• Aucun résultat trouvé

A bias-compensated MUSIC for small number of samples

N/A
N/A
Protected

Academic year: 2021

Partager "A bias-compensated MUSIC for small number of samples"

Copied!
5
0
0

Texte intégral

(1)

an author's

https://oatao.univ-toulouse.fr/26811

https://doi.org/10.1016/j.sigpro.2017.03.015

Vincent, François and Pascal, Frédéric and Besson, Olivier A bias-compensated MUSIC for small number of samples.

(2017) Signal Processing, 138. 117-120. ISSN 0165-1684

(2)

Short

communication

A

bias-compensated

MUSIC

for

small

number

of

samples

François Vincent

a ,∗

, Frédéric Pascal

b

, Olivier Besson

a

a ISAE-Supaéro, Department Electronics Optronics Signal, 10 Avenue Edouard Belin, 31055 Toulouse, France b L2S, CentraleSupélec, 91192 Gif-sur-Yvette, France

Keywords:

DOA estimation MUSIC G-MUSIC

finite sample analysis

a

b

s

t

r

a

c

t

The multiplesignal classification (MUSIC)methodis known tobe asymptotically efficient,yet witha smallnumberofsnapshotsitsperformancedegradesduetobiasinMUSIClocalizationfunction.Inthis communication,startingfromG-MUSICwhichimprovesoverMUSICinlowsamplesupport,ahighsignal tonoiseratioapproximationoftheG-MUSIClocalizationfunctionisderived.Thisapproximationresults inclosed-formexpressionsoftheweightsappliedtoeacheigenvectorofthesamplecovariancematrix. Anew methodwhichconsistsinminimizing thissimplifiedG-MUSIC localization functionis thus in-troduced,andreferredtoassG-MUSIC.Interestinglyenough,thissG-MUSICcriterioncanbeinterpreted asabiascorrectionoftheconventionalMUSIClocalizationfunction.Numericalsimulationsindicatethat sG-MUSICincuronlyamarginallossintermsofmeansquareerrorofthedirectionofarrivalestimates, ascomparedtoG-MUSIC,andperformsbetterthanMUSIC.

1. Introductionandproblemstatement

Estimating the directions of arrival (DoA) of multiple sources impinging on an array ofM sensorsis a primordialtaskin most sonar or radar systems [1] . A reference approach to tackle this

problem is by the maximum likelihood estimator (MLE) [2–5] ,

whoseperformance isatbestmatchedasymptotically,butis usu-allymostaccurate intheso-calledthresholdareawheremost

es-timators beginto depart fromthe Cramér-Rao bound (CRB). The

MLEentailsa globalsearch forthemaximumofa K-dimensional

likelihood function, where K stands for the number of sources

and canthus be prohibitive froma computational point ofview. In theeighties,the paradigmofsubspace-basedmethods was in-troduced, relying heavily onthe low-rank structure ofthe noise-free covariancematrix.Exploiting thepartitioningofthespaceas a subspace containing the signals of interest and its orthogonal

complement, the K-dimensional problem was reduced to a

one-dimensional problemwhereeitherK maxima,K eigenvalues orK

roots of a polynomial were to be searched,see e.g. MUSIC [6,7] , ESPRIT[8] orMODE[9] respectively.

MUSIC[6,7] ,whichisoneofthefirstsubspace-basedtechnique introduced andisapplicable toanyarray geometry,hasbeen ex-tensively studied. The MUSIC DoA estimates are obtainedas the K deepest minima of the localization function LˆMUSIC

(

θ

)

defined

Corresponding author.

E-mail addresses: francois.vincent@isae-supaero.fr , Francois.Vincent@isae.fr (F. Vincent), frederic.pascal@centralesupelec.f (F. Pascal), olivier.besson@isae-supaero.fr

(O. Besson).

hereafter.Inthe largesamplecase,itwasdemonstratedthat itis asymptotically unbiased and efficient [10–12] ,i.e. it achieves the CRB either as the number of snapshots T or the signal to noise ratio(SNR)growlarge.Nonetheless,itsperformanceinfinite sam-pledegrades.Thisisdetrimentalinpracticalsituationswhere dy-namicallychangingenvironmentsrequirecarryingoutDoA estima-tionwithapossiblysmallnumberofsnapshots.In[13] ,Kavehand BarabellprovidedadetailedstudyofMUSIClocalizationfunction

ˆ

LMUSIC

(

θ

)

=aH

(

θ

)

UˆnUˆHna

(

θ

)

where a(

θ

) stands for the array steering vector and Uˆn=



ˆ

u1 · · · ˆuM−K



where uˆm are the eigenvectors of the

sam-ple covariance matrix with the convention that the correspond-ing eigenvalues ˆ

λ

m are sorted in ascending order. They proved

that, when evaluated at a true DoA

θ

k, LˆMUSIC

(

θ

)

has a finite

sample bias, which is generally larger than the corresponding

standard deviation, and is thus the main factor for the loss of resolution and accuracy. In [14] , rigorous expressions for the fi-nite sample bias of MUSIC DoA estimates were derived. In fact,

resorting to random matrix theory (RMT), i.e. considering the

asymptotic regime where M, T → ∞ with M/Tc (denoted

asRMT-regime), itwas proven in[15] that thelocalization func-tion of MUSIC is not consistent. As a corollary, it was demon-stratedthat MUSICcannotconsistentlyresolve sourceswithin the

main beam width. In order to cope with this problem, the

G-MUSIC methodwas introduced which provides a consistent

esti-mate of aH

(

θ

)

U

nUHna

(

θ

)

in the RMT sense. G-MUSIC estimates

the noise projection matrix as PˆG-MUSIC=mM=1wmuˆmuˆHm where

wm are weightsdefinedhereafter.The differencewiththe MUSIC http://dx.doi.org/10.1016/j.sigpro.2017.03.015

(3)

projector PˆMUSIC=Mm−K=1uˆmuˆHm is twofold: MUSIC uses only

“noise” eigenvectorswhile PˆG-MUSIC makesuseofalleigenvectors,

andMUSIC doesnot attributea differentweighting tothe eigen-vectors.G-MUSICwasshowntoimproveoverMUSICand,although itreliesonanasymptoticassumption,G-MUSICprovedtobe effec-tiveinsmallsamplesupport[15,16] .

Thissaid,theweightsofG-MUSICarenoteasytoobtain: com-putingthemrequiresfindingtherootsofaMthdegreepolynomial orfindingtheeigenvaluesofaM× Mmatrix,seebelowfordetails. Additionally,itisdifficultto havea simpleandintuitive interpre-tationoftheseweights. Inthiscommunication, we start from G-MUSICwhichperformswellforsmallT,andtrytosimplify calcu-lationofitsweightsandtoobtainmoreinsightfulexpressions.Our

approachis based ona high SNR approximation ofthe G-MUSIC

weightsandresults ina simple,closed-formexpression. Interest-inglyenough, theso-approximated weights canbe interpreted as a correction of the biasin MUSIC localization function. The new schemeisthussimplerthanG-MUSICwithoutsacrificingaccuracy, aswillbeshowninthenumericalsimulations.

2. DerivationofsG-MUSIC

In thissection, we derive an approximated andsimplified ex-pressionofG-MUSICprojectionestimate

ˆ PG-MUSIC= M  m=1 wmuˆmuˆHm (1)

andrelatetheso-obtainedestimatetoabiascompensationof MU-SIC.

2.1.Backgroundandapproach

TheweightswmofG-MUSICaregivenby[15]

wm=

1+k>M−K

ˆ λk ˆ λm−ˆλk− ˆ μk ˆ λm− ˆμk

m≤ M− K −k≤M−K

ˆ λk ˆ λm−ˆλk − ˆ μk ˆ λm− ˆμk

m>M− K (2)

where

λ

ˆkaretheeigenvaluesofthesamplecovariancematrixand

ˆ

μ

k,k=1,...,M denotetherootsof

f

(

μ

)

= M  m=1 ˆ

λ

m ˆ

λ

m

μ

=M c =T (3)

sorted in ascending order. Note that, when c < 1, we have the interlacingproperty that ˆ

λ

m−1<

μ

ˆm<

λ

ˆm [17] .It followsthat, at

high signal to noise ratio where there is a clear separation be-tweensignal andnoise eigenvalues, thelast K values

μ

ˆm willbe

wellabovetheclusteroftheM− K smallest

μ

ˆm,whichshouldlie

around thewhite noise power (WNP),and the latteris assumed

to be small.Moreover, observefrom (2) that the M− K smallest ˆ

μ

m will impact theweights ofthe signal eigenvectors whilethe

weightsofthenoiseeigenvectorsdependontheKlargest

μ

ˆmonly.

Our approximation relies on finding the roots of (3) by con-sideringthetwoclustersofsolutionsindependently.Rewritingthe functionin(3) as f

(

μ

)

=M

m=1fm

(

μ

)

, where fm

(

μ

)

= ˆλˆm λmμ one canthusmakethefollowingpartitioning

f

(

μ

)

= M−K m=1 fm

(

μ

)

+ M  m=M−K+1 fm

(

μ

)

=fn

(

μ

)

+fs

(

μ

)

.

First,we use the fact that, when searching forthe M− K small-estvaluesof

μ

,fs(

μ

)isapproximatelyconstant,whichleadstoan

approximationof

μ

ˆmform≤ M− K andhenceofthesignal

eigen-vectorsweights.Asforthewm,m≤ M− K,wewillprovideahigh

SNRapproximationofthemdirectly.

2.2. Approximatingthesignaleigenvectorsweights

Proposition1. At high signalto noiseratio, theweightswm ofEq.

(2)appliedtothesignaleigenvectorscanbeapproximatedas

wm≈ −ˆ

λ

−1m

(

T− K

)

−1

M−K k=1 ˆ

λk

m>M− K. (4)

Proof. Firstnotewmform>M− K isrelatedtotheM− K

small-estsolutions of(3) .Thelatterwill betypically ofthesame mag-nitudeastheWNP(dueto theinterlacingproperty

λ

ˆm−1<

μ

ˆm<

ˆ

λ

m) and hence negligible compared to

λ

ˆM−K+1,· · · ,

λ

ˆM. Hence,

they belong tosome interval In where ˆ

λ

m/

(

λ

ˆm

μ

)

≈ 1form>

M− K whichresultsin fs(

μ

) ≈ Kwhen

μ

In.Consequently,the

M− K smallestvaluesof

μ

areobtainedbysolving

fn

(

μ

)

+K=T⇔1− 1 T− K M−K m=1 ˆ

λ

m ˆ

λ

m

μ

=0 ⇔1−T 1 − K

ˆ

λ

n T

ˆ



n

μ

I

−1

ˆ

λ

n=0 ⇔det

ˆ



n− 1 T− K

ˆ

λ

n

ˆ

λ

n T

μ

I

=0 (5) where

λ

ˆn=



ˆ

λ

1 · · ·

λ

ˆM−K



T

,



ˆn=diag

(

λ

ˆn

)

andwherethe lastequivalenceisobtainedbymultiplyingbydet



ˆn

μ

I

.It fol-lowsthat

μ

ˆmform=1,· · · ,M− K areapproximatelythe

eigenval-uesof



ˆn

(

T− K

)

−1



ˆ

λ

n



ˆ

λ

n T .

Let us accordingly consider an approximation of the weights wm,m>M− K.Letusintroducethe notation



k=

λ

ˆk− ˆ

μ

k.Note

that, at high SNR, we have ˆ

λ

k

λ

ˆ−1m 1 for k=1,· · · ,M− K and,

since

μ

ˆk<

λ

ˆ

k,it followsthat

μ

ˆk

λ

ˆ−1m 1. Itthen ensuesthat,for

m>M− K wm=− M−K k=1



ˆ

λk

ˆ

λm

− ˆ

λk

− ˆ

μk

ˆ

λm

− ˆ

μk



=− M−K k=1 ˆ

λ

m



k ˆ

λ

2 m

(

1− ˆ

λk

ˆ

λ

−1m

)(

1− ˆ

μk

λ

ˆ−1m

)

≈ −ˆ

λ

−1 m M−K k=1



k=−ˆ

λ

−1m



M−K k=1 ˆ

λk

M−K k=1 ˆ

μk



≈ −ˆ

λ

−1 m



M−K k=1 ˆ

λk

− Tr

{



ˆn

(

T− K

)

−1

ˆ

λ

n

ˆ

λ

n T

}



=−ˆ

λ

−1 m

(

T− K

)

−1

M −K  k=1 ˆ

λk

.  (6)

2.3. Approximatingthenoiseeigenvectorsweights

Proposition2. At high signalto noiseratio, theweightsapplied to thenoiseeigenvectorscanbeapproximatedas

wm≈ 1 m≤ M− K. (7)

Proof. Letuswrite,form≤ M− K

wm=1+ M  k=M−K+1



ˆ

λk

ˆ

λm

− ˆ

λk

− ˆ

μk

ˆ

λm

− ˆ

μk



(4)

=1+ M  k=M−K+1 ˆ

λm

(

λk

ˆ − ˆ

μk

)

(

λ

ˆm− ˆ

λk

)(

λ

ˆm− ˆ

μk

)

=1+ M  k=M−K+1

(

λm

ˆ

λ

ˆ−1 k

)(

λk

ˆ

μ

ˆ−1k − 1

)

(

1− ˆ

λ

m

λ

ˆ−1k

)(

1− ˆ

λ

m

μ

ˆ−1k

)

. (8)

UnderthehighSNR assumption,wehavethat

λ

ˆmˆ

λ

−1k 1form

M− K and k>M− K.Letus nowshow that

λ

ˆm

μ

ˆ−1k 1for m

M− K andk>M− K.As

μ

ˆk



ˆ

λ

k−1,ˆ

λ

k



,itfollowsdirectly from the highSNR assumptionthat, for k>M− K+1 andm≤ M− K, ˆ

λ

m

μ

ˆ−1k <

λ

ˆmˆ

λ

−1k−1 1. It remains to examine the special caseof

kmin=M− K+1, that is of the smallest signal eigenvalue since,

in this case,

μ

ˆkmin lies between the largest noise eigenvalue and

thesmallestsignaleigenvalue.Wenowprovethat

μ

ˆkminiscloseto

ˆ

λ

kmin.Fork≥ kmin

ˆ

λk

ˆ

λk

− ˆ

μk

min ≤

λk

ˆ min ˆ

λk

min− ˆ

μk

min (9)

whichimpliesthat

M  k=M−K+1 ˆ

λk

ˆ

λk

− ˆ

μk

min ≤ K

λk

ˆ min ˆ

λk

min− ˆ

μk

min ⇔ M  k=1 ˆ

λk

ˆ

λk

− ˆ

μk

min ≤ K

λk

ˆ min ˆ

λk

min− ˆ

μk

min + M−K k=1 ˆ

λk

ˆ

λk

− ˆ

μk

min ⇔T≤ K

λk

ˆ min ˆ

λk

min− ˆ

μk

min + M−K k=1 ˆ

λk

ˆ

λk

− ˆ

μk

min ⇔K

λk

ˆ min ˆ

λk

min− ˆ

μk

min ≥ TM−K k=1 ˆ

λk

ˆ

λk

− ˆ

μk

min . (10)

Theright-handsideoflastequationbeingstrictlygreaterthanT,it followsthat ˆ

μk

min>

λk

ˆ min

1−K T

. (11)

Theprevious equation showsthat

μ

ˆkmin isratherclosetothe

up-per bound of the interval



ˆ

λ

kmin−1,ˆ

λ

kmin



to which it belongs. Similar derivations as for (10) can show that, for any k>MK,

μ

ˆk>

λ

ˆk



1M−k+1

T



, and hence as the eigenvalues increase, ˆ

μ

k comes closerto

λ

ˆk. Furthermore,(11) impliesthat

λ

ˆm

μ

ˆ−1k min< ˆ

λ

mˆ

λ

−1k min



1−K T



−1

1.Coming backto (8) it followsthat,athigh

SNR,wm≈ 1form≤ M− K. 

2.4. sG-MUSICanditsrelationtoMUSICbiascompensation

Combining(4) and(7) ,itfollowsthatPˆG-MUSICcanbe

approxi-matedby ˆ PsG-MUSIC=UˆnUˆHn

 M−K k=1 ˆ

λk

T− K Uˆs



ˆ −1 s UˆHs =PˆMUSIC

 M−K k=1

λk

ˆ

T− K Uˆs



ˆ −1 s UˆHs (12)

where Uˆs=[uˆM−K+1· · · ˆuM] and



ˆs=diag

(

λ

ˆs

)

with

λ

ˆs=



ˆ

λ

M−K+1 · · · ˆ

λ

M



T

. The projector in (12) provides an

ap-proximation of PˆG-MUSIC which relies only on the eigenvalues

and eigenvectorsand thus avoids theneed to solve (3) .One can

observe that the noise eigenvectors are attributed a common

weight equal to one as in MUSIC, while the signal eigenvectors

areweightedby ˆ

λ

−1m

(

T− K

)

−1

M−K

k=1

λ

ˆk

,whichtendstozeroas Tincreasesand/orthesignaltonoiseratioincreases,whichseems logical.

Interestinglyenough, PˆsG-MUSIC can be viewed as a correction

ofthebiasofMUSIClocalizationfunction.Moreprecisely, wewill show that the correctiveterm in the second line of (12) can be interpretedasacompensationofMUSICbiasduetofinitesample support.Asshownin[13] ,seealso[1, Chapter 9] ,onehas

E



PˆMUSIC



− UnUHn =− M  i=M−K+1 M  j=1, j =i

λi

λ

j T

(

λi

λ

j

)

2



ujuHj − uiuHi



. (13)

Wecanrewritethepreviousequationas

E



PˆMUSIC



− UnUH n =− M  i=M−K+1 M−K j=1

λ

i

λ

j T

(

λi

λ

j

)

2



ujuHj − uiuHi



=− M  i=M−K+1 M−K j=1

λ

i

σ

2 T

(

λ

i

σ

2

)

2



ujuHj− uiuHi



=



M  i=M−K+1

λi

σ

2 T

(

λi

σ

2

)

2



UnUHn+

(

M− K

)

σ

2 T M  i=M−K+1

λi

uiuHi

(

λi

σ

2

)

2 (14)

where

σ

2 standsfortheWNP.Therefore,whenevaluatedatatrue

DoA

θ

k,the averagevalueofMUSIC localizationfunction isgiven

by E



LˆMUSIC

(

θk

)



=

(

M− K

)

σ

2 T M  i=M−K+1

λ

i

|

aH

(

θk

)

ui

|

2

(

λ

i

σ

2

)

2 ≈

(

M− K

)

σ

2 T M  i=M−K+1

λ

−1 i

|

a H

(

θk

)

u i

|

2 =aH

(

θk

)



(

M− K

)

σ

2 T Us



−1 s UHs



a

(

θk

)

. (15)

Comparing (12) to (15) , one can interpret the correction

ˆ

PsG-MUSIC− ˆPMUSICasan O

(

T−1

)

estimate ofthe biasofMUSIC.In

other words, PˆsG-MUSIC can be viewed as a modification of

MU-SIC by attempting to remove bias. It is very interesting to note thatthetheorywhichledtoG-MUSICiscompletelydifferentfrom thetheoryfromwhich(13) originates.Withthisrespect,thenew ˆ

PsG-MUSICenablestosortofestablishabridgebetweenthetwo

ap-proaches.Itcaneitherbeviewedasanapproximationand simpli-ficationofG-MUSICand/oracorrectionofMUSIC.

3. Numericalsimulations

In this section, we compare the mean-square error (MSE) of

the DoA estimates obtained by MUSIC, G-MUSIC and sG-MUSIC.

We consider the same scenario as in [15] i.e., a uniform lin-eararray ofM=20sensors,spacedahalf-wavelengthapart.Two

equi-powered sources are assumed to be present in the field of

view ofthe array,withpowerP andDoA 35° and37°.The mea-surementsarecorrupted by whiteGaussiannoise withpower

σ

2

and we define the signal to noise ratio as SNR= P

σ2. We

con-sider asfigure ofmerit the meansquare errordefined asMSE=

P p=1E



(

θ

ˆp

θ

p

)

2



.5000Monte-Carlosimulations arerunto

es-timate MSE. In Figs. 1–3 we plot MSE as a function of SNR for variousvaluesofT,namelyT=15,T=25andT=75.Ascan be

(5)

Fig. 1. MSE of MUSIC, G-MUSIC and sG-MUSIC DoA estimates versus SNR. T = 15 .

Fig. 2. MSE of MUSIC, G-MUSIC and sG-MUSIC DoA estimates versus SNR. T = 25 .

Fig. 3. MSE of MUSIC, G-MUSIC and sG-MUSIC DoA estimates versus SNR. T = 75 .

thresholdarea (especiallyforsmallT) andmuch betterthan MU-SIC. As SNR increases the difference between the three methods vanishes. Therefore,sG-MUSIC offers a very goodcompromise: it issomewhatsimplerthanG-MUSICandundergoesamarginalloss inthethresholdarea,atleastwhena limitednumberofsamples isavailable.Ontheotherhand,sG-MUSIChasacomplexitysimilar tothatofMUSICbutprovidesmoreaccurateestimates.

4. Conclusions

Inthiscommunication, startingfromthe G-MUSIClocalization function,wehavepresentedan approximationthatcanbeviewed asabiascompensatedversion ofMUSIC.Indeed,thenewmethod correspondstoamodificationofMUSIClocalizationfunctionwhich somehowremovesthebiasinthelatter.Moreover,theweightsto beappliedtotheeigenvectorsofthesamplecovariancematrixare obtainedinclosed-form,similarlytoMUSIC,butdonot requireto findtheMrootsofa non-linearequation asin G-MUSIC. Numer-icalsimulations indicatethat thenewschemeperforms nearlyas wellasG-MUSIC,especiallyinlowsamplesupport,andbetterthan MUSIC.

References

[1] H.L. Van Trees , Optimum Array Processing, John Wiley, New York, 2002 .

[2] Y. Bresler , A. Macovski , Exact maximum likelihood parameter estimation of su- perimposed exponential signals in noise, IEEE Trans. Acoust. Speech Signal Pro- cess. 34 (5) (1986) 1081–1089 .

[3] J.F. Böhme , Estimation of spectral parameters of correlated signals in wave- fields, Signal Process. 11 (4) (1986) 329–337 .

[4] U. Sandkühler , J. Böhme , Accuracy of maximum-likelihood estimates for array processing, in: Proceesings ICASSP, 12, 1987, pp. 2015–2018 .

[5] A.G. Jaffer , Maximum likelihood direction finding of stochastic sources: a sep- arable solution, in: Proceedings ICASSP, New York, NY, 5, 1988, pp. 2893–2896 .

[6] R.O. Schmidt , Multiple emitter location and signal parameter estimation, IEEE Trans. Antennas Propag. 34 (3) (1986) 276–280 .

[7] R.O. Schmidt , R.E. Franks , Multiple source DF signal processing: an experimen- tal system, IEEE Trans. Antennas Propag. 34 (3) (1986) 281–290 .

[8] R. Roy , T. Kailath , ESPRIT- estimation of signal parameters via rotational in- variance techniques, IEEE Trans. Acoust. Speech Signal Process. 37 (7) (1989) 984–995 .

[9] P. Stoica , K. Sharman , Novel eigenanalysis method for direction estimation, Proc. IEE-Radar Sonar Navig. 137 (1) (1990) 19–26 .

[10] P. Stoica , A. Nehorai , MUSIC, maximum likelihood and Cramér–Rao bound, IEEE Trans. Acoust. Speech Signal Process. 37 (5) (1989) 720–741 .

[11] P. Stoica , A. Nehorai , Performance study of conditional and unconditional di- rection of arrival estimation, IEEE Trans. Acoust. Speech Signal Process. 38 (10) (1990a) 1793–1795 .

[12] P. Stoica , A. Nehorai , MUSIC, maximum likelihood and Cramér–Rao bound: fur- ther results and comparisons, IEEE Trans. Acoustics Speech Signal Process. 38 (12) (1990b) 2140–2150 .

[13] M. Kaveh , A. Barabell ,The statistical performance of the MUSIC and the min- imum-norm algorithms in resolving plane waves in noise, IEEE Trans. Acoust. Speech Signal Process. 34 (2) (1986) 331–341 .

[14] X.L. Xu , K.M. Buckley , Bias analysis of the MUSIC location estimator, IEEE Trans. Signal Process. 40 (10) (1992) 2559–2569 .

[15] X. Mestre , M.A. Lagunas , Modified subspace algorithms for DoA estimation with large arrays, IEEE Trans. Signal Process. 56 (2) (2008) 598–614 .

[16] B. Johnson , Y. Abramovich , X. Mestre , MUSIC, G-MUSIC and maximum like- lihood performance breakdown, IEEE Trans. Signal Process. 56 (8) (2008) 3944–3958 .

[17] X. Mestre , Improved estimation of eigenvalues and eigenvectors of covariance matrices using their sample estimates, IEEE Trans. Inf. Theor. 54 (11) (2008) 5113–5129 .

Figure

Fig.  1. MSE of MUSIC, G-MUSIC and sG-MUSIC DoA estimates versus SNR. T = 15 .

Références

Documents relatifs

We present two novel music interaction systems developed for casual exploratory search. In casual search scenarios, users have an ill-defined information need and it is not clear how

In chapter two, I conducted a systematic review that summarized relevant peer-reviewed studies of instrumental community music programs in youth populations that explored social

Thaw out and melt your winter blues with a live performance of award-winning composer Andrew Staniland’s Calamus 6 - a composition inspired by the infamous poem “Calamus” from

In this paper we focus on structural patterns in music: in intra-musical structural relations per se that allow the emergence and perception of salient musical shapes,

This research project covers all areas of the music-to-listener chain, from music description - descriptor extraction from the music signal, or data mining techniques -,

These controls are intended to allow listeners different musical perceptions on a piece of music, by opposition to traditional listening, in which the musical media is played

In the proposed Hotttabs application, these issues are tackled by using The Echo Nest music platform 10 to re- trieve the latest popular or “hot” songs based on editorial, social

Accordez donc quelques lignes à ceux-là et même si c'est «düficile» laissez quelques-uns se griser de vitesse, en seconde, même dans les carrefours!. Comment