYk iŸ ` s YXk2gq`j¡tlpuY7nYXy„erd¨vXdbeQpqpqY7p4in0¡cVk v°gh`jiQk p}phegh`bpu¡ta`jk ’ .AŽo§ÎŽnŽ 0?}Ÿ Y ¤ƒyhpug[vXink pq` s YXy©¡cVk v gq`bink p s Y7mƒY7k s `bkV’ pqindbYXdbtEink ¢ ghTVYXkŠ¡cVk v gq`bink p s Y7mƒY7k s `bkV’EpuiQdjY7djt iQk v ¢ enk s ¤ƒk erdbdjt•¡cVk v gq`bink p#žHYX`bkV’]gqT YmVyqi s cƒv°gGir0e‘¡cVk v°gh`jmiQklir m enk s e‘¡cVk v°gh`jiQklir v § SCt2m `bv7erd0Y wVerWmVdbY7pinCpuc ž e sVs `¥gh`jQY ¡cVkƒv°gq`binkƒp[`bp φ(y) = m ¡iny α ∈ (−∞, 1] § =³kRm eryqgq`fv cVdfery ¢ •ghTVYv„TVin`fv Y pqTViŸGp#ghT eggqTVY #

(118) .8<!!6 ghirghendkacVW‘žƒY7y©in?m eryqgq`fv dbY7p s YJv yhY7enpqY7p}Ÿ#`¥ghTEgq`bWY φ(y) = 1 .,enp4YXwamHY7v gqY s 0 Z Z Z Z Z Z Z Z .AŽo§ÎŽr% 0 1 a f f dy dydxdt = f (x, y) dydx. f (t, x, y) dydx + Ω. Y. α. . t. Ω. Y. 2. 0. 0. Ω. Y. Y. 0. in. Ω. Y. ÷¡û<ü¨÷äØ.

(119) 

(120) 

(121)   !" #

(122) %$'&( 

(123) !" #. ~}kVirghTVYXy]v iQk puYJ´2cVYXk vXY«`fpgqTƒeg ¢ `j}pqcVmVm f (x, y) ⊂ M := {(x, y) ∈ Ω × Y , m > δ} ¢ gqTVY7k pqcVmVm f (t) ⊂ M ¡iQy:erkat t ≥ 0 >§ =³k s YXY s£¢ `jgC`fp?pqc «v `bYXk2g?ghikVirgh`bvXY4gqT erg φ(y) = 1 (m) phegq`fpu¤ Y7p .AŽo§ÎŽnŽ 0 §#S4T eg}WYJerk p4ghT eg©kVi«m enyugh`bvXdjYin¬pq`bªXYpqWendjdbYXyGgqT enk v7erkEžHY v yhY7ergqY s `j¬gqT YXyhYeryhYkVinkVY `bkV`jgq`ferdbdjtQ§ ~ Ÿ Y7en nYXyQYXy„pu`bink irgqTV`fpÓeQv°g«`fpgqTVY½¡indbdjiŸ#`bkV’ ?lδ ¡iQy«erkat kViQko²Å`jk vXyqYJenpq`jk ’ ¡cVkƒv°gq`bink .,pucƒv„TleQp φ(m) = m ¢ α < 00 ¢ Ÿ YTƒePnY φ:R →R Z Z .AŽo§ÎŽZ 0 1 Y (f (t, .)) + Y (f (τ )) dxdτ ≤ Y (f ) , 2 Ÿ#`jgqT in. δ. &. δ. +. [0,δ]. α. +. t. φ. φ. 0. Ω. Z Z. Yφ (f ) :=. Y. •. f (x, y) φ(m) dydx,. ZΩ ZY. Yφ (f ) :=. in. φ. a φ(m) f f 0 dydx .. Y. ‹ inyGerkat«k inko² s Y7vXyqYJenpq`jk ’‘erk s kViQkVkVY7’Qegh`jQY}¡c k v°gh`jiQk. φ : R + → R+. ¢ Ÿ Y[kVirgh`bvXY[gqT erg. |p + p0 | ≤ |p| + |p0 | ≤ (m + m0 ) max(|v|, |v 0 |),. enk s gqTac p |v | ≤ max(|v|, |v |) §S4TVYEWinkVingqink `bvX`¥g{t in φ gqTVY7k `bWmVdj`bY7p¦gqT erg φ ¡cVdj¤ dfp ,. ŽV§ ŽQŽ0°§ ,CiQk pqY7´2cVYXk2ghdjt ¢ Z Z 00. 0. f (t, x, y) φ(|v|) dydx. t 7−→. f` pe•kViQko²Å`jk vXyqYJenpq`jk ’¡cVk v°gh`jiQk in?gq`bWYn§~}pe•¤ yhpugvXink pqY7´2cVY7k v Y‘ir¬ghTV`bp©ÓeQv°g ¢ Ÿ Y yhY7endj`bªXY gqT erg ¢ `j ¢ ghTVYXkRpuc mVm f (t) ⊂ V ¡iny[erkat t ≥ 0 .ÓenmVmVdbtlgqTVY pqcVmVm m yqY72`binfcƒpC⊂yhY7pqVcVdjg#:=Ÿ#`¥gh{(x, TghTVy)Yv„TV∈iQΩ`bvXY ×φY,=|v|1 ≤ R}0 § ,Cink pq` s YXyCkViŸekViQkVkVY7’Qegh`jQYGerk s kVinkV²A`bk v yhY7eQpu`bkV’[¡cVkƒv°gq`bink φ : R → R erk s ekVink kVYX’2egq`bnY • s enk v inkaQY w¦¡cVk v gq`bink φ : R → R §?S4TVYXk Ω. in. Y. R. R. [R,+∞). 2. 1. 3. t 7−→. Z Z. +. f (t, x, y) m φ1 (m) φ2 (v) dydx. `fpGekViQko²Å`jk vXyqYJenpq`jk ’‘¡c k v°gh`jiQkEir<gq`bW]YQ§ =³k s YXY s£¢ mVcVgugq`bkV’ φ(y) = m φ (m) φ (p/m) ¢ y ∈ Y ¢ ghTVY vXinkanYXwo`¥g{t¦in φ erk s ghTVYWinkVingqink `bvX`¥g{t«in φ YXkƒpucVyhYgqT erg Ω. Y. 1. 2. 2. 1. m0 m v + v0 φ(y + y ) = (m + m ) φ1 (m + m ) φ2 m + m0 m + m0 ≤ φ1 (m + m0 ) (m φ2 (v) + m0 φ2 (v 0 )) 0. 0. 0. . ≤ m φ1 (m) φ2 (v) + m0 φ1 (m0 ) φ2 (v 0 ) ,. enk s gqTVY[¡cVkƒv°gq`bink φ pqergq`fp{¤ YJp ,. ŽV§ ŽQŽ0°§ üü ÇAVÚ hÚ Ý . .

(124) J.  #

(125) <   9 3  7

(126) 1#

(127) 3!" . 4. ~ ¤ y„pug `bk2gqYXyhY7pugq`bkV’v iQk puYJ´2cVYXk vXY©in$ghTV`bp4yhY7pqcVdjg#`bp ghTVY s Y7v7ePt¦ir$ghTVY[ a`jkVYXgq`fvYXkVY7yq’Qt ¡. Ÿ#`jgqT gqTVY v„T in`fv Y φ(y) = |p| /m ¢ ghT egG`fp ¢ φ (m) = 1 enk s φ (v) = |v| 0? Z Z Z Z Z Z .AŽo§ÎŽ ;0 |p| 1 |p| f (x, y) E (f (t, x, .)) dxdt = dydx + dydx, f (t, x, y) m 2 m Ÿ#T YXyhY Z Z .AŽo§ÎŽ %0 mm a E (f ) := |v − v | f f dy dy . ~ WinyhY‘’QYXkVY7yhendm yqiQmƒY7yug{tE`fp[env°ghc erdbdbtEmPendj+` s m§ ,Cink pq` s YXy[e kVinkVk YX’Qergq`bnY]erk s kVinko² s YJv yhY7enpq`bkV’ vXinkanYXw¡c k v°gh`jiQk λ ∈ C ([0, +∞)) pucƒv„T½gqTƒeg λ(0) = 0 § + `jgqTŠgqTVY¦v„TViQ`bvXY φ(y) = m λ(|p|/m) .¡gqT ergG`bp ¢ φ (m) = 1 erk s φ (v) = λ(|v|)0 ¢ gqTVY[¡c k v°gh`jiQk φ `fp#pucVžƒe sVs `jgq`bnYenk s ŸCY[T ePQY 2. 1. 2. 2. t. 2. Ω. 0. Y. Ω. Ω. 0. ke. Y. 2. in. ke. 0 2. . Y. 0. . 0. 0. Y. 1. 1. Z Z. Ÿ#T YXyhY Ω. Y. 2. 1 f (t, x, y) m λ(|v|) dydx + 2. Eλ (f ) :=. Z Z. ³k s YXY s£¢ mVcogqgq`bkV’ =. Y. am Λ. Y. . Z tZ 0. |p| |p| + |p0 | , m m + m0. Eλ (f (t, x)) dxdt ≤ Ω. . Z Z Ω. 0. 0. f f dy dy ,. AŽo§ÎŽQˆ90. f in (x, y) m λ(|v|) dydx,. .. Y. Λ(A, B) :=. Z. B. AŽo§ÎŽr‰%0. (λ0 (B) − λ0 (z)) dz .. .. ¢ gqT YWiQkVirghinkV`fv `jg{t«ir λ Y7kQg„er`bdbp ghT eg w = (|p| + |p |)/(m + m ) 0. A. 0. φ(y) + φ(y 0 ) − φ(y + y 0 ) ≥ m0 (λ(|v 0 |) − λ(w)) + m (λ(|v|) − λ(w)).. S4T Y[vXinkanYXwo`¥g{t¦in λ enk s gqTVY` s YXk2gh`¥g{t. ghTVYXkl`bWmVdjt. m0 (|v 0 | − w) = m (w − |v|). φ(y) + φ(y 0 ) − φ(y + y 0 ) ≥ m0 (|v 0 | − w) λ0 (w) − m ≥ m. Z. w. Z Z. w. λ0 (z) dz. |v|. (λ0 (w) − λ0 (z)) dz = Λ(|v|, w) . |v|. ~}kVirghTVYXyGvXink pqY7´2cVY7k v Y[`fp gqTVY[¡iQdjdbiŸ#`bkV’ §¬‹ViQyGerkat«v iQkanY w•¡cVk v°gh`jiQk t 7−→. Z. ω : R3 → R+. ¢ gqTVY[¡c k v°gh`jiQk. f (t, x, y) ω(x − v t) dydx. `fp?ekViQko²A`bk vXyqYJenpq`jkV’©¡cVk v gq`bink¦inƒgh`jWYn§ =³k s Y7Y s£¢ ¡iny¬YJenv„T (t, x) ∈ R × R ¢ φ : y 7→ ω(x − v t) `fp?e vXinkanYXw¡cVk v gq`bink¦in v erk s `fp¬gqTac p:pucVžƒe sVs `jgq`bnYQ§¬S4TVYXyhY ¡iQyqY ¢ eäghYXy?W‘cVd¥gh`jm djta`bkV’.54Q§"4 00žat ω(x − v t) enk s `bkQghYX’Qyhergq`bink ¢ gqTVY v ink2ghyq`bžVcogh`jiQk ir4gqTVY v i2erdbY7phv YXkƒv Y]gqY7yqW`bp‘kViQkVkVYX’2egh`jQY ¢ Ÿ#T `jdbY«ghTVY¦gqY7yqW¦p yhY7pqcVdjgq`bkV’¡yhinW gqT YG¡yhYXYGghyhenk pqmƒiQyugCv7erk vXYXdA§ =³k•m eryqgq`fv cVdfery ¢ g„er a`bkV’ ω(z) = |z| ¢ θ ≥ 1 ¢ z ∈ R ¢ ŸCY iQžoghen`jk Z Z Z Z .AŽo§ÎŽ %0 f (t, x, y) |x − v t| dydx ≤ f (x, y) |x| dydx , t ≥ 0 . Ω. Y. +. 3. θ. θ. Ω. Y. in. Ω. 3. θ. Y. ÷¡û<ü¨÷äØ.

(128) 

(129) 

(130)   !" #

(131) %$'&( 

(132) !" #. 4;4. ‹<`jk endjdbt ¢ dbY g Φ : [0, +∞) → [0, +∞) žHY e¼kVink kVYX’2egq`bnYRerk s v iQk2QY w ¡cVk v gq`bink pqergq`fp{¡ta`bkV’ §¬S4TVYXk Z Z. • Φ(0) = 0. t 7−→. Φ(f (t, x, y)) dydx. `fp#e]kVinkV²A`bk v yhY7eQpu`bkV’‘¡cVk v gq`binklirgq`bW]YQ§ ¾ iQyqYmVyhY7v `fpqYXdbt ¢ Ÿ YTƒePnYgqTVY[¡iQdjdbiŸ#`bkV’‘yhY7pqcVdjg C¶   ™    8 #

(133) ! 3  f   !/./#0&' #

(134)  1#! (# Ω. Y. . Z Z Ω. 1   . Φ(f (t, x, y)) dydx +. Z tZ 0. Y. Ω. Ω. . AŽo§ n%0 .. Φ(f in (x, y)) dydx , Y. 1 2 DΦ (f ) := DΦ (f ) + DΦ (f ) Z 1 1 DΦ (f ) := a(y, y 0 ) (f ∨ f 0 ) Φ(f ∧ f 0 ) dydy 0 ≥ 0 , 2 Y2 Z 2 a(y, y 0 ) Ψ(f ) f 0 1(m,+∞)×R3 (y 0 ) dy 0 dy ≥ 0 , DΦ (f ) := Y2.  . DΦ (f (τ, x)) dxdτ ≤. Z Z. . . Ψ(u) :=u  Φ0 (u) − Φ(u) ≥ 0 u≥0 max {f, f 0 } f ∧ f 0 = min {f, f 0 }. 

(135)      !61  1  #

(136)     # . AŽo§  470 .. f ∨ f0 =. ¢ ¢ gqTV`fpyqYJpucVdjgTƒenpžƒY7YXkmVyhinY s `jk 4 ¡inygqTVY ^aWindbc v„TViŸGpq 2` + TVY7k YJ´2c egh`jiQk¨§ Φ(u) = u p > 1 ˜ º¨º  +RY[¤ yhpugGyhY7vXendjd¨gqT ergGgqTVYvXinkanYXwv iQkz{cV’2egqY Φ ir Φ `fp}ek inkVkVY7’Qergq`bnYv iQk2QY w¦¡cVkƒv°gq`bink ’Q`jQYXkž2t . p. . . ¡iQy. ∗. Φ∗ (u) := sup {u w − Φ(w)}. § =³kEe sVs `jgq`bink ¢ Ÿ Y[T ePnY©gqT Y ?incVkV’`bkVY7´2c endj`jg{t u≥0 w≥0. . enk s gqTVY`bkVY7´2c endj`jg{t | t .AŽo§ QŽ04enk s .,Žo§ n;0 ŸCY[T ePQY Z. a f f 0 Φ0 (f 00 ) dy 0 dy Y. . =. 2. ≤. u w ≤ Φ(u) + Φ∗ (w) ,. Φ∗ (Φ0 (u)) ≤ Ψ(u) , u ≥ 0 .. Z. a (f ∧ f 0 ) (f ∨ f 0 ) Φ0 (f 00 ) dy 0 dy. ZY. 2. Y2. ≤. üü ÇAVÚ hÚ Ý . AŽo§ QŽ;0 .AŽo§ n%0 .. u, w ≥ 0 ,. Z. Y2. a (f ∧ f 0 ) {Φ(f ∨ f 0 ) + Φ∗ (Φ0 (f 00 ))} dy 0 dy Z 0 0 0 a (f ∧ f ) Φ(f ∨ f ) dy dy + a (f ∧ f 0 ) Ψ(f 00 ) dy 0 dy. Y2.

(137) PŽ.  #

(138) <   9 3  7

(139) 1#

(140) 3!" . 4. RY k iŸ c puY .54Q§ ‰90#gqižƒiQcVk s ghTVY‘pqY7vXink s gqYXyhW ir¬ghTVY yh`j’QT2gu²ÅT erk s pq` s Y in¬gqTVYeržHinY`bkVY7´2c endj`jg{t enk s s Y s cƒv Y[gqTƒeg +. Z. 0. 0. 00. a f f Φ (f ) dy dy. ≤. Y2. CiQk pqY7´2cVYXk2ghdjt ¢. Y2. Y2. ,. Z. Z. a (f ∧ f 0 ) Φ(f ∨ f 0 ) dy 0 dy Z (a(y, y 00 ) + a(y 0 , y 00 )) (f ∧ f 0 ) Ψ(f 00 ) dy 0 dy + Y2 Z Z a(y 0 , y 00 ) f 0 Ψ(f 00 ) dy 0 dy a (f ∧ f 0 ) Φ(f ∨ f 0 ) dy 0 dy + 2 ≤ Y2 Y2 Z a (f ∧ f 0 ) Φ(f ∨ f 0 ) dy 0 dy ≤ Y2 Z +2 a f 0 Ψ(f ) 1(0,m)×R3 (y 0 ) dy 0 dy .. 0. Q(f ) Φ0 (f ) dy Y. Z 1 a f f 0 (Φ0 (f 00 ) − Φ0 (f ) − Φ0 (f 0 )) dy 0 dy 2 Y2 Z Z 1 0 0 0 ≤ a (f ∧ f ) Φ(f ∨ f ) dy dy + a f 0 Ψ(f ) 1(0,m)×R3 (y 0 ) dy 0 dy 2 Y2 Y2 Z Z 1 − a Ψ(f ) f 0 dy 0 dy − a (Φ(f ) f 0 + Φ(f 0 ) f ) dy 0 dy , 2 2 2 Y Y. =. #Ÿ T YXk vXY .AŽo§ n90 § t u +RYCpqcVWW¦eryh`jª7Y ¢ `jkghTVY?kVYXwagyhY7pqcVd¥g ¢ ghTVY  @(( Y7pugq`bW¦eghY7p¨iQk[gqTVY puiQdjcVgq`bink p.ghi .54Q§"4 0.inžVgher`bkVY s `bk gqTV`fp#pqY7v°gh`jiQk¨§  ¶aº ˜ ¶    # #(

(141) '   f # 1#3 (# . . in. K(f ) :=. Z Z . in. in. in. Φ(f (x, y)) + f (x, y). . r(m) + 1 + m + |p| + m λ. . |p| m. . AŽo§ rZ. dxdy < ∞,. . 0 #

(142) 

(143) '   $% !5     . ; 

(144)  < #( $ < 5 +*><3@ # Φ ∈ C 1 ([0, +∞))   λ ∈ C 1([0, +∞)) #(   Φ(0) = 0   λ(0) = 0    #

(145) /  $% !5 2   .  

(146)  < #(%$ <3 

(147)   (    #

(148) ! 3  f  !/./#0&'/

(149) !!98#

(150)  1#3 # r ∈ C((0, +∞)) Ω. sup t≥0. Z. Z Z  Ω. ∞. Z. Y. Y. Φ(f (t, x, y)) + f (t, x, y). . r(m) + 1 + m + |p| + m λ. |p| m. . . φ=1.  . φ=r. . AŽo§  ;0 .AŽo§  %0. dxdy ≤ K(f in ),. (DΦ (f (τ, x)) + Y1 (f (τ, x)) + Yr (f (τ, x)) + Eλ (f (τ, x))) dxdτ ≤ 2 K(f in ),. 1  0 Y Ω Y  E   D  ;   ' & 0& #1     &  1"$r # λ < !5 !98# Φ . . ..  .  (# < !5

(151) !98  & 0& ' . ÷¡û<ü¨÷äØ.

(152) J. 

(153) 

(154)   !" #

(155) %$'&( 

(156) !" #. 

(157) < X! „

(158) . 4. 0 #"$ !„

(159).  ¶  — º 

(160)    f in    @ $% !5 <3 

(161)  #

(162)  1#  8%$ ( !& )  1 <' #

(163) ! 3   !/./#0&''1#     $% !5 <3  

(164)  . f ∈ C([0, +∞); L1 (Ω × Y )) ,. f (0) = f in ,. #

(165)  1#  8%$  &   $  &  - #

(166)  @ $% !5   @. 9 < #(%$ < 5 * <3@ # Φ ∈   λ ∈ C 1 ([0, +∞))   #

(167) 

(168) '    $% !5 < 5 +*  -  .  

(169)  < #( $ < 3@-. C 1([0,  +∞)) #<     1 . . r ∈ C ((0, +∞)). Φ(0) = 0 λ(0) = 0. lim λ0 (u) = lim. Φ(u) = +∞ u.  . ,V§ 2ˆ90 .. lim r(m) = +∞ ,.  $;

(170)   1    <   !/  #

(171)

(172) 

(173) # 5  1#( (  3  #$ 

(174)  #( ! #

(175) -# 1#  8-  '!9.   ! 5 @   (  # ! ' #!/#  < '     3 #  &   $  &  - !

(176)  ! 8  

(177)   !/6

(178) '' ; (##

(179) #

(180) #( <   8 T ∈ R  + . %0 Qi (f ) ∈ L1 (ΩT × Y ), i = 1, 2. + .54 "470 (.54 0  1 <  #

(181) ! 3     !$ ./0&$21    ! ;  

(182) f (0)   !"

(183)  7   6  n. #<#< 

(184) ' <3(     n & ≥ 1 $  fn &    ! 3  /

(185) 9! 81  ' (#  

(186) >  n ≥ 1 1   K(f (0)) n #

(187) 

(188) ' K > 0  <3@ # (Φ, λ, r) #

(189)  1#  8%$      (  -   *91#( >#(  #

(190) <

(191)  @≤  K0 5 0   .   <3 

(192)  ( #      1  #  1.  

(193) #   ! 3 .     .       !  /    / .   #  0  ' &   (fn ) (fn ) f f     C([0, T ); w − L1 (BR × Y )),  fn −→ f . #%0     Qi (fn ) * Qi (f ) L1 ((0, T ) × BR × YR )   8     1       u→+∞. u→+∞. m→0. . . . RYkViŸ*pughergqYe]Ÿ Y7er «pughenžV`bdj`jg{t«mVyh`jkƒv `bmVdjY[¡iQy#ŸCYJer «pqindbcogq`binkƒp gqi Q§ Ų n§ÎŽ § ¶aº ˜ ¶ . ,V§ n‰. . . .  . k. ,V§ . k. k. T, R ∈ R+ Z.  ψ ∈ D(Y )  #  Y    L1(Ω × Y ) . i ∈ {1, 2}. ψ(y) fnk. YR := (0, R) × BR Z  1 dy −→ ψ(y) f dy L ((0, T ) × BR ). ,V§ ZQ%0 .. 9

(194)   #  # 9< 8 C ∞ . #

(195) '7    <

(196)  9

(197) ! 8 #( #( <3 $. D(Y )  #9< 5 1 <'!98 <  # < 3@ # < 

(198) [0, T ) C([0, T ); w − L1 (Ω × Y )) .

(199)  . Y. . Y. & <¦   #0   =³k•gqTV`fp#pqY7v°gh`jiQk ¢ ŸCY[v iQk pq` s Y7y#e‘pqY7´2cVY7k v Y (f ) ir0puiQdjcVgq`bink p:gqi .54Q§"470Cphegh`bpu¡ta`jk ’gqT YyhY7´2cV`byhYXWYXk2ghp in[S4T YXinyhYXW  § V§ +ŠYl¤ƒyhpug«mVyhinYgqT erg .,Žo§  90erk s .,ŽV§  90]’nc enyhenk2gqYXYgqT YEŸCYJer ¼vXinWm env gqkVYJpqp ¢ `bk ir erk s §lS4TVY«kVYXwag‘p{ghYXm `fp[gqi c puY«gqTVY«m yqiQmƒY7yugh`jYJpir4gqT Y«dj`bkVYJery ghyhenLk pqmƒiQyug[(fY7´2)c ergq`binkŠ(QgqiE(finžVgh))er`bkŠi gq=TVY«1,pugq2yhinkV’ L ²ÅvXinWm eQv°gqk Y7php©in y²³ePnYXy„er’QY7p}`jk e Ÿ ePt½pq`bW]`bdfery[gqi ghTVYl|CiQd¥ghªXW¦erk k Y7´2c ergq`bink 64 ŧ S4T erk  ap gqiŠgqT Y pugqyhinkV’Šv inWm eQv°ghkVY7phpghT2cƒp‘iQžoghen`jk Y s£¢ Ÿ YW¦ePt ` s Y7kQgh`¥¡t•gqTVYdb`bW]`jgGir<gqT YkVinkVdb`bkVY7eny4vXiQen’ncVdfegh`jiQk«gqY7yqW (Q(f )) § . n. . 1. n. . i. n.  . . 1. n. üü ÇAVÚ hÚ Ý .

(200) 7Z.  #

(201) <   9 3  7

(202) 1#

(203) 3!" . 4. .  

(204) 

(205)  !"

(206) #$%

(207) $

(208) &' (). RY¤ y„p{g4mVyhinYGghT eg .AŽo§  0 erk s .AŽo§  90C`bW]m djt¦ghTVY[ŸCYJer  L ²ÅvXinWm eQv°gqk Y7phpCin (f ) enk s (Q (f )) § C¶   ™ +* 7  <9 T > 0  R > 0 #

(209) <

(210)  < (f ) 1# 1 < !98'<

(211)  ; > L ((0, T ) × +. . . . 1. .     #

(212) <

(213)  < B 1# R;×  Y )'   -,$#. . (Q1 (fn )).  . n. 1. . 1#1 <'!98  

(214) 9

(215) n. 1. L ((0, T ) × BR × YR ). . n. 1 

(216)  . 1. YR. ˜ º¨º  +ŠY‘¤Vw erk s § ­ ž pqYXyhnY¤ yhpuggqT ergghTVY‘¤ yhpugenphpuY7yugh`jiQkEirC¯$YXWW¦eZ §øˆ`fpe pugqy„er`b’nT2gq¡inyhŸ eny s TvXin>k pqY70´2cVY7k v Y[Rir>.,0ŽV§  0 ¢ .,V§ 2ˆ04enk s gqTVY±©cVko¡iQy s ²Åx0Y gqgq`fp4gqTVY7inyhYXWl§ +RY•kVYXwag‘p{ghc s tRgqT Y«ŸCYJer Rv inWm eQv°ghkVY7phpmVyhinmHYXyqgq`bY7p ir §½¯$Y g žHYelWY7eQpuc yhenžVdjY pqcVž pqY g]ir (0, T ) × B × Y erk s djYXg M ¢ N ¢ δ enk s R žƒ(QY mƒi2(fpu`jgq))`bnYyqYJerd EkacVW žHYXy„p‘pqc v„T ghT eg §¬x?cVgugq`bkV’ ϕ = 1 erk s R ≥ R + 2R /δ . . . 1. R. 2. 1. R. n. 1. E. A = An (t, x, y, y 0 ) := a(y, y 0 ) fn (t, x, y) fn (t, x, y 0 ) ,. enk s mƒY7yu¡iQyqW`bkV’]gqTVYv„T enkV’nYir0eryh`benžVdbY7p (y, y ) → (y , y − y ) ¢ Ÿ Y[T ePnY 0. Z. Ÿ#`jgqT 2I1. =. Z. δ. enk s. Z. δ. {|p0 |>R1 }. Z. R3 0 RZ. Z. Z. 0. + +. R. Z. R. δ. Z. Z. R. Z. ­ kgqT YinkVY[T enk s£¢ iQž puY7yqa`bkV’‘gqT erg δ. Q1 (fn ) ϕ dy = I1 + J1. B(−p0 ,R) Z RZ. 1}. 0. YR. A ϕ00 dydy 0 +. {|p0 |≤R. 1 J1 = 2. 0. δ. Z. R. δ. Z. Z. R δ. Z. R3. Z. δ 0. Z. A ϕ00 dydy 0 B(−p0 ,R). A ϕ00 dydy 0. ÓZ § Z. B(−p0 ,R). . 4 0. A ϕ00 1a≥N dydy 0 B(−p0 ,R). {|p0 |≤R1 }. Z. R δ. Z. A ϕ00 1a≤N dydy 0 . B(−p0 ,R). |p| R R1 |p0 | + |p| ≤ ≤ ≤ , m δ 2R m + m0. pqi]gqT erg mΛ. . |p| |p0 | + |p| , m m + m0. . ≥ Λδ,R (R1 ) := δ Λ. . R R1 , δ 2R. . ÷¡û<ü¨÷äØ.

(217) 

(218) 

(219)   !" #

(220) %$'&( 

(221) !" #. ¡iQy. erk s. y ∈ (δ, R) × B(−p0 , R). c y 0 ∈ (δ, R) × BR 1. 4. ¢ erk s. A = a (fn ∨ fn0 ) (fn ∧ fn0 ) ≤ a (fn ∨ fn0 ) M 1fn ∧fn0 ≤M + ≤ a (fn + fn0 ) M +. Ÿ Y[’nYXg 2I1. ÓZ § Z2Ž;0 .. M a (fn ∨ fn0 ) Φ(fn ∧ fn0 ), Φ(M ). Z RZ Z δZ 1 r(m0 ) A dydy 0 r(δ) δ 0 0 B(−p0 ,R) 0 B(−p0 ,R)   Z RZ Z RZ |p| |p| + |p0 | 1 , A dydy 0 mΛ + Λδ,R (R1 ) δ {|p0 |>R1 } δ B(−p0 ,R) m m + m0 ZZ a 1a≥N (fn + fn0 ) dydy 0 +M 1 r(δ). ≤. δ. M a (fn ∨ fn0 ) Φ(fn ∧ fn0 ) 1fn ∧fn0 ≥M Φ(M ). Z. 2 Yδ,R+R. M + Φ(M ). R. Z Z. ZZ. Z. r(m) A dydy 0 +. 1. 2 Yδ,R+R. a (fn ∨ fn0 ) Φ(fn ∧ fn0 ) dydy 0 1. 2 1 ≤ Yr (fn (t, x)) + Eλ (fn (t, x)) r(δ) Λδ,R (R1 ) Z M D1 (fn (t, x)) . +2 M aδ,R+R1 (N ) fn (t, x) dy + 2 Φ(M ) Φ Y. ­ kgqT YirgqT YXy#T enk s£¢ žat .84n§ 904erk s Ó. Z § Z2Ž0 ¢ ŸCYT ePQY J1. ≤. Z. Yδ,R+R1. ≤ M N ≤ 2M N. Z. Z. A 1a≤N ϕ00 dydy 0 Yδ,R+R1. Yδ,R+R1. Z. Z. Yδ,R+R1. (fn + fn0 ) ϕ00 dydy 0 +. fn ϕ0 dy 0 dy +. 2M D1 (fn (t, x)) Φ(M ) Φ. 2M D1 (fn (t, x)) . Φ(M ) Φ. RY[kViŸ’2egqT YXy gqTVY[mVyhYXa`binc pCY7pugq`bW¦eghY7p#erk s `bkQghYX’QyhergqYinYXy (0, T ) × B § ­ Ÿ#`jkV’‘gqi A. Žo§  0 erk s .AŽo§  90 ¢ Ÿ YY7k s cVm Ÿ#`¥ghT +. Y2. . R. . 2. Z. T. K0 4M 2 K0 + + K0 r(δ) Λ (R ) Φ(M ) δ,R 1 0 B R YR Z TZ Z fn ϕ0 dy 0 dydxdt . +2 M aδ,R+R1 (N )K0 + M N Z. Z. Q1 (fn ) ϕ dydxdt ≤. 0. üü ÇAVÚ hÚ Ý . BR. Y2.

(222)  #

(223) <   9 3  7

(224) 1#

(225) 3!" . 4.

(226) pu`bkV’gqTVYGendjyhY7e s tY7pughenžVdb`bpqTVY s Ÿ Y7er vXinWm eQv°gqk Y7phpin `jk erk s .54Q§ %0 ¢ T )×B ×Y ) ¢ s Ÿ Y¦W¦ePtŠmƒenphp[gqiEghTVY«db`jW`jg ¤ y„pug‘enp |E| → 0 ¢ gqTVY7k¼enp N(f→) +∞L ¢ ((0, r e k ¤ kƒerdbdjt enp R → +∞ s s r e k q g ¦ i. v Q i k. v b d c  Y q g ƒ T  e g M → +∞ δ→0 1. n. R. 1. lim sup. Z. T. Z. Z. Q1 (fn ) 1E dydxdt = 0 ,. erägqY7yGkVirgh`bvX`jk ’¦gqT erg .Ӑ § aˆ04`bWmVdj`bY7pGgqT erg enp §#S4TVYXyhY ¡iQyqY ¢ `fp4Ÿ Y7er adbt•v iQWm env g4`bk L ((0, T ) × B ×ΛY )(Ržat«)ghTV→Y±}+∞c ko¡iny s R²Åx<YX→gugh`bp4+∞ ghTVYXiQyqY7Wl§ (Q (f ))tu ­ Ÿ#`bkV’RgqiRgqT Ylpugqyhc v gqcVyhYlir}ghTVY½v i2erdbY7phv Y7k v YY7´2c egh`jiQk .84n§64 0 ¢ `jg¦gqcVyhk pincVg]ghT egghTVYEŸCYJer  ²L ³v iQW]mƒenv°ghkVY7phpir (Q (f )) mVyhia` s Y7ppqinWY¦e sVs `jgq`binkƒerd?`bko¡inyhW¦egh`jiQkRiQk (Q (f )) §lS4TV`bpÓenv°g Ÿ4enp#¤ yhpug}iQž puY7yqQY s `jk Ž $¡iQyGgqT Y s `fpqvXyqYXgqY s ` .c pu`bnY‘v iQen’ncVdfegh`jiQklY7´2c egh`jiQkEerk s e¦yhY7pqcVdjg}`bkEgqTVY pherWYpqmV`jyh`jg4`fpGendbpqi]ePen`jdferžVdbY©¡iny .54Q"§ 4 0°§ C¶   ™  7 8 R, T > 0

(227)  +*;1#( #   @ $% !5  2  . 9 <

(228)  < #(%$ <3@  |E|→0 n≥1. 0. YR. δ,R. 1. 1. BR. R. 1 n  . . θ = θR,T ∈ C 1 ([0, +∞)). 1. #(  .    8.  δ ∈ (0, 1). T 0. Z. 1. 2. . . . . 1  . θ0 (u) → +∞ Z. 1. BR. Z. n. R. n. . u → +∞. ÓZ § ZQ%0 .. θ0 (fn ) Q2 (fn ) dydxdt ≤ C(δ, R, T ) Yδ,R. ˜ º¨º  ‹VyhinW ¯¨YXWW¦e#Zƒ§Îˆ ¢ Ÿ Y¬ 2k iŸ ghT eg ¢ (f ) enk s (Q (f )) žHYXdbinkV’#ghi#ŸCYJer adbt©v iQWm env g ¢ yhY7pqmƒYJv°gq`bnY7djtQ§<S4T Y}±}c ko¡iny s ²Åx<YXgugh`bp:gqTVY7inyhYXW qp cVž pqY g„p?in L (Ω × Y ) erk s L ((0, T ) × B (f ×(0)) enk s eyqYX¤ kVY s QYXy„pu`bink ir<gqT Y s Ydfe ?erdbdjŒ7Y ²Åx0inc Yphpu`bk) gqTVY7inyhYXW Ύr‰ ¢ x?yhinmHiQpq`¥gh`jiQk-=°§64n§64 `jWmVdbt•ghT eg ghTVYXyhY«`fpeEkViQkVkVY7’Qegh`jQY ¢ v inkaQY wRenk s kViQko² s Y7v yhY7eQpu`bkV’¡cVk v gq`bink θ = θ ∈ C ([0, +∞)) pqc v„T ghT eg enp u → +∞ enk s u θ (u) ≤ C θ(u) , u ≥ 0 , θ (u) → +∞ ¡iQyGpuiQWY[vXink pughenk2g C > 1 enk s . . 1. 1. n. n. 2R. 1. 2R. n. . . R,T. 0. 0. 1. θ. θ. K1 := sup. RY½¤Vw. n≥1. +. (Z. Z. θ(fn (0)) dydx +. Z. T. Z. Z. ¢ ¢ pucƒv„T gqT erg § +ŠY`bko¡Y7y4¡yqiQW .54Q§"4 0CgqT erg B2R. Y2R. 0. B2R. χ ∈ D(R3 × Y ) 0 ≤ χ ≤ 1. (θ(fn ) + θ(Q1 (fn ))) dydxdt. Y2R. ink. Y. ΩT. Y. BR × Yδ,R. < +∞.. erk s pqcVmVm. χ ⊂ B2R × Yδ/2,2R Z Z Z Z θ0 (fn ) Q2 (fn ) χ dydxdt θ(fn (T )) χ dydx + Ω Y ΩT Y Z Z Z Z Z Z 0 θ(fn (0)) χ dydx. θ(fn ) v · ∇x χ dydxdt + θ (fn ) Q1 (fn ) χ dydxdt + = ΩT. χ ≡ 1. ). Ω. Y. ÷¡û<ü¨÷äØ.

(229) ˆ. 

(230) 

(231)   !" #

(232) %$'&( 

(233) !" # 4. ^o`jk vXY θ enk s θ enyqY[kViQkVkVYX’2egh`jQYenk s 0. θ∗ (θ0 (u)) ≤ u θ0 (u) − θ(u) ≤ Cθ θ(u) ,. u ≥ 0,. ghTVY ?inc kV’`jkVYJ´2c erdb`¥g{t•YXk2ghen`jdfp gqT erg . Z. ΩT. Z. Z. 0. θ (fn ) Q2 (fn ) dydxdt ≤ Yδ,R. Z. ≤. ΩT T 0. 2 + δ. BR × Y R. B2R T. Z. 0. Z. {θ∗ (θ0 (fn )) + θ(Q1 (fn ))} dydxdt Y2R. Z. B2R. Z. θ(fn ) p · ∇x χ dydxdt + K1 Yδ/2,2R. 4R k∇x χkL∞ ≤ 2 K 1 + Cθ + δ.  Z. T 0. Z. B2R. Z. θ(fn ) dydxdt , Y2R. t u . . Z. θ0 (fn ) Q2 (fn ) χ dydxdt Y. . Ÿ#T YXk vXY .ÓZ § ZQ90 § C¶   ™  7 - <9  ). Z. R, T > 0.  # <

(234)  @< . (Q2 (fn )). 1# 1 <'!98  

(235) 9

Références

Documents relatifs

[r]

Les résultats de l’étude de niveau pour un processus respectant un modèle AR(2) avec l’innovation d’un modèle GARCH(1,1) sont présentés dans les tableaux 4.3 et 4.4..

En réalité, son auto- rité repose sur un contrôle communautaire et une hiérarchie politique : dans les prisons et les camps, les comités de détention sont mis en place par

À cet effet, un nombre considérable de recherches démontre cliniquement que les enfants de parents souffrant de problème de santé mentale sont plus à risque d’un retard dans leur

Même si l’armée de Terre française intègre déjà de nombreux dispositifs de simulation numérique ou d’aide à la décision dans ses systèmes d’information, il s’est

In this way, we derive two simple models for large strain viscoelasticity: the first one referred to as a Convolution Integral Model (CIM) is a solid extension of the K-BKZ model,

Dans le cadre du LabEx RESSOURCES21, les premiers groupes de métaux sur lesquels un accent a été mis sont les suivants : les métaux de la filière photovoltaïque

Dans le cas a), l’´el´ement passif stocke l’´energie cr´e´ee par le moteur durant la phase d’actionnement et la restitue pendant la phase de rappel. C’est un m´ecanisme qui